Skip to main content
Log in

Mucoadhesive Biopolymer Nanoparticles for Encapsulation of Lipophilic Nutrients With Enhanced Bioactivity

  • ORIGINAL ARTICLE
  • Published:
Food Biophysics Aims and scope Submit manuscript

Abstract

Biopolymer-based nanoparticles, prepared from stearic acid-chitosan derivative, sodium caseinate (NaCas) and oxidized dextran (Odex), have been shown to have high biocompatibility and exceptional gastrointestinal (GI) stability. However, the mucoadhesive properties of such nanoparticles have yet to be analyzed. Therefore, interactions between the nanoparticles and mucin, the major protein of the mucus layer, were evaluated through rheological studies, quartz crystal microbalance with dissipation (QCM-D) analysis, and adsorption testing. There was an increase in the elastic and viscous properties of mucin when complexed with the nanoparticles during the frequency sweep, denoting rheological synergism. The nanoparticles exhibited rapid decreases in frequency and increases in dissipation during the QCM-D analysis, denoting successful adsorption onto the mucin layer. Following adsorption testing, peak adsorption (91 %) was found to be at a ratio of 1:4 at mucin/nanoparticles (weight/weight). Once the role of the nanoparticles’ mucoadhesive properties in GI stability was determined, astaxanthin (ASTX) was utilized as a model nutrient for enhanced bioavailability via encapsulation. The effect of encapsulation on ASTX was determined through measuring particulate properties. Encapsulated ASTX exhibited enhanced antioxidant activity compared to free ASTX in ABTS and DPPH antioxidant assays. This study suggests that the as-prepared biopolymer nanoparticles exhibit mucoadhesive properties that could beneficially interact with the mucus layer of the GI tract. Given their enhanced mucoadhesive properties, the nanoparticles make an excellent candidate for the encapsulation of nutrients with low bioavailability such as the lipophilic ASTX.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Q. Hu, M. Bae, E. Fleming, J.-Y. Lee, Y. Luo, Food Hydrocoll. 89 (2019). https://doi.org/10.1016/j.foodhyd.2018.10.057

  2. Y. Luo, Colloid Surface B. 196 (2020). https://doi.org/10.1016/j.colsurfb.2020.111309

  3. K. Fuhrmann, G. Fuhrmann, Curr. Opin. Colloid Interface Sci. 31 (2017). https://doi.org/10.1016/j.cocis.2017.07.002

  4. DF Evans, G Pye, R Bramley, AG Clark, TJ Dyson, JD Hardcastle, Gut 29, 1035 (1988). https://doi.org/10.1136/gut.29.8.1035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. LM Ensign, R Cone, J Hanes, Adv. Drug Deliv. Rev. 64, 557 (2012). https://doi.org/10.1016/j.addr.2011.12.009

    Article  CAS  PubMed  Google Scholar 

  6. S. Hong, D.W. Choi, H.N. Kim, C.G. Park, W. Lee, H.H. Park, Pharmaceutics 12 (2020). https://doi.org/10.3390/pharmaceutics12070604

  7. M. Bodnar, J.F. Hartmann, J. Borbely, Biomacromolecules (2005). https://doi.org/10.1021/bm0502258

  8. Q. Hu, S. Hu, E. Fleming, J.-Y. Lee, Y. Luo, J. Biol. Macromol. 151 (2020). https://doi.org/10.1016/j.ijbiomac.2020.02.170

  9. Q. Hu, Y. Luo, Carbohydr. Polym. 151 (2016). https://doi.org/10.1016/j.carbpol.2016.05.109

  10. Q Hu, J-Y Lee, Y Luo, Eng. Sci. (2019). https://doi.org/10.30919/es8d507

    Article  Google Scholar 

  11. J. Grießinger, S. Dünnhaupt, B. Cattoz, P. Griffiths, S. Oh, S.B. i Gómez, M. Wilcox, J. Pearson, M. Gumbleton, M. Abdulkarim, I. Pereira de Sousa, Bernkop-Schnürch A, Eur. J. Pharm. Biopharm. 96 (2015). https://doi.org/10.1016/j.ejpb.2015.01.005

