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memories related to a stressful incident, persistent avoid-
ance of stimuli, negative alteration in mood or cognition, 
and hyperarousal. These symptoms must have been present 
for one month after experiencing a traumatic event caus-
ing significant distress or social impairment. However, the 
symptoms may also be delayed even after years and the indi-
vidual might experience a severe crisis later in life (Weath-
ers et al. 2014; American Psychiatric Association 2017).

It is well documented that veterans and members of 
the armed forces are at greater risk of PTSD (Moore et al. 
2021). The primary progenitor of PTSD among war veter-
ans has certainly combated trauma (O’Toole et al. 2020). 
Around 8% of the general population suffers from post-
traumatic stress disorder (PTSD). Veterans and active mili-
tary personnel both experience PTSD at twice the rate as 
the general population (Judkins et al. 2020). According to 
WHO World Mental Health (WMH) surveys in 24 coun-
tries, rape (13.1%), sexual assault (15.1%), being stalked 
(9.8%), and sudden loss of a loved one (11.6%) had the larg-
est proportions of this burden. The first three of these four 
traumas are very unusual with a high PTSD risk, whereas 

Introduction

Post-traumatic stress disorder (PTSD) is a persistent ener-
vative condition that progresses aftermath of a traumatic 
incident usually after the context of war, sexual violence, 
and natural disaster (American Psychological Association 
2017). According to the 5th version of the Diagnostic and 
Statistical Manual of Mental Disorders (DSM-V), PTSD 
comprises four symptom clusters viz., presence of intrusive 
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Abstract
Post-traumatic stress disorder (PTSD) is a chronic incapacitating condition with recurrent experience of trauma-related 
memories, negative mood, altered cognition, and hypervigilance. Agglomeration of preclinical and clinical evidence in 
recent years specified that alterations in neural networks favor certain characteristics of PTSD. Besides the disruption of 
hypothalamus-pituitary-axis (HPA) axis, intensified immune status with elevated pro-inflammatory cytokines and arachi-
donic metabolites of COX-2 such as PGE2 creates a putative scenario in worsening the neurobehavioral facet of PTSD. 
This review aims to link the Diagnostic and Statistical Manual of mental disorders (DSM-V) symptomology to major 
neural mechanisms that are supposed to underpin the transition from acute stress reactions to the development of PTSD. 
Also, to demonstrate how these intertwined processes can be applied to probable early intervention strategies followed 
by a description of the evidence supporting the proposed mechanisms. Hence in this review, several neural network 
mechanisms were postulated concerning the HPA axis, COX-2, PGE2, NLRP3, and sirtuins to unravel possible complex 
neuroinflammatory mechanisms that are obscured in PTSD condition.

Keywords Post-traumatic stress disorder · Neuroinflammation · Serotonin · Glutamate · Cyclooxygenase · 
Prostaglandins

Received: 10 August 2022 / Accepted: 16 April 2023 / Published online: 25 April 2023
© The Author(s) 2023

Emphasizing the Crosstalk Between Inflammatory and Neural 
Signaling in Post-traumatic Stress Disorder (PTSD)

Anusha Govindula1 · Niraja Ranadive1 · Madhavan Nampoothiri1 · C Mallikarjuna Rao1 · Devinder Arora1,2  · 
Jayesh Mudgal1

1 3

http://orcid.org/0000-0002-7106-7769
http://orcid.org/0000-0001-8190-7031
http://crossmark.crossref.org/dialog/?doi=10.1007/s11481-023-10064-z&domain=pdf&date_stamp=2023-4-24


Journal of Neuroimmune Pharmacology (2023) 18:248–266

the fourth is a highly frequent event with a low PTSD risk 
(Kessler et al. 2017). Furthermore, the prevalence of PTSD 
in Indian settings varies greatly, from little to almost 70%. 
The disparity in PTSD prevalence rates has mostly been 
linked to methodological variations across the research, 
including variations in the severity of the catastrophe used 
for the study, technique of sampling, case identification, etc. 
(Pillai et al. 2016). Notably, a cross-sectional comparative 
study in Nepal identified strong association between pro-
inflammatory cytokines and trauma, confirming the hypoth-
esis of immune system activation in trauma (Koirala et al. 
2023). Similarly, Case-control studies in PTSD patients 
showed high levels of chemokines and proinflammatory 
cytokines, indicating that these increased inflammatory 
markers could act as biomarkers of PTSD risk, resilience, 
and stress responses (Zhang et al. 2020; Otsuka et al. 2021). 
These upregulated proinflammatory markers imply that 
those suffering from PTSD may have an activated immune 
system, which might contribute to neuroinflammation (de 
Oliveira et al. 2018).

