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Abstract
Autism spectrum disorder (ASD) is a neurological disorder associated with brain inflammation. The underlying mechanisms 
could be attributed to the activation of PI3K signaling in the inflamed brain of ASD. Multiple studies highlight the role of 
GRPR in regulating ASD like abnormal behavior and enhancing the PI3K signaling. However, the molecular mechanism 
by which GRPR regulates PI3K signaling in neurons of individuals with ASD is still unclear. In this study, we utilized a 
maternal immune activation model to investigate the effects of GRPR on PI3K signaling in the inflamed brain of ASD mice. 
We used HT22 cells with and without GRPR to examine the impact of GRP-GRPR on the PI3K-AKT pathway with IL-6 
treatment. We analyzed a dataset of hippocampus samples from ASD mice to identify hub genes. Our results demonstrated 
increased expression of IL-6, GRPR, and PI3K-AKT signaling in the hippocampus of ASD mice. Additionally, we observed 
increased GRPR expression and PI3K-AKT/mTOR activation in HT22 cells after IL-6 treatment, but decreased expression 
in HT22 cells with GRPR knockdown. NetworkAnalyst identified GSK-3β as the most crucial gene in the PI3K-AKT/mTOR 
pathway in the hippocampus of ASD. Furthermore, we found that IL-6 upregulated the expression of GSK-3β in HT22 cells 
by upregulating GRP-GRPR. Our findings suggest that IL-6 can enhance the activation of PI3K-AKT/mTOR-GSK-3β in 
hippocampal neurons of ASD mice by upregulating GRPR.
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Introduction

Autism Spectrum Disorder (ASD) is a group of neurodevel-
opmental disorders characterized by impaired social commu-
nication, restrictive interests and repetitive behaviors (Battle  
2013). The prevalence of ASD in 8-year-old children is 
approximately 1 in 36, as reported by the American Centers 

for Disease Control and Prevention (CDC) in 2021 (Maenner  
et al. 2023), this rate is rapidly increasing. Large epidemio-
logic studies have shown that maternal immune activation 
(MIA) caused by prenatal exposure to bacterial or viral  
infections increases the risk of ASD (Careaga et al. 2017; 
Lombardo et al. 2018). Animal researches have revealed that 
MIA exacerbates ASD-like behavioral abnormalities by caus-
ing brain inflammation in offspring (Cieślik et al. 2023), and 
they have also identified some potential mechanisms, such as 
the inflammatory injury of cytokines like interleukin (IL)-6 
(Brown et al. 2014; Lesh et al. 2023) and IL-17 (Bagcioglu 
et al. 2023; Sarieva et al. 2023) in the brain. It is important 
to note that blocking IL-6 (Smith et al. 2007) or IL-17 A 
(Reed et al. 2020) signaling effectively alleviated behavio-
ral abnormalities in ASD mice, although the specific neural 
mechanisms are still unclear. Therefore, gaining a deeper 
understanding of the mechanisms by which inflammatory 
factors affect neurons in ASD is crucial for developing accu-
rate diagnosis and effective interventions for ASD.

Increasing investigations have demonstrated that 
phosphatidylinositol 3 (PI3K) signaling is an essential 
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intracellular signaling system activated by brain inflamma-
tion (Le Belle et al. 2014; Hodges et al. 2021). PI3K is a 
family of lipid kinases that phosphorylate the 3′-hydroxyl 
group of phosphatidylinositide and phosphoinositides, con-
trolling the activation of protein kinase B (PKB, also named 
AKT) and the mammalian target of rapamycin (mTOR) 
(Bilanges et al. 2019). The PI3K-AKT/mTOR signaling 
pathway plays a role in synaptogenesis, corticogenesis, and 
other neuronal cerebral processes (Gilbert and Man 2017), 
and its dysregulation has been implicated in the progression 
of ASD (Chen et al. 2014; Wang et al. 2022). Abnormal 
activation of the PI3K-AKT/mTOR signaling pathway in 
hippocampal neurons has been shown to result in repetitive 
behavior, social behavior deficits, and serotonin impairment 
(Lugo et al. 2014). In a study with ASD rats, inhibition of the 
PI3K-AKT/mTOR signal completely reversed social defects 
and repetitive behavior (Xing et al. 2019). Dysregulation 
of PI3K-AKT has also been observed in a human induced 
pluripotent stem cell-derived ASD neuron model, and the 
degree of dysregulation is related to the severity of ASD 
symptoms in young children (Gazestani et al. 2019). There-
fore, investigating the factors that can regulate the activation 
of the PI3K-AKT/mTOR signaling pathway in specific brain 
regions will provide insights into the pathogenesis of ASD.

