Skip to main content
Log in

Heat-Induced Whey Protein Gels: Effects of pH and the Addition of Sodium Caseinate

  • ORIGINAL ARTICLE
  • Published:
Food Biophysics Aims and scope Submit manuscript

Abstract

The effects of pH (6.7 or 5.8), protein concentration and the heat treatment conditions (70 or 90 °C) on the physical properties of heat-induced milk protein gels were studied using uniaxial compression, scanning electron microscopy, differential scanning calorimetry, and water-holding capacity measurements. The systems were formed from whey protein isolate (10–15% w/v) with (5% w/v) or without the addition of caseinate. The reduction in pH from 6.7 to 5.8 increased the denaturation temperature of the whey proteins, which directly affected the gel structure and mechanical properties. Due to this increase in the denaturation temperature of the β-lactoglobulin and α-lactalbumin, a heat treatment of 70 °C/30 min did not provide sufficient protein unfolding to form self-supporting gels. However, the presence of 5% (w/v) sodium caseinate decreased the whey protein thermo stability and was essential for the formation of self-supporting gels at pH 6.7 with heat treatment at 70 °C/30 min. The gels formed at pH 6.7 showed a fine-stranded structure, with great rigidity and deformability as compared to those formed at pH 5.8. The latter had a particulate structure and exuded water, which did not occur with the gels formed at pH 6.7. The addition of sodium caseinate led to less porous networks with increased gel deformability and strength but decreased water exudation. The same tendencies were observed with increasing whey protein concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. S.P.F.M. Roefs, K.G. de Kruif, Eur. J. Biochem. 226, 883–889 (1994)

    Article  CAS  Google Scholar 

  2. J.M. Aguilera, Food Technol. 49, 83–89 (1995)

    CAS  Google Scholar 

  3. G.R. Ziegler, E.A. Foegeding, Adv. Food Nutr. Res. 34, 203–298 (1990)

    Article  CAS  Google Scholar 

  4. S. Ikeda, V.J. Morris, Biomacromolecules 3, 382–389 (2002)

    Article  CAS  Google Scholar 

  5. M. Stading, A.M. Hermansson, Food Hydrocoll. 5, 339–352 (1991)

    Article  CAS  Google Scholar 

  6. S. Ikeda, E.A. Foegeding, T. Hagiwara, Langmuir 15, 8584–8589 (1999)

    Article  CAS  Google Scholar 

  7. W. Sittikijyothin, P. Sampaio, M.P. Gonçalves, Food Hydrocoll. 21, 1046–1055 (2007)

    Article  CAS  Google Scholar 

  8. E. Ibanoglu, Food Chem. 90, 621–626 (2005)

    Article  CAS  Google Scholar 

  9. R.I. Baeza, A.M.R. Pilosof, Food Sci. Technol. 35, 393–399 (2002)

    CAS  Google Scholar 

  10. M. Paulsson, P. Dejmek, J. Dairy Sci. 73, 590–600 (1990)

    Article  CAS  Google Scholar 

  11. J.C. Montejano, D.D. Hamann, T.C. Lanier, J. Texture Stud. 16, 403–424 (1985)

    Article  Google Scholar 

  12. E.A. Foegeding, Food Biophys. 1, 41–50 (2006)

    Article  Google Scholar 

  13. AOAC, Official Methods of Analysis, 14th edn. (Association of Official Analytical Chemists, Washington, 1985)

    Google Scholar 

  14. J.F. Steffe, Rheological methods in food process engineering (Freeman, East Lansing, 1996)

    Google Scholar 

  15. P. Schkoda, A. Hechler, H.G. Kessler, Int. Dairy J. 9, 269–273 (1999)

    Article  CAS  Google Scholar 

  16. J.I. Boye, I. Alli, Food Res. Int. 33, 673–682 (2000)

    Article  CAS  Google Scholar 

  17. D. Christ, K.P. Takeuchi, R.L. Cunha, J. Food Sci. 70, E230–E238 (2005)

    Article  CAS  Google Scholar 

  18. D.M. Mulvihill, M. Donovan, Ir. J. Food Sci. Technol. 11, 43–75 (1987)

    CAS  Google Scholar 

  19. P. Relkin, D.M. Mulvihill, Crit. Rev. Food Sci. Nutr. 36, 565–601 (1996)

    Article  CAS  Google Scholar 

  20. E.H.C. Bromley, M.R.H. Krebs, A.M. Donald, Eur. Phys. J. E Soft Matter 21, 145–152 (2006)

    Article  CAS  Google Scholar 

  21. M. Stading, M. Langton, A.-M. Hermansson, Food Hydrocoll. 7, 195–212 (1993)

    Article  CAS  Google Scholar 

  22. S. Varunsatian, K. Watanabe, S. Hayakawa, R. Nakamura, J. Food Sci. 48, 42–70 (1983)

    Article  CAS  Google Scholar 

  23. I.J. Haug, H.M. Skar, G.E. Vegarud, T. Langsrud, K.I. Draget, Food Hydrocoll. 23, 2287–2293 (2009)

    Article  CAS  Google Scholar 

  24. N.K.D. Kella, J.E. Kinsella, Biochem. J. 255, 113–118 (1988)

    CAS  Google Scholar 

  25. M. Langton, A.-M. Hermansson, Food Hydrocoll. 7, 11–12 (1993)

    Article  Google Scholar 

  26. M. Langton, A.-M. Hermansson, Food Hydrocoll. 7, 195–212 (1993)

    Article  Google Scholar 

  27. C. Öhgren, M. Langton, A.-M. Hermansson, J. Mater. Sci. 39, 6473–6482 (2004)

    Article  Google Scholar 

  28. T. Lefèvre, M. Subirade, Biopolymers 54, 578–586 (2000)

    Article  Google Scholar 

  29. M. Verheul, S.P.F.M. Roefs, Food Hydrocoll. 12, 17–24 (1998)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Fundação de Amparo à Pesquisa e Desenvolvimento de São Paulo (FAPESP—Brazil; Grant No. 2003/08119-5), and the Brazilian National Research Council (CNPq, Brazil).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosiane L. Cunha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Picone, C.S.F., Takeuchi, K.P. & Cunha, R.L. Heat-Induced Whey Protein Gels: Effects of pH and the Addition of Sodium Caseinate. Food Biophysics 6, 77–83 (2011). https://doi.org/10.1007/s11483-010-9177-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11483-010-9177-9

Keywords

Navigation