Neurobiological Mechanisms of Stress-Induced 
Inflammation in PTSD

Usually, the reaction to physiological and/or psychological 
stressors involves a coordinated interaction between auto-
nomic and neuroendocrine responses (Morena et al. 2016). 
Stress stimulates the hypothalamic-pituitary-adrenal axis 
(HPA) to produce corticotrophin-releasing hormone (CRH) 
from paraventricular nucleus (PVN) of hypothalamus which 
fosters the anterior pituitary producing adrenocorticotropic 
hormone (ACTH) inducting glucocorticoid secretion (corti-
sol) to minimize immune responses (Hori and Kim 2019). 
Chronic stress is considered to jeopardize the progression 
of major depressive disorder (MDD), whereas exposure to 
acute yet extreme stressful events, often in individuals expe-
riencing chronic stress, can precipitate the development of 
PTSD (Almeida et al. 2021).

A variety of studies have found hypocortisolism in people 
who have gone through a stressful event and then developed 
PTSD (Rohleder et al. 2004; Groer et al. 2015). Further-
more, expanding research has revealed that PTSD patients 
with hypocortisolism are more susceptible to developing 
proinflammatory cytokines (Daskalakis et al. 2016). Para-
ventriculare nucleus (PVN) neuronal activity in response 
to peripheral immunological challenge is mediated by 
cytokines-induced endothelial production of prostaglandins 
(Quan et al. 2003). This immune-induced HPA axis activa-
tion is primarily facilitated by prostaglandin E2 (PGE2) 
produced in the brain (Furuyashiki, Tomoyuki; Narumiya 
2011). Notably, peripheral interleukin-1β (IL-1β) actuates 
the HPA axis, and increases ACTH release, likely through 

the initiation and release of CRH into the hypophyseal por-
tal blood. PGE2 from endothelial cells of the brain micro-
vasculature is also stimulated by peripheral IL-1β released 
from macrophages, which then acts PVN of the HPA axis 
(Parsadaniantz et al. 2000). Consequently, an increase in the 
release of CRH under chronic stress conditions and the fur-
ther lack of a dearth of cortisol control over immune cells 
causes the, endothelial cells of PVN in the brain to mediate 
the immunological response and, exacerbating the PTSD 
condition.

The single prolonged stress (SPS) paradigm of PTSD in 
rats revealed that cyclooxygenase-2 (COX-2) can provoke 
inflammation and apoptosis in the hippocampus and con-
tribute to the development of PTSD. Celecoxib, the selec-
tive COX-2 inhibitor decreased the levels of tumor necrosis 
factor- α (TNF-α), interleukin-6 (IL‐6), prostaglandin E2 
(PGE2), and nitric oxide (NO) and hampered the neuronal 
apoptosis. Thus inhibition of COX-2 could decrease the 
occurrence of oxidative stress and apoptosis and can play a 
key role in clinical research and PTSD therapy in the future 
(Wang et al. 2018a). In LPS-challenged rats, doxycycline 
and meloxicam provided neuroprotection by lowering pro-
inflammatory cytokine levels (TNF-α, IL-6, and IL-17) and 
COX-2 synthesis in the brain (Er et al. 2020). Moreover, 
studies using knockout mice and selective inhibitors have 
demonstrated that in a social defeat stress (SDS) model, 
toll receptors (TLR2/4), monoacylglycerol lipase (MAGL), 
and COX could induce PGE2 synthesis by TLR/MAGL/
COX pathway causing social avoidance behavior (Nie et al. 
2019).

As the global burden of Post-Traumatic Stress Disorder 
(PTSD) continues to rise and the disorder exhibits signifi-
cant heterogeneity, it becomes crucial to comprehend the 
stress-related pathophysiology underlying PTSD. Though 
the existing research on the effectiveness of glucocorticoid-
based treatment in preventing PTSD is encouraging, the 
mechanisms mediating this impact and the population that 
might benefit from this remains elusive due to methodologi-
cal discrepancies and gaps in translational studies (Florido 
et al. 2023). Intervening in the established pathological 
pathways through repurposing drugs could offer a novel 
therapeutic approach to this complex condition (Table 1).

Channelization of Neural Systems Towards 
PTSD Symptomology

Serotonergic System, Inflammation, and PTSD

The physiological involvement of the neurotransmitter 
serotonin (5-hydroxytryptamine; 5-HT) is essential for 
brain development, mood regulation, and stress reactivity 
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(Brummelte et al. 2017), whereas, a deficiency plays a piv-
otal role in the pathophysiology of depression (Jacobsen et 
al. 2012; Yohn et al. 2017), attention deficit hyperactivity 
disorder (ADHD) (Whitney et al. 2016) and Alzheimer’s 
disease (Chakraborty et al. 2019). Majority of the serotonin 
receptors are metabotropic, and produce their physiological 
responses through the second messenger systems and are 
G-protein-coupled receptors (GPCRs), whereas 5-HT3 is an 
ionotropic receptor and acts through ligand-gated ion chan-
nel (LGIC) (Sarkar et al. 2021).