Gastrin-releasing peptide (GRP) receptor (GRPR), a 
member of the G protein coupled receptor (GPCR), regu-
lates the activation of the PI3K-AKT pathway in neurons 
(Pereira et al. 2015; Sun et al. 2023). GRPR is expressed 
in neurons in multiple brain regions, controlling the circa-
dian cycle, anxiety, fear, stress, and modulation of memory 
(Roesler et al. 2006a, b). Specifically, GRPR is present in 
hippocampal neurons and plays a role in regulating synap-
tic transmission, which can contribute to cognitive damage 
associated with the hippocampal area (Yang et al. 2017). In 
a study on rats, neonatal GRPR blockade resulted in reduced 
sociability, restrictive interests, motor stereotypies, and an 
enhanced learned fear response (Merali et al. 2014). Fur-
thermore, GRPR signaling, known for its involvement in itch 
transmission (Yu et al. 2017), has been found to increase in 
neurons following stimulation of inflammatory factors (Liu 
et al. 2023). It is worth noting that MIA caused by Poly-ic in 
mice led to an increase in proinflammatory cytokines in the 
fetal brain, particularly IL-6, resulting in autism-like behav-
ioral symptoms in offspring (Jones et al. 2017; Horváth 
et al. 2019). Therefore, we hypothesize that GRPR could be 
upregulated in ASD mice exposed to MIA and exacerbate 
autism-like behavior by activating the PI3K-AKT/mTOR 
signaling pathway.

In this study, we utilized maternal immune activation to 
create a mouse model of ASD. Our objective was to investi-
gate any changes in GRPR expression and the activation of 
the PI3K-AKT/mTOR signaling pathway in the brain. Addi-
tionally, we conducted in vitro experiments to suppress the 

expression of GRPR in mouse hippocampal neuron HT22 
cells, in order to examine the role of GRPR in the activation 
of the PI3K-AKT/mTOR signaling pathway. By elucidating 
a potential mechanism through which GRPR can influence 
neurons in ASD, our study may contribute to identifying a 
promising therapeutic target for ASD treatment.

Methods

Mice

C57BL/6 mice were obtained from HFK Bioscience (Beijing, 
China) and housed in a specific pathogen-free environment. 
Timed pregnancies were established by pairing a male and 
female overnight, and the mid-day of the next morning was 
designated as embryonic day 0.5 (E0.5). Maternal immune 
activation (MIA) was performed according to a previously 
described method (Li et al. 2022). Briefly, mice were mated 
overnight, and the presence of seminal plugs was checked 
every morning, which was recorded as embryonic Day 0.5 
(E0.5). On E12.5, pregnant mice received an intraperitoneal 
injection of 20 mg/kg of Poly-ic (#P9582, Sigma). Only male 
mice were used in all studies involving adult offspring, and 
their behavior was assessed at 6 weeks of age.

Behavioral Testing

Three‑chamber Social Interaction Test

Social preference was assessed using a 3-chamber Plexi-
glas arena (40 × 60 cm). The arena was divided into 3 equal 
chambers, each measuring 20 × 40 cm, with a 4 × 4 cm 
square opening allowing the test mice to move between 
chambers. The experiment consisted of three phases. In 
Phase 1, the test mouse had free access to the entire arena 
for habituation. In Phase 2, the test mouse was briefly placed 
in the center chamber while an unfamiliar stranger mouse 
was placed in one of the cages. The test mouse was given 
10 min to explore the arena. In Phase 3, the cage containing 
the unfamiliar stranger mouse was moved to another cham-
ber, and the cage that previously held the stranger mouse in 
Phase 2 was now occupied by a novel mouse. The Ethovision 
XT 10 system (Noldus) was used, connected to an overhead 
camera, to track and record the behavior of the test mouse. 
The discrimination index in Phase 2 was calculated as the 
difference between the time spent exploring the stranger 
mouse and the time spent exploring an empty cage, divided 
by the total time spent exploring social stimuli. Similarly, 
the discrimination index in Phase 3 was calculated as the 
difference between the time spent exploring the novel mouse 
and the time spent exploring a familiar mouse, divided by 
the total time spent exploring social stimuli.
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Open Field

In the open-field apparatus (43.2 cm × 43.2 cm), mice were 
placed in a corner and allowed to move freely. Data were 
collected using the MED Associates’ Activity Monitor Data 
Analysis software on a PC. Prior to testing, the mice were 
not exposed to the chamber. Individual data were recorded 
for each animal over a 5-minute period.