  12. L.M. Ensign, C. Schneider, J.S. Suk, R. Cone, J. Hanes, Adv. Mater. 24 (2012). https://doi.org/10.1002/adma.201201800

  13. S.K. Lai, Y.-Y. Wang, D. Wirtz, J. Hanes, Adv. Drug Deliv. Rev. 61 (2009). https://doi.org/10.1016/j.addr.2008.09.012

  14. S.K. Lai, Y.-Y. Wang, J. Hanes, Adv. Drug Deliv. Rev. 61. (2009). https://doi.org/10.1016/j.addr.2008.11.002

  15. J.L. McAuley, S.K. Linden, C.W. Png, R.M. King, H.L. Pennington, S.J. Gendler, T.H. Florin, G.R. Hill, V. Korolik, M.A. McGuckin, J. Clin. Investig. 117 (2007). https://doi.org/10.1172/JCI26705

  16. A. Jachak, S.K. Lai, K. Hida, J.S. Suk, N. Markovic, S. Biswal, P.N. Breysse, J. Hanes, Nanotoxicology (2012). https://doi.org/10.3109/17435390.2011.598244

  17. R. Bansil, B.S. Turner, Curr. Opin. Colloid Interface Sci. 11 (2006). https://doi.org/10.1016/j.cocis.2005.11.001

  18. I. Carlstedt, J.K. Sheehan, Biochem. Soc. Trans. 12 (1984). https://doi.org/10.1042/bst0120615

  19. G.J. Strous, J. Dekker, 27, Crit. Rev. Biochem. Mol. Bio. (1992). https://doi.org/10.3109/10409239209082559

  20. J.D. Snyder, A. Walker, Int. Arch. Allergy Immunol. 82 (1987). https://doi.org/10.1159/000234225

  21. R. Donnelly, R. Shaikh, T. Raj Singh, M. Garland, Ad. Woolfson, J. Pharm. Bioallied Sci. 3 (2011). https://doi.org/10.4103/0975-7406.76478

  22. J. das Neves, M.F. Bahia, M.M. Amiji, B. Sarmento, Expert Opin. Drug Deliv. 8 (2011). https://doi.org/10.1517/17425247.2011.586334

  23. J. SMART, Adv. Drug Deliv. Rev. 57 (2005). https://doi.org/10.1016/j.addr.2005.07.001

  24. R.A. Cone, Adv. Drug Deliv. Rev. 61 (2009). https://doi.org/10.1016/j.addr.2008.09.008

  25. A. Rubinstein, B. Tirosh, Pharm. Res. 11 (1994). https://doi.org/10.1023/A:1018961204325

  26. B. Boddupalli, ZulkarN.K. Mohammed, R. Nath, D. Banji, J. Adv. Pharm. Technol. Res. 1 (2010). https://doi.org/10.4103/0110-5558.76436

  27. C.A. Silva, T.M. Nobre, F.J. Pavinatto, O.N. Oliveira, J. Colloid Interface Sci. 376 (2012). https://doi.org/10.1016/j.jcis.2012.03.027

  28. M.P. Sarparanta, L.M. Bimbo, E.M. Mäkilä, J.J. Salonen, P.H. Laaksonen, A.M.K. Helariutta, M.B. Linder, J.T. Hirvonen, T.J. Laaksonen, H.A. Santos, A.J. Airaksinen, Biomaterials 33 (2012). https://doi.org/10.1016/j.biomaterials.2012.01.029

  29. D.I. Wilson, Eye 32 (2018). https://doi.org/10.1038/eye.2017.267

  30. X. Su, W. Chen, W. Xu, Adv. Mech. Eng. (2017). https://doi.org/10.1177/1687814017699765

  31. F. Madsen, K. Eberth, J.D. Smart, Biomaterials 19 (1998). https://doi.org/10.1016/S0142-9612(98)00037-4

  32. S. Rossi, F. Ferrari, M.C. Bonferoni, C. Caramella, Eur. J. Pharm. Sci. 12 (2001). https://doi.org/10.1016/S0928-0987(00)00194-9