Disruption of 5HT transmission has been proposed to be 
involved in the etiopathogenesis of PTSD. Low hippocam-
pal 5HT levels have been linked with the development of 
depressive-like behavior in the SPS-induced stress model of 
PTSD in rats (Sherin and Nemeroff 2011; Lee et al. 2020). 
The concentration of 5HT in the dorsal median raphe is 
also reduced, which may alter the dynamics between the 
amygdala and the hippocampus (Sukhmanjeet Kaur Mann; 
Raman Marwaha. 2021). These results are in line with the 
PTSD condition, where low 5HT levels result in depressive 
behavior, impulsivity, and hypervigilance (Nisar et al. 2020). 
Furthermore, the time-dependent sensitization (TDS) stress 
in rats has shown that the considerably reduced plasma cor-
ticosterone levels lead to quantitative (receptor density) and 
qualitative (receptor affinity) alterations in the hippocam-
pal 5HT1A and prefrontal cortex 5HT2A receptors (Harvey 

et al. 2003). Moreover, the density of 5HT1A receptors has 
also been shown to be upregulated in a rat model of PTSD 
suggesting the involvement of 5HT1A receptors in modulat-
ing the anxiety phenotype of PTSD (Luo et al. 2011), and 
these outcomes were consistent with the neuroimaging find-
ings in PTSD patients (Sullivan et al. 2013). Overactivity of 
5HT1B auto-receptors in dorsal raphe nucleus (DRN) neu-
rons could be a key mediator of pathological reactions to 
stressful situations (Clark et al. 2002). In line with this, a 
genetic mouse model lacking 5-HT1B autoreceptors demon-
strated lower anxiety-like behaviour in the open field and 
antidepressant-like effects in the forced swim and sucrose 
preference tests. These findings imply that strategies aiming 
at inhibiting 5-HT1B autoreceptors may be effective in the 
treatment of anxiety and depression which are the symp-
tom clusters of PTSD (Nautiyal et al. 2016). The density 
of 5HT1B receptors has also been related to certain PTSD 
characteristics, implying that certain aspects of the clinical 
phenomenology of PTSD may be caused by these receptor 
changes (Bailey et al. 2013; Pietrzak et al. 2013b). A case-
control genotyping study in adults who had experienced sig-
nificant trauma found a link between genetic disparity in the 
5HT2A promoter region and PTSD (Mellman et al. 2009). 
Further, chronic stress triggers the upregulation of 5HT2C 
receptors which have been linked to altered neuroplasticity 
and neuroinflammation due to the elevation of IL-6, IL-1β 

Table 1 Therapeutic strategies in PTSD research:
S.No Neural systems 

and molecular 
markers

Observed dysregulation in markers/ 
receptors

DSM-V symptoms Drugs References

1 Serotonergic 
system

Low 5HT, Overactivity of 5HT1A, 
5HT1B, 5HT2A, 5HT2C

Depressive like 
behavior, impulsivity, 
hypervigilance

Sertraline Paroxetine 
Fluoxetine

(Corchs et al. 2009; Luo 
et al. 2011; Baptista-de-
Souza et al. 2020; de 
Moraes Costa et al. 2020)

2 Glutamatergic 
system

Increased glutamate Hyperarousal, Intru-
sive memories

Ketamine NMDA 
receptor antagonist

(Rosso et al. 2017; Wat-
son 2019)

3 GABAergic Low GABA levels down-regulation 
of GABAAR

Anxiety, Intrusive 
memories

Gabapentin (Nasca et al. 2013; Astill 
Wright et al. 2019)

4 Adrenergic Increased NA Hyperarousal Prazosin, Clonidine 
Propranolol

(Olson et al. 2011; Aykac 
et al. 2020)

5 Cholinergic Reduced Ach, Downregulated 
α7nAchR, increase AchE

Intrusive memories, 
negative mood

Donepezil, Cotinine (Tyagi et al. 2010; Men-
doza et al. 2018; Prajapati 
and Krishnamurthy 2021)

6 Dopaminergic Low dopamine levels, decreased 
dopamine transporter (DAT), 
Decreased D2R expression D3R 
overexpression

Hyperarousal, nega-
tive mood

Asenapine, L-DOPA (Cisler et al. 2020; 
Grinchii and Dremencov 
2020)

7 Inflammasome NLRP3 - β-hydroxybutyrate 
(BHB)

(Yamanashi et al. 2020)

8 Sirtuins Increases SIRT1, decreased SIRT6 - EX527 (SIRT1 
inhibitor)

(Li et al. 2019c)