Marble Burying Test

The marble burying test was designed based on the 
method described by Malkova et al. (2012). Clean cages 
(36.7 × 14.0 × 20.7 cm) were filled with 5 cm corn cob bed-
ding. Then, 20 blue glass marbles were gently placed on 
the surface of the bedding in a 4 × 5 arrangement, evenly 
spaced from each other. The testing animals were placed in 
the area, and the number of marbles buried within a 30-min-
ute testing period was measured. Marbles were considered 
buried if they were covered by at least 60% of the bedding.

Elevated Plus Maze

The plus maze consisted of two walled arms (the closed 
arms, 35 cm L × 6 cm W × 22 cm H) and two open arms 
(35 cm L × 6 cm W). Mice were placed in the center sec-
tion and allowed to freely explore the maze. Their activity 
was monitored using ImageEP software66. The time spent 
in the open versus closed arms during the 5-minute period 
was recorded.

Western Blot

Hippocampus isolated from the mouse brains were homog-
enized in ice-cold lysis buffer containing 50 mM Tris- 
HCl, 150 mM NaCl, 1% NP-40, 2 mM EDTA, 1 mM Na-
orthovanadate, (pH 7.4), and proteinase inhibitor mixture 
(Thermo SCIENTIFIC, 1 mL/10 g tissue) and collected the 
homogenate to centrifuge at 1,000 g at 4 °C for 10 min. The 
following antibodies were used: anti-GRPR (ab188821), 
anti-PIK3R3 (ab238509), anti-AKT (4685 S), anti-p-AKT 
(Ser473) (12,694 S), anti-mTOR (2983 S), anti-β-Actin 
(66009-1-Ig), goat anti-rabbit labeled with HRP (ab205718), 
goat Anti-mouse labeled with HRP (ab205719). The Image-
Pro plus software, version 6.0, from Media Cybernetics 
(Rockville, MD, USA) were used to determine the chemi-
luminescent and relative protein expression, respectively, 
which was represented as the density ratio vs. Actin.

Immunofluorescence

After fixation with 4% PFA in PBS, the brain slice or HT22 
cells were incubated with anti-GRPR, anti-p-AKT (Ser473) 

overnight. The cells were then washed with PBS and incu-
bated with Alexa 488 or Alexa 596 conjugated secondary 
antibodies (Invitrogen) for 90 min. To label the nucleus, 
cells were also incubated with DAPI (Invitrogen) for 5 min. 
A laser-scanning confocal microscope (LSM 800; Zeiss) 
was used for fluorescence imaging.

Microarray Source

Gene expression data from microarray studies of ASD 
were downloaded from the Gene Expression Omnibus 
(GEO) (https://​www.​ncbi.​nlm.​nih.​gov/​geo/). GSE178403 
from GPL24247 included mRNA profile of 3 different 
brain regions (anterior cingulate cortex, dorsal hippocam-
pus, ventral hippocampus) from 12 offspring of MIA mice 
treated by Poly-ic (Guma et al. 2021). The dataset was 
pre-processed using the log2 transformation and quantile 
normalization by the R package.

The enrichment network of differentially expressed 
genes (DEGs) and Over-Representation Analysis (ORA)-
generated heatmaps were performed using Network Ana-
lyst (Zhou et al. 2019), a website that can generate tis-
sue-specific Protein-Protein Interaction Networks (PPI) 
and gene co-expression networks. The network-based 
bioinformatics analysis utilized the Fisher’s method 
with a significance level of p < 0.05, as implemented in 
NetworkAnalyst, following the pipeline described by Li 
et al. (2022).

RNA Quantification

The RNeasy® Mini Kit (Qiagen®, Venlo, Netherlands) 
was performed to extract total RNA from collected tis-
sues or cultured cells, which was then reverse transcribed 
into cDNA using the M-MLV reverse transcriptase 
(Invitrogen). Quantitative real-time polymerase chain 
reaction (qRT-PCR) analyses were carried out using a 
SYBR Green Real-time PCR kit (Toyobo, Osaka, Japan)  
in a LightCycler® (Bio-Rad Laboratories, Hercules, CA, 
USA). Data were normalized to GAPDH, and fold changes 
were analyzed using the formula: 2−Δ Δ Ct.