  33. R.G. Riley, J.D. Smart, J. Tsibouklis, P.W. Dettmar, F. Hampson, J.A. Davis, G. Kelly, W.R. Wilber, Int. J. Pharm. 217 (2001). https://doi.org/10.1016/S0378-5173(01)00592-0

  34. N. Anarjan, C.P. Tan, I.A. Nehdi, T.C. Ling, Food Chem. 135 (2012). https://doi.org/10.1016/j.foodchem.2012.05.091

  35. J. Mercke Odeberg, Å Lignell, A. Pettersson, P. Höglund, Eur. J. Pharm. Sci. 19 (2003). https://doi.org/10.1016/S0928-0987(03)00135-0

  36. G. Shu, N. Khalid, Z. Chen, M.A. Neves, C.J. Barrow, M. Nakajima, Food Chem. 255 (2018). https://doi.org/10.1016/j.foodchem.2018.02.062

  37. F. Miao, Y. Geng, D. Lu, J. Zuo, Y. Li, Chin. J. Oceanol. Limnol. 31 (2013). https://doi.org/10.1007/s00343-013-2105-3

  38. G.-L. Jiang, M.-J. Zhu, LWT 106 (2019). https://doi.org/10.1016/j.lwt.2019.02.055

  39. R. Ambati, S.-M. Phang, S. Ravi, R. Aswathanarayana, Mar. Drugs 12 (2014). https://doi.org/10.3390/md12010128

  40. S. Goto, K. Kogure, K. Abe, Y. Kimata, K. Kitahama, E. Yamashita, H. Terada, Biochim. Biophys. Acta Biomembr. 1512 (2001). https://doi.org/10.1016/S0005-2736(01)00326-1

  41. P. Palozza, Nutr. Rev. 56 (2009). https://doi.org/10.1111/j.1753-4887.1998.tb01762.x

  42. K-J Yeum, G Beretta, NI Krinsky, RM Russell, G Aldini, Nutrition 25, 839 (2009). https://doi.org/10.1016/j.nut.2009.01.011

    Article  CAS  PubMed  Google Scholar 

  43. L.A. Pham-Huy, H. He, C. Pham-Huy, Int. J. Biomed. Sci. (2008)

  44. AS Veskoukis, AM Tsatsakis, D Kouretas, Cell. Stress Chaperones 17, 11 (2012). https://doi.org/10.1007/s12192-011-0293-3

    Article  CAS  PubMed  Google Scholar 

  45. F. Zanoni, M. Vakarelova, G. Zoccatelli, Mar. Drugs 17 (2019). https://doi.org/10.3390/md17110627

  46. P. Chandra Bhatt, P. Srivastava, P. Pandey, W. Khan, B.P. Panda, RSC Adv. 6 (2016). https://doi.org/10.1039/C5RA19113K

  47. S. Bharathiraja, P. Manivasagan, Y.-O. Oh, M.S. Moorthy, H. Seo, N.Q. Bui, J. Oh, Int. J. Pharm. 517 (2017). https://doi.org/10.1016/j.ijpharm.2016.12.020

  48. D. Santonocito, G. Raciti, A. Campisi, G. Sposito, A. Panico, E.A. Siciliano, M.G. Sarpietro, E. Damiani, C. Puglia, Nanomaterials 11 (2021). https://doi.org/10.3390/nano11020391

  49. Z. Liu, Y. Jiao, Y. Wang, C. Zhou, Z. Zhang, Adv. Drug Deliv. Rev. 60 (2008). https://doi.org/10.1016/j.addr.2008.09.001

  50. Q. Chen, S. Xu, Q. Liu, J. Masliyah, Z. Xu, Adv. Colloid Interface Sci. 233 (2016). https://doi.org/10.1016/j.cis.2015.10.004

  51. S. Sunoqrot, L. Hasan, A. Alsadi, R. Hamed, O. Tarawneh, Colloids Surf. B 156 (2017). https://doi.org/10.1016/j.colsurfb.2017.05.005