9 Arachidonic acid 
metabolites

COX-2
PGE2

- Meloxicam
Ibuprofen
Piracetam
Celecoxib

(Mellon et al. 2018; 
Uniyal et al. 2019; Er et 
al. 2020)
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et al. 2010; Polter and Li 2010). Furthermore, corticoste-
rone treatment in adrenalectomized rats has little effect on 
5HT1B mRNA levels in the dorsal raphe or hippocampus 
as compared to 5HT1A mRNA (Neumaier et al. 2000). 
These results are significant since they hint at corticoste-
rone’s selective modulation of receptors across brain areas. 
Evidence shows that genetic polymorphism in the central 
5HT2A/2C receptors results in abnormal cortisol secretion 
after impaired motor control and attention (Brummett et al. 
2012; Murnane 2019). Alongside receptor overexpression 
or polymorphism, low platelet serotonin levels and blunted 
HPA axis activity is also attributed to suicidality behavior in 
PTSD patients (Grah et al. 2010). These pieces of evidence 
reveal that abnormal HPA axis activation together with dys-
regulated serotonergic system contributes to negative symp-
toms of PTSD.

Serotonin is involved in inflammatory and immunomod-
ulatory disorders (Shajib and Khan 2015; Herr et al. 2017). 
Various in-vivo disease models and clinical investigations 

and calcinurin in PTSD (Règue et al. 2019). The reduction 
of serotonin transporter (SERT) gene expression is linked 
with contextual fear memory extinction in the SPS PTSD 
rat model, indicating that SERT attenuation is associated 
with stabilization of 5HT levels and inhibits hippocampus 
autophagy (Wu et al. 2016).

The HPA axis stress response is modulated by 5HT 
inputs from the DRN (Tafet and Nemeroff 2016) (Fig. 1), 
and direct synaptic interaction of serotonergic axons with 
CRH neurons and mediate the release of ACTH and corti-
sol through activation of 5HT1A, 5HT1B, 5HT2A, 5HT2B, and 
5HT2C receptors in the hypothalamic PVN (Stephens and 
Wand 2012; Tung et al. 2012). The released cortisol has a 
detrimental impact on the DRN and 5HT-sensitive hippo-
campal neurons, which in turn results in low transcription of 
the gene encoding for 5HT1A receptor. 5HT1A auto receptor 
activation on the other hand results in DRN neuron hyper-
polarization. This hyperpolarization decreases 5HT synthe-
sis and altering the fear circuits and anxiety (Lanzenberger 

Fig. 1 Neural networks modulating HPA axis: The stress response 
begins with the production of corticotropin-releasing hormone (CRH) 
from the HPA axis, which causes the anterior pituitary to produce 
adrenocorticotropic hormone (ACTH). Cortisol is then released by the 
action of ACTH on the adrenal cortex. It has negative feedback on the 

hypothalamus and anti-inflammatory effects. However, dysregulated 
neurotransmitters, along with hypocortisolism, may favour the devel-
opment of neuroinflammation in PTSD (created by using Inkscape 1.2 
version https://inkscape.org/)
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transmission may cause PTSD symptoms such as hypervigi-
lance, heightened startle, impulsivity, and intrusive memo-
ries (Fig. 3), however, the precise roles and mechanisms 
remain elusive.

Glutamatergic System, Inflammation, and PTSD

In the brain, glutamate is one of the major excitatory neu-
rotransmitter and is at the crossroads of several metabolic 
pathways acts through both ionotropic (NMDA, AMPA, and 
kainate receptors), and/or metabotropic (mGluR1 − 8) gluta-
mate receptors (Zhou and Danbolt 2014). Although most 
approaches indirectly evaluated glutamate neurosignaling, 
increasing evidence proposes glutamatergic dysfunction in 
several mental illnesses such as schizophrenia, Parkinson’s 
disease (PD), bipolar disorder (BD), major depressive dis-
order (MDD), obsessive-compulsive disorder (OCD), and 
PTSD (Li et al. 2019a; Nasir et al. 2020; Wang et al. 2020).

indicate that serotonergic transmission may influence the 
peripheral immune system. This raises serious concerns 
regarding the ability of various immune cells to produce, 
store, react to, and/or transport serotonin (Wu et al. 2019). 
The modulation of arachidonic acid (AA) turnover in the 
brain is instigated by 5HT via 5HT1A receptors (Stroszna-
jder et al. 1994; Gopaldas et al. 2019) (Fig. 2). Various 
lines of evidence pointed out that 5HT2A receptor activation 
through Gα12/13 has been shown to control COX-2 activity as 
well as upsurge activation of serum-induced phospholipase 
A2 (PLA2) (Kurrasch-Orbaugh et al. 2003). Furthermore, 
selective 5HT2A/2 C receptor agonist 1-[2,5-dimethoxy-
4-iodophenyl]-2-aminopropane (DOI), has been shown to 
induce COX-2 activation in the rat parietal cortex (Mack-
owiak et al. 2002) (Fig. 2). Although serotonin deficiency 
is one of the hallmarks in the pathophysiology of PTSD, 
explicit research is anticipated to confirm the contribution 
of the serotonergic system in the significant inflammatory 
imbalance scenario of PTSD. Taken together, altered 5HT 