Primer pairs used were as follows: IL-6: 5’-TAC​CAC​
TTC​ACA​AGT​CGG​AGGC-3’ and 5’-CTG​CAA​GTG​
CAT​CAT​CGT​TGTTC-3’; GRPR: 5’-GTG​GAC​CCT​TTC​
CTG​TCC​TG-3’ and 5’-GGA​CTT​GAC​CGT​GCA​GAA​
GA-3’; GRP: 5’-GAG​CTC​TCG​CTC​TTG​CTG​TT-3’ 
and 5’-GAG​CTC​TCG​CTC​TTG​CTG​TT-3’; GSK-3β: 
5’-GAG​AAC​CAC​CTC​CTT​TGC​GG-3’ and 5’- TGG​
TTA​CCT​TGC​TGC​CAT​CT-3’; GAPDH: 5’-TCT​CCA​
CAC​CTA​TGG​TGC​AA-3’ and 5’- CAA​GAA​ACA​GGG​
GAG​CTG​AG-3’.

https://www.ncbi.nlm.nih.gov/geo/
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HT22 Knockout Cell Line

To establish GRPR knockout HT22 cells, specific CRISPR 
sgRNA for knock out of the GRPR gene was designed using 
the CRISPR Design web site (Feng Zhang laboratory, MIT, 
Cambridge, Massachusetts, USA; http://​crispr.​mit.​edu). 
sgRNA was then cloned into the pSpCas9(BB)-2 A-GFP 
(#48138, Addgene, Cambridge, MA) (Ran et al. 2013) and 
transfected into HT22 by jetPRIME reagents (Polyplus-
transfection®, Illkirch-Graffenstaden, France). Single clones 
were picked and screened for genetic and functional deletion 
of HT22. GRPR deleted cell clones were named as HT22-
GRPR KD cells.

Statistical Analysis

Data were presented as means and standard deviations 
(SDs) or medians and quantiles depending on the dis-
tribution of data. The confocal images and protein blots 
shown were representative data from at least three inde-
pendent experiments. The values and graphs of the Pear-
son correlation were obtained using the GraphPad Prism. 
A p-value < 0.05 and | r |> 0.3 was considered statistically 
significant and relevant.

Results

GRPR is Increased in the DG Area of Hippocampus 
of ASD Mice

In this study, we examined the expression of GRPR in dif-
ferent brain regions of mice in the MIA model. The ASD 
mice from the Poly-ic group exhibited several autism-like 
behaviors. They showed decreased social preference in the 
three-chamber social interaction test (Fig. 1A), spent less 
time in the center area of the open field (Fig. 1B), displayed 
increased repetitive behaviors as observed in marble bury-
ing (Fig. 1C), and spent less time in the open arms and more 
time in the closed arms of the elevated plus maze (Fig. 1D). 
These behavioral changes indicated that the mice from the 
Poly-ic group exhibited autism-like behavior. Considering 
the connection between GRPR and ASD-like abnormal 
behaviors, we further investigated the expression of GRPR 
in the brain using immunofluorescence. Our results showed 
a significant increase in the expression of GRPR in the DG 
region of the hippocampus in the Poly-ic mice compared 
to the control group (Fig. 1E and H). However, there were 
no significant changes observed in the CA1 region of the 
hippocampus (Fig. 1F and H) or the amygdala (Fig. 1G and 
H). In conclusion, our findings suggest that the increase of 
GRPR specifically occurs in the DG region of the hippocam-
pus in ASD mice.

The Increase of GRPR is Related to the Activation 
of PI3K‑AKT Pathway in ASD Mice

To investigate the relationship between GRPR and the PI3K-
AKT/mTOR signaling pathway, we examined the expression 
of p-AKT in the DG (Fig. 2A) and CA1 (Fig. 2B) regions of 
the hippocampus in mice with ASD. The results depicted in 
Fig. 2A and B demonstrate an increase in p-AKT levels in the 
hippocampus of ASD mice, which co-localized with GRPR 
expression. Furthermore, the protein expression of PIK3R3 
and p-AKT in the hippocampus of ASD mice from the Poly-
ic group was significantly higher compared to the control 
group. However, the expression of AKT did not exhibit any 
statistical change (Fig. 2C and D).