  52. Q. Hu, T. Wang, M. Zhou, J. Xue, Y. Luo, J. Agric. Food Chem. 64 (2016). https://doi.org/10.1021/acs.jafc.6b02255

  53. A. Albanese, P.S. Tang, W.C.W. Chan, Annu. Rev. Biomed. Eng. 14 (2012). https://doi.org/10.1146/annurev-bioeng-071811-150124

  54. Q. Hu, T. Wang, M. Zhou, J. Xue, Y. Luo, Int. J. Biol. Macromol. 92 (2016). https://doi.org/10.1016/j.ijbiomac.2016.07.089

  55. G.E. Yakubov, A. Papagiannopoulos, E. Rat, R.L. Easton, T.A. Waigh, Biomacromol 8 (2007). https://doi.org/10.1021/bm700607w

  56. J. Kočevar-Nared, J. Kristl, J. Šmid-Korbar, Biomaterials 18 (1997). https://doi.org/10.1016/S0142-9612(96)00180-9

  57. M.T. Cook, V.v. Khutoryanskiy, Int. J. Pharm. 495 (2015). https://doi.org/10.1016/j.ijpharm.2015.09.064

  58. R.A.A. Muzzarelli, Carbohydr. Polym. 76 (2009). https://doi.org/10.1016/j.carbpol.2008.11.002

  59. I.-Y. Kim, S.-J. Seo, H.-S. Moon, M.-K. Yoo, I.-Y. Park, B.-C. Kim, C.-S. Cho, Biotechnol. Adv. 26 (2008). https://doi.org/10.1016/j.biotechadv.2007.07.009

  60. M. Sumiyoshi, Y. Kimura, J. Pharm. Pharmacol. 58 (2006). https://doi.org/10.1211/jpp.58.2.0007

  61. C.-M. Lehr, J. Haas, Expert Opin. Biol. Ther. 2 (2002). https://doi.org/10.1517/14712598.2.3.287

  62. X. Zhang, W. Dong, H. Cheng, M. Zhang, Y. Kou, J. Guan, Q. Liu, M. Gao, X. Wang, S. Mao, Asian J. Pharm.l Sci. 14 (2019). https://doi.org/10.1016/j.ajps.2018.09.002

  63. V.M. de Oliveira Cardoso, M.P.D. Gremião, B.S.F. Cury, Int. J. Biol. Macromol. 149 (2020). https://doi.org/10.1016/j.ijbiomac.2020.01.235

  64. JP Pearson, A Allen, DA Hutton, in Glycoprotein Methods and Protocols. ed. by A. By, Corfield (Humana Press, Totowa, NJ, 2000), pp. 99–109

  65. K. Aoki, M. Nakagawa, K. Ichimura, J. Am. Chem. Soc. 122 (2000). https://doi.org/10.1021/ja001790f

  66. A. Anitha, N. Deepa, K.P. Chennazhi, S.V. Nair, H. Tamura, R. Jayakumar, Carbohydr. Polym. 83 (2011). https://doi.org/10.1016/j.carbpol.2010.07.028

  67. C.A. Withers, M.T. Cook, L. Methven, M.A. Gosney, and V. v. Khutoryanskiy, Food Funct. 4 (2013). https://doi.org/10.1039/c3fo60291e

  68. W. Xie, P. Xu, Q. Liu, Bioorganic Med. Chem. Lett. 11 (2001). https://doi.org/10.1016/S0960-894X(01)00285-2

  69. V.A. Alexandrova, G.v. Obukhova, N.S. Domnina, D.A. Topchiev, Macromol. Symp. 144 (1999). https://doi.org/10.1002/masy.19991440138

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yangchao Luo.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fleming, E., Jia, Z., Yang, M. et al. Mucoadhesive Biopolymer Nanoparticles for Encapsulation of Lipophilic Nutrients With Enhanced Bioactivity. Food Biophysics 16, 520–531 (2021). https://doi.org/10.1007/s11483-021-09691-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11483-021-09691-x

Keywords

Navigation