Fig. 2 Molecular mechanisms favoring neuroinflammation in 
PTSD: In the PTSD condition, dysregulated neurotransmitters interact 
differently at the receptor level, promoting the synthesis of cyclooxy-
genase-2 (COX-2), prostaglandin E2 (PGE2) and other proinflamma-
tory cytokines. Furthermore, NOD-like receptor family pyrin domain-

containing protein 3 (NLRP3) and Sirtuins (SIRT-1 and SIRT-6) may 
have a role in aggravating the development of neuroinflammation in 
the PTSD condition (created by using Inkscape 1.2 version https://
inkscape.org/)
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COX-2 inhibition had a brain-protective effect via reduc-
ing glutamate levels (Bisri et al. 2017). In vitro studies also 
confirmed that glutamate NMDA receptor coupling results 
in Ca+ entry and propels neuronal nitric oxide synthase 
(nNOS) activation. The binding of nNOS to COX-2 results 
in NMDA-mediated excitotoxicity and also the formation 
of prostaglandins (Fig. 2). These outcomes suggest that the 
drugs inhibiting nNOS-COX-2 binding might lower pros-
taglandin levels in the brain, hence reducing excitotoxicity 
and neural dysfunctions. Secretory PLA2 (sPLA2) is stored 
in the synaptic vesicles and discharged in response to neural 
stimulation. In-vivo and in-vitro studies highlighted that both 
glutamate and sPLA2 increased the expression of neuronal 
COX-2, and these results indicate that COX-2 expression 
mediated by sPLA2 and glutamate results in the activation 
of the arachidonic acid paving the way for excitotoxicity-
mediated neuroinflammation (Kolko et al. 1996, 2002).

GABAergic Neurotransmission and PTSD

GABA (gamma-aminobutyric acid) is a major inhibitory 
neurotransmitter in the CNS and is involved in regulating 
various physiological and pathophysiological pathways in 
the brain and peripheral tissues. GABA is largely produced 
from glutamine and glutamate by the action of glutaminase 
and glutamate decarboxylase (GAD) respectively (Wata-
nabe et al. 2002). GABAergic neurons can be found in the 
hippocampus, thalamus, basal ganglia, hypothalamus, and 
brainstem. For optimal cell membrane integrity and neuro-
logic function, a balance of inhibitory and excitatory neuro-
transmission via GABA and glutamate is required (Allen J, 
Mary; Sabir, Sarah; Sharma 2021).

Glutamatergic signaling has a decisive role in the 
advancement of PTSD. Glutamate stimulates the release of 
CRH through moderation of neuronal inputs from the medial 
prefrontal cortex (mPFC) in the PVN of the hypothalamus, 
which modulates the HPA axis (Herman et al. 2002) (Fig. 1). 
Microinjections of glutamate into the rat PVN caused CRH 
and ACTH release, increased corticosterone levels, there-
fore favored arousal response by increasing the number of 
c-Fos positive CRH neurons (Kita et al. 2006). During the 
initial stage after trauma, elevated cortisol triggers the acti-
vation of NMDA receptors through NMDA-extracellular 
signal-regulated kinase (ERK) and mitogen and stress-acti-
vated kinase (MSK) (NMDA-ERK-MSK), and the gluco-
corticoid receptor (GR) pathways resulting in the formation 
of recurring memories, which is one of the phenotypes of 
PTSD (Fig. 3) (Reul and Nutt 2008). Neuroimaging studies 
and mGluR5 blockade studies have indicated that patients 
with PTSD overexpress mGluR5 and which is linked with 
suicidal ideation and avoidance symptoms (Holmes et al. 
2017; Davis et al. 2019). In the SPS rat paradigm of PTSD, 
it was concluded that increased anxiety and impaired fear 
memory extinction were due to the overactivity of gluta-
matergic neurons with the subsequent difference between 
excitatory and inhibitory neurotransmission in the amygdala 
and this imbalance was correlated to the development of 
PTSD (Fang et al. 2018). These conclusions are in line with 
serum analysis and neuroimaging studies in PTSD patients, 
emphasizing the need for novel PTSD therapies that target 
the glutamatergic system. (Nishi et al. 2015; Harnett et al. 
2017; Rosso et al. 2017).