IL‑6 Increases GRPR and Activates PI3K‑AKT/mTOR 
Pathway In vitro

To investigate the role of IL-6 in promoting ASD-like behav-
ior in a mouse model of MIA (Sarieva et al. 2023), we initially 
examined the expression levels of IL-6 in the mouse brains. 
Immunohistochemical analysis revealed higher levels of IL-6 
in the brains of mice from the Poly-ic group compared to the 
control group (Fig. 3A and B), while mRNA expression of 
IL-6 was similar between the two groups (Fig. 3C). Moreover, 
upon IL-6 stimulation of HT22 cells and primary neurons 
in vitro, there was a significant increase in GRPR-positive 
cells (Fig. 3D and E). Additionally, HT22 cells exhibited 
significantly higher levels of PIK3R3 and p-AKT upon IL-6 
stimulation (Fig. 3F and G). These findings suggest that IL-6 
can up-regulate GRPR expression in HT22 cells and activate 
the PI3K-AKT signaling pathway, with the observed effects 
showing a certain correlation with the concentration of IL-6.

Reducing GRPR in HT22 Cells can Inhibit PI3K‑AKT/
mTOR Pathway Activation

To investigate the role of GRPR in IL-6 activation of the PI3K-
AKT/mTOR signaling pathway, we utilized CRISPR-Cas9 to 
knock down GRPR expression in HT22 cells. In comparison to 
wild-type (WT) HT22 cells, the HT22 GRPR KD cells exhibited 
decreased expression of GRPR (Fig. 4A). Following treatment 
with IL-6 (40ng/ml) for 24 h, the expression of mTOR (Fig. 4B 
and E) was reduced in HT22 GRPR KD cells compared to HT22 
WT cells, while PIK3R3 (Fig. 4B and C) and p-AKT (Fig. 4B 
and D) showed no significant changes. Moreover, under low 
IL-6 concentration (20ng/ml, 24 h) treatment, only mTOR dis-
played a significant decrease in HT22 GRPR KD (Fig. 4B and 
E). These findings suggest that the downregulation of GRPR 
expression in HT22 cells can diminish the activation level of the 
PI3K-AKT/mTOR signaling pathway following IL-6 treatment.

http://crispr.mit.edu
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mRNA Expression of GRPR was Increased 
and Related to PI3K‑AKT/mTOR Signaling Pathway 
Activation in the Hippocampus of ASD Mice

 In our study, we examined the expression of dorsal hip-
pocampus (dHIP) (Fig. 5A), ventral hippocampus (vHIP) 

(Fig. 5B), and anterior cingulate cortex (ACC) (Fig. 5C) 
from GSE178403. We observed a significant increase in the 
expression of GRPR only in the dHIP of ASD mice from 
the Poly-ic group. Subsequently, we used NetworkAnalyst 
to analyze the pathway enriched in genes positively associ-
ated with GRPR expression. Our analysis revealed that the 

Fig. 1   GRPR is increased in DG of the hippocampus of MIA off-
spring. (A) In the three-chamber social test, social interaction of Poly-
ic group showed significantly less than control group (n = 8, *** p 
< 0.001). (B) In the open field experiment, the time of mice in the  
Poly-ic group staying in the central area was reduced compared with 
that in  the control group (n = 8, ** p < 0.01). (C) The number of 
buried beads in the Poly-ic group was higher than that in the control 
group (n = 8, ** p < 0.01). (D) In the cross elevated test, the mice in 

the Poly-ic group spent significantly less time in the open arm area 
than those in the control group, while the time spent in the closed arm 
area increased (n = 8, ** p < 0.01). Representative images of GRPR 
in DG (E) and CA1 (F) of the hippocampus and amygdala (G). Scale 
bar, 50 μm. (H) Count the number of GRPR +  neurons in each group 
of three independent visual fields (100µm 2) (Data are mean ± SEM,  
n = 6, * p < 0.05)
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PI3K-AKT and mTOR signaling pathways were enriched, 
and there was evidence of cross-reaction between these two 
pathways (Fig. 5D). Furthermore, we generated a heat map 
(Fig. 5E) to visualize the expression of genes involved in the 
PI3K-AKT and mTOR signaling pathway, which showed 
enhanced expression in mice from the Poly-ic group com-
pared to the control group. These findings suggest that the 
increased expression of GRPR in the hippocampus of ASD 
mice may be linked to the activation of the PI3K-AKT/
mTOR signaling pathway.