A randomized controlled trial involving individuals who 
had surgery for minor head injuries revealed that selective 

Fig. 3 DSM-V clusters and their 
relationship with neurotrans-
mitters: According to the Diag-
nostic and Statistical Manual of 
Mental Disorders (DSM-V), the 
four symptom clusters of PTSD 
include intrusive memories, 
avoidance of traumatic event 
reminders, negative mood and 
cognition, and hyperarousal. 
An imbalance between differ-
ent neurotransmitters, such as 
excessive amounts of glutamate 
and noradrenaline and low levels 
of acetylcholine, γ-aminobutyric 
acid (GABA), dopamine, and 
serotonin encourage the develop-
ment of these four PTSD symp-
tom clusters (created by using 
Microsoft PowerPoint 2019)
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and Ferguson in 2005 have shown that PNC cells in the 
PVN were depolarized by both IL-1β in a COX-2-depen-
dent PGE2 stimulation, and the effect was dependent on the 
reduced GABAergic input caused by direct hyperpolariza-
tion of these neurons in the halo zone surrounding and pro-
jecting to the PVN (Ferri and Ferguson 2005) (Fig. 2). These 
evidence support the involvement of inhibitory amino acids 
involvement in PTSD and further detailed studies will add 
on to the existing understanding of this concept.

Dopaminergic System, Stress, Inflammation, and 
PTSD

Dopamine (DA) is a neurotransmitter that regulates motor 
control, motivation, reward, and cognitive function in CNS 
(Klein et al. 2019). In the mesocorticolimbic dopaminer-
gic pathway, the synthesis of DA takes place in the mid-
brain ventral tegmental area (VTA) and is released into the 
nucleus accumbens (NAcc) and the medial prefrontal cor-
tex (mPFC) (Juárez Olguín et al. 2016). All the dopaminer-
gic receptors are metabotropic and D1, D2, D3, D4, and D5 
receptors are linked to Gαs and Gαi G-proteins (Zhou et al. 
2021).

Various studies have demonstrated that aberrant dopami-
nergic transmission from VTA to mPFC and hippocampus 
significantly contributes to PTSD symptoms including mal-
adaptive memory consolidation (Torrisi et al. 2019; Zhou 
et al. 2021). Furthermore, the genetic alterations in the DA 
reuptake protein, dopamine transporter (DAT) could pave 
the way for PTSD condition (Drury et al. 2013; Zuschlag et 
al. 2021). Homozygous DAT gene ablation in rats showed 
neurodegeneration and glial cell activation providing new 
acumen into the association of DAT in the neuroinflam-
matory process (Illiano et al. 2021). Recently Yuan et al., 
(2021) have shown that Taq1A polymorphism of the DA D2 
receptor (D2R), where the T allele carriers of D2R Taq1A 
express lower D2R density, higher levels of neuroinflam-
mation and hippocampal atrophy and this causes reduced 
hippocampal subfield volume of CA3 region and severe 
PTSD symptoms (Yuan et al. 2021). In combat veterans 
with PTSD, the D2R gene is specifically linked to comorbid 
severe anxiety, depression, and social dysfunction (Law-
ford et al. 2006). Using a genome-wide DNA methylation 
pattern in a three-year follow-up study of veterans, it was 
shown that the Dopamine-PKA-CREB signaling pathway 
is often dysregulated and highly related to the hyperarousal 
phenotype in PTSD (Fig. 3) (Yang et al. 2020). Furthermore, 
deletion or antagonism of D3R resulted in anxiolytic effects 
in the rodent SPS model of PTSD, implying that D3 recep-
tor antagonism was effective in reducing PTSD symptoms 
and also could decrease the risk of drug abuse and addiction 
(Rice et al. 2018; Song et al. 2018).

GABAergic neurotransmission disruption may trig-
ger PTSD pathogenesis (Arditte Hall et al. 2021) where 
the involvement of GABAA receptors is proven to inhibit 
hyperarousal state and anxiety. In juvenile rats, inescapable 
foot shock caused persistent anxiety, spatial memory loss, 
and decreased GABAAR subunit expression. Low brain 
levels of GABA are consistent with the overall findings in 
anxiety disorders and the hyperarousal hypothesis of both 
primary insomnia and PTSD (Meyerhoff et al. 2014). Low 
plasma concentration of GABA was seen in PTSD patients 
who also had symptoms of anxiety, avoidance, and hyper-
arousal suggesting that estimation of GABA levels might be 
used as a biomarker to assess PTSD severity (Fig. 3) (Trous-
selard et al. 2016). These results correspond to prior human 
neuroimaging research that indicates aberrant glutamate and 
GABA amounts in the brains of PTSD patients (Markus et 
al. 2016; Sheth et al. 2019).

While CRH neurons get inputs from a variety of brain 
regions, they are ultimately regulated by GABAergic inhibi-
tion from the amygdala (Myers et al. 2014) (Fig. 1) medi-
ated by GABAAR on CRH neurons (Mody and Maguire 
2012; Errington 2014). Electrophysiological recordings and 
in-vitro studies of CRH neurons in rodent hypothalamic 
brain slices have demonstrated that corticosteroids augment 
extrasynaptic GABAAR-mediated tonic currents (Herman 
et al. 2004; Colmers and Bains 2018). Moreover, selective 
deletion of the GABAA α1 subunit gene in the CRH neu-
rons of mice produces a phenotype with increased anxiety 
as well as impaired fear memory extinction, both of which 
are hallmarks of PTSD (Gafford et al. 2012). Apart from dif-
ferences in GABAAR expression, recent research indicates 
that the GABAergic neurotransmission in response to stress 
is more complicated, involving changes in chloride homeo-
stasis as well as synaptic plasticity. Hence in the chronic 
stress disorders like PTSD, a condition of hypocortisolism, 
elevated CRH levels, downregulation of GABAAR with a 
substantial reduction in GABA levels favors hyperarousal 
(Fig. 3) and anxiety phenotypes of PTSD.

Activation of cyclooxygenases (COXs) may produce 
an increase in free radical generation, resulting in oxida-
tive stress and apoptosis of GABAergic neurons and hence 
a rise in glutamate activity. Celecoxib, a selective COX-2 
inhibitor has been shown to increase the expression of 
GABAA receptors and thereby increase the fast inhibitory 
neurotransmission in the hippocampus (Haiju et al. 2009). 
Whole-cell patch-clamp observations from parvocellular 
neuroendocrine cells (PNCs) of the hypothalamus in rats 
revealed that PGE2 inhibits the release of GABA onto 
para neuroendocrine cells (PNCs) in the PVN by presyn-
aptic EP3 receptors, suggesting a possible mechanism by 
which local PGE2 activity in the PVN modulates the HPA 
axis during inflammation (Khazaeipool et al. 2018). Ferri 
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disease (Fathi Moghaddam et al. 2008). In animal mod-
els of Parkinson’s disease, COX-2 activation amplifies the 
cytotoxic effect by the activation of microglia and produces 
pro-inflammatory prostaglandins, iNOS, ROS and neu-
rodegeneration (Chauhan et al. 2018; Ardah et al. 2020). 
Moreoveor, Carrasco et al., (2005) have shown that chal-
lenge of mesencephalic neuronal cultures by 6-OHDA 
and MPP + revealed, that exposure to 6-OHDA rather than 
MPP + in 24 h increased COX-2 dependent prostaglandin 
levels and Ibuprofen (COX inhibitor) suppressed PG rise 
and was inversely associated with dopaminergic cell death 
(Carrasco et al. 2005). COX-2 inhibition may protect from 
neuronal injury through microglia-independent mechanisms 
such as COX-2-mediated DA oxidation to quinone species, 
which produces oxidative stress and neuroinflammation 
(Chae et al. 2008; Vidal and Pacheco 2020). These data 
reinforce the use of anti-inflammatory drugs to treat neuro-
degenerative maladies involving DA and stress.

Adrenergic Neural Network and PTSD

The sympathetic nervous system controls a variety of bio-
logical activities including the regulation of the immune 
system (Sharma and Farrar 2020). Most of the noradrener-
gic neurons in CNS are localized in the brainstem nucleus, 
locus coeruleus (LC) (Berridge and Waterhouse 2003). LC 
neurons are involved in neuromodulation through neuronal 
inputs to the prefrontal cortex (PFC), basolateral amygdala 
(BLA), and motor cortex (Chandler et al. 2019). Noradrena-
line (NA) release during acute stress generates a state of 
alertness and facilitates sensory processing to boost mem-
ory consolidation throughout stressful situations (Daviu et 
al. 2019).

Trauma and/or long-term stressors might produce dys-
regulation in noradrenergic neural networks, which has been 
implicated in the pathophysiology of PTSD as the source of 
hyperarousal clusters (Nwokafor et al. 2021). Neuroimag-
ing findings in PTSD patients revealed that behavioral and 
autonomic hyper-responsiveness is induced by a strong pha-
sic noradrenergic stimulus originating in the LC (Naegeli et 
al. 2018). Furthermore, cerebrospinal fluid (CSF) NA lev-
els were shown to be high and positively linked with the 
severity of PTSD symptoms (Baker et al. 2001). There is an 
increased presynaptic outflow along with increased postsyn-
aptic responsiveness to NA in CSF of PTSD patients (Gera-
cioti et al. 2001). In-vivo studies and PET imaging in PTSD 
patients have indicated that considerable changes in norepi-
nephrine transporter (NET) levels in the LC are related to an 
increase in the intensity of arousal symptoms (Pietrzak et al. 
2013a; Sabban et al. 2018). In rodents, exaggerated acoustic 
startle response and reduced locomotor activity in a novel 
atmosphere have been utilized as indices of hyperarousal 