Gsk3b was a Hub Gene in the PI3K‑AKT/mTOR 
Signaling Pathway Activated by IL‑6‑STAT3‑GRPR

To investigate the role of GRPR-mediated PI3K-AKT/
mTOR activation in ASD, we selected genes that showed 
a positive correlation with GPRP expression in the AKT 
pathway. We then performed GO analysis and found 

that two pathways, neuron projection and dendrite, were 
enriched in these genes. Subsequently, we analyzed the 
genes involved in the neuron projection and dendrite path-
ways using NetworkAnalyst. As depicted in Fig. 6A and 
B, glycogen synthase kinase 3 β (Gsk3b) emerged as the 
top-ranked gene in both networks based on the Degree of 
centrality and betweenness (Li et al. 2022). It has been 
well-established that activated AKT can interact with 
numerous downstream proteins, and GSK-3β has been 
confirmed to play a role in neuronal apoptosis signaling 
(Razani et al. 2021). Furthermore, Fig. 6C demonstrates a 
significant positive correlation between Gsk3b and GRPR 
in the dHIP from GSE178403. We also observed a sig-
nificant increase in the mRNA expression of Gsk3b in 
the hippocampus of ASD mice (Fig. 6D). Additionally, 
upon IL-6 stimulation in vitro, the expression of Gsk3b 
was significantly reduced in HT22-GRPR KD compared 
to HT22 (Fig. 6E).

Fig. 2    The increase of GRPR is related to the activation of PI3K-
AKT pathway in ASD mice.  Immunostaining shows the expression 
of GRPR and p-AKT in the control group and the Poly-ic group mice 
were co-localized (green represents GRPR, red represents p-AKT, 
blue represents nucleus) in DG (A) and CA1 (B) of the hippocam-

pus of ASD mice. Scale bar = 100  μm. (C) Representative images  
showed the expressions of GRPR, PIK3R3, AKT, p-AKT, mTOR 
in hippocampus of control and ASD mice, and (D) quantified by 
ImageJ. Data are mean ± SEM ( n = 3, * p < 0.05, ** p < 0.01, ***  
p < 0.001)
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To further investigate the mechanism of IL-6-mediated 
GRPR activation in ASD, we applied Stattic, a phospho-
rylation inhibitor of IL-6 downstream signaling transcrip-
tion activator STAT3. We observed that Stattic can inhibit 

the increased mRNA expression of GRP and GRPR in 
HT22 cells under IL-6 stimulation (Fig. 6F). However, 
IL-6 still activates the expression of Gsk3b in HT22 cells, 
regardless of the presence of Stattic (Fig. 6G). These 

Fig. 3   IL-6 increases GRPR and activates PI3K-AKT/mTOR path-
way in  vitro.  (A) Immunohistochemistry shows that there is a dif-
ference in the expression of IL-6 in the coronal section of the brain 
between the control group mice and the Poly-ic group mice (the 
scale is 1 mm). (B) The average unit area optical density of IL-6 in 
the brain of mice in Poly-ic group was significantly higher than that 
in the control group ( n = 3). (C) Compared with the control group, 
the expression of IL-6 in the brain tissue of mice in Poly-ic group 

increased significantly ( n = 3, ** p < 0.01). After stimulated with 
IL-6 at a concentration of 60 ng/ml for 24 h, GRPR positive neurons 
of HT22 cells (D) and primary neurons (E) were increased compared 
with cells without IL-6 treatment (scale 20 μm). (F) Representative 
images showed the expressions of GRPR, PIK3R3, AKT, p-AKT, 
mTOR in HT22 cells after treated with IL-6 at indicated concentra-
tions and (G) quantified by ImageJ (* p < 0.05, ** p < 0.01)
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findings suggest that IL-6 may increase the expression 
of GRPR in neurons by upregulating their expression 
of GRP (Fig. 6H). Additionally, to assess the impact of 
GRP on neurons, we stimulated HT22 cells with recom-
binant mouse GRP. We observed that GRP can enhance 
the expression of GRPR and Gsk3b in HT22 cells, but not 
in HT22-GRPR KO cells (Fig. 6I).

Discussion

Our results demonstrate that increased expression of GRPR 
leads to the activation of the PI3K-AKT/mTOR-GSK-3β 
signaling pathway in the hippocampus of ASD mice. Addi-
tionally, our findings indicate that IL-6 promotes PI3K acti-
vation by upregulating GRP/GRPR expression. Therefore, 
our study establishes a connection between elevated IL-6 
levels in the hippocampus, upregulated GRPR, and overac-
tivated PI3K-AKT/mTOR-GSK-3β signaling in ASD mice 
from MIA. This suggests a potential role of GRPR in pro-
moting ASD-like behavioral abnormalities.

Accumulating evidence suggests a strong association 
between IL-6 and ASD, although the precise mechanism of 
IL-6 on neurons in specific brain regions of ASD remains 
unclear (García-Juárez and Camacho-Morales 2022). Fro-
zen brain tissue in individuals with ASD has shown signifi-
cantly elevated levels of IL-6 compared to healthy controls 
(Li et al. 2009), and the secretion of IL-6 has been found 
to be positively correlated with the severity of ASD (Hu 
et al. 2018). IL-6 can increase the number of excitatory syn-
apses by promoting mature dendritic spines, leading to an 
imbalance in excitation-inhibition in synaptic transmission 
(Hu et al. 2018). Furthermore, IL-6 has been identified to 
play an important role in ASD offspring of mothers with 
MIA (Sarieva et al. 2023). MIA leads to increased secretion 
of the pro-inflammatory cytokine IL-6 in the serum, which 
can further increase IL-6 levels in the fetus through the pla-
cental barrier (Wu et al. 2017). Enhanced IL-6 and STAT3 
phosphorylation have been observed in the fetal brain of 
MIA mice, and knocking out the IL-6 receptor has been 
shown to reduce marble-burying repetitive behavior and 
rescue social exploration reductions caused by MIA (Wu 

Fig. 4   Reducing GRPR in HT22 cells can inhibit PI3K-AKT/mTOR 
pathway activation.  (A) Constructing the GRPR Knockdown (KD) 
cells strain. (B) Representative images showed blots of different pro-
teins (PIK3R3, AKT, p-AKT, mTOR) in GRPR WT and GRPR KD 
cells after IL-6 treatment in different concentrations (0ng/ml, 20ng/

ml, 40ng/ml) for 24 h. (C–E) Relative expression of PIK3R3, p-AKT 
and mTOR in GRPR WT and GRPR KD cells after IL-6 stimulation 
in different concentrations (0ng/ml, 20ng/ml, 40ng/ml) for 24 h. Data 
are mean ± SEM ( n = 3, * p < 0.05, ** p < 0.01)
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et al. 2017). Our experiment found a significant increase in 
IL-6 levels in the hippocampus of ASD mice (Fig. 3), and 
IL-6 was shown to increase the expression of GRP-GRPR 
and PI3K-AKT/mTOR-GSK-3β in HT22 cells (Fig.  6). 
Therefore, this study provides an important clue to the neu-
ral mechanism by which MIA causes ASD-like behavioral 
abnormalities through IL-6.

As one of the potential pathogenic genes of autism, 
GRPR has received increasing attention in the field of neu-
rological research (Presti-Torres et al. 2012). Studies on syn-
aptic excitatory-inhibitory imbalance have found that GRPR, 
located in the lateral amygdala nucleus, is mainly expressed 

in GABA interneurons. This expression can improve the 
excitatory-inhibitory imbalance of neurons by exciting 
such neurons and then inhibiting their downstream neurons 
(Shumyatsky et al. 2002; Roesler and Schwartsmann 2012). 
Stimulation with continuous GRPR antagonist (RC-3095) in 
neonatal rats 10 days before birth can lead to major autis-
tic symptoms in adulthood, such as decreased social skills, 
stereotypical behavior, and increased learned fear memory 
(Presti-Torres et al. 2012). GRPR in the dorsal hippocam-
pus impacts the process of memory through PKC, MAPK, 
and PKA-related signaling pathways (Roesler et al. 2006a, 
b). In our experiments, we observed an increase in GRPR 

Fig. 5    mRNA expression of GRPR was increased and related to 
PI3K-AKT/mTOR signaling pathway activation in the hippocampus 
of ASD mice. Expression of GRPR in the dorsal hippocampus (A), 
GRPR in ventral hippocampus (B) and anterior cingulate cortex (C) 
of samples from GSE178403. ** p < 0.01. (D) The enrichment net-
work of DEGs identified using network-based analysis, the colors of 

nodes are positively correlated with the fold change of DEGs in the 
signaling pathway. (E) ORA-generated heatmaps of core enrichment 
genes in the PI3K-AKT and mTOR signaling pathway upregulated 
in ASD mice from the Poly-ic group of orsal hippocampus samples 
from GSE178403
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expression in the hippocampus of MIA offspring and dHIP 
from GSE178403(Figs. 1 and 5). We also demonstrated that 
IL-6 upregulates the expression of GRP/GRPR in neurons 
through the STAT3 pathway (Figs. 3 and 6). Therefore, the 
enhanced expression of GRPR in hippocampal neurons may 

be an important mechanism by which MIA leads to abnor-
mal ASD behavior through IL-6.