Although there are no direct dopaminergic projections 
from the VTA to the PVN, DA afferents from the VTA to 
the dorsolateral bed nucleus of stria terminalis (dlBNST) 
are crucial for the control of the HPA axis inhibiting CRH 
release (Di et al. 2020) (Fig. 1). Usually, under stress con-
ditions, glucocorticoids stimulate DA release and gener-
ate euphoric emotions and movements in the mesolimbic 
dopaminergic regions (Butts and Phillips 2013; Howes et 
al. 2017). Various animal and clinical evidence emphasized 
that chronic stress impairs working memory via a signifi-
cant reduction in DA concentration in the striatum and PFC 
(Mizoguchi et al. 2000; Bloomfield et al. 2019). Similarly, 
in the electric foot shock stress-restress exposure model of 
PTSD, it was shown that reduced hypothalamus and pitu-
itary corticosterone levels, increased CRH, and glucocor-
ticoid receptor gene expression (GR) were responsible for 
the reduced sniffing, rearing, and grooming activities in 
rats (Asalgoo et al. 2017). Furthermore, in SPS-induced 
stress in rats, low corticosterone is attributed to a decrease 
in DA levels along with elevated oxidative stress and neu-
roinflammation in cortical and hippocampal brain areas, 
which contributes to the clinical progression of PTSD (Uni-
yal et al. 2019). These findings imply that hypocortisolism 
and hypodopaminergia could potentially contribute to the 
negative mood and hyperarousal symptoms connected with 
PTSD (Fig. 3).

DA has been shown to modulate systemic inflammation 
through D1R signaling and acts as an endogenous inhibitor 
of the NLRP3 inflammasome activation pathway (Northrop 
and Yamamoto 2013). This suggests that DA may function 
as a coping mechanism against the development of inflam-
matory disorders and that D1R is a possible therapeutic 
target for NLRP3-driven inflammatory diseases (Yan et al. 
2015; Wang et al. 2018b). Inflammatory cytokines have 
been shown to directly target DA and reward circuitry, 
contributing to depressive symptoms such as emotional 
exhaustion and motor retardation. Inflammatory cytokines 
appear to affect various elements of DA neurotransmission, 
resulting in reduced synthesis and/or defective packing or 
release, all of which may combine to varying degrees to 
lower DA function (Felger 2016). According to the current 
evidence, high DA levels activate low-affinity DA recep-
tors (including D1R, D2R, and D4R), which have an anti-
inflammatory impact on the cells of the immune system, but 
low DA levels precisely activate high-affinity DA receptors 
(including D3R and D5R), which causes neuroinflammation 
(Fig. 2). Under chronic stress conditions, as depicted in the 
chronic unpredictable stress paradigm in rats, COX activ-
ity caused an increase in striatal DAergic damage (Northrop 
and Yamamoto 2013). COX-2 is generally expressed at low 
levels in nigral DAergic neurons but it is up-regulated under 
both clinical and experimental conditions of Parkinson’s 
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hypocortisolism, and inflammation, may pave the way for 
neuroinflammation in PTSD.

Cholinergic System, Cognitive Inflexibility, and PTSD

Cholinergic signaling is critical for cognitive function, and 
its dysfunction is a hallmark of many neurodegenerative dis-
orders, including Alzheimer’s disease (Hoskin et al. 2019; 
Winek et al. 2021). Furthermore, in various rodent stress 
models, cholinergic neurotransmission has been shown 
to play a crucial role in learning and memory extinction. 
(Srikumar et al. 2006; Yanpallewar et al. 2022). The hip-
pocampus is enriched in cholinergic innervation and plays 
a pivtol role in cognitive function and stress-related behav-
iour (Pavlovsky et al. 2012). Acetylcholine (ACh) elicits its 
action through nicotinic and muscarinic receptors (Tiwari 
et al. 2013). Hence nicotine-based compounds have been 
proposed as potential therapeutical tools for the treatment of 
PTSD (Barreto et al. 2015). Cotinine, an active metabolite of 
nicotine has drawn significant attention in the recent past as 
a potential positive modulator of α7 nicotinic acetylcholine 
receptor (α7nAChR), and in a mice PTSD model, it actively 
enhances the fear extinction and reduces anxiety and depres-
sive behaviour in an α7nAChR-dependent manner (Barreto 
et al. 2015; Mendoza et al. 2018; Aliev et al. 2020). Coti-
nine modulates synaptic plasticity and PTSD symptoms 
by stimulating downstream signaling of α7nAChR recep-
tor; the protein kinase B (Akt)/glycogen synthase kinase 3β 
(GSK3β) pathway and ERKs (extracellular signal-regulated 
kinases) (Barreto et al. 2015; Mendoza et al. 2018). Fur-