PI3K plays a crucial role in mediating GRPR func-
tion (Sun et al. 2023). It is involved in synaptic plasticity 
and memory formation in various brain areas, including 
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hippocampal Schaffer-CA1 synapses, dentate gyrus, and 
amygdala (Chen et  al.  2005). PI3K is responsible for 
important events in memory formation, such as the inser-
tion of AMPA receptors into the postsynaptic membrane 
and the initiation of protein synthesis (Chen et al. 2005; 
Sánchez-Castillo et al. 2022). Activation of the PI3K path-
way promotes cell survival, acts on downstream mTOR 
to facilitate protein synthesis, and may be implicated in 
synaptic plasticity and memory consolidation (Horwood 
et al. 2006). Injecting PI3K inhibitors into the hippocam-
pus of rats has been shown to impede the extraction and 
regression of contextual conditioning fear memories, indi-
cating the significance of PI3K activation in the mainte-
nance of this type of memory (Chen et al. 2005; Kritman 
and Maroun 2013). Our study discovered that GRPR and 
p-AKT were co-localized in the hippocampus of MIA 
offspring and were enhanced by IL-6 in HT22 (Figs. 2 
and 3). By reducing the expression of GRPR in HT22, we 
observed inhibition of the activation of the PI3K-AKT/
mTOR signaling pathway (Fig. 4). These findings sug-
gest that IL-6 enhances GRPR in hippocampal neurons of 
MIA offspring mice, potentially regulating neural function 
through the PI3K-AKT/mTOR signaling pathway.

GSK-3β is a crucial kinase regulated by the PI3K-AKT 
signaling pathway, which has significant effects on synapses 
and cognitive function (Cao et al. 2019). The PI3K/AKT/
GSK-3β signaling pathway has emerged as a key regulatory 
factor in dendritic spinal dynamics and neuron projection 
(Fang et al. 2011; Swiatkowski et al. 2017). Suppression of 
AKT/GSK-3β signal transduction has been found to result in 
the loss of dopaminergic neurons (Zhu et al. 2019). Recent 
research indicates that overactivation of GSK-3β could impair 
the developing hippocampus and contribute to cognitive defi-
cits (Abbah et al. 2022). Increased GSK-3β in GABAergic  
interneurons has been associated with abnormal spatial work-
ing memory (Nakao et al. 2020). Activation of the PI3K-AKT 

signaling pathway leads to an increase in phosphorylated 
GSK-3β (Jaworski et al. 2019). Recent study demonstrated 
that activation of the PI3K-AKT signaling pathway in ASD 
promotes an increase in phosphorylated GSK-3β, which 
regulates neuronal survival and differentiation (Ahmed 
et al. 2023). Interestingly, our results show that in the hip-
pocampus of ASD mice with increased GRPR expression, 
both neuron projection and dendrite pathways are enriched, 
with GSK-3β being the critical regulatory molecule (Figs. 5 
and 6). While we have demonstrated that the activation of 
GRPR in HT22, promoting the mRNA expression of GSK-3β 
(Fig. 6), we have not yet determined whether phosphorylated 
GSK-3β increases or how GSK-3β affects the survival and 
synaptic formation of hippocampal neurons in ASD mice. 
Therefore, it is worth investigating the association between 
GSK-3β signaling in hippocampal neurons and abnormal 
behavior in ASD mice, a s well as developing targeted inter-
ventions to alleviate MIA-induced ASD.

 In summary, our study demonstrates that IL-6 can 
enhance the activation of the PI3K-AKT/mTOR-GSK-3β 
pathway in hippocampal neurons of ASD mice by upregu-
lating GRPR. Thus, GRPR may affect the development of 
ASD through the regulation of GSK-3β in neurons within 
the inflamed brain. Our findings suggest that GRPR could 
serve as an important target for future research.

Schematic diagram of the signaling pathways involved 
in IL-6 activating the PI3K-AKT/mTOR-GSK-3β pathway 
in hippocampal neurons of ASD mice. Increased IL-6 in 
the hippocampus of MIA offspring mice leads to increased 
GRP-GRPR signaling in neurons, which in turn stimulates 
the activation of the PI3K-AKT/mTOR-GSK-3β signaling 
pathway. This activation may affect signaling in neuron 
projection and dendrite development.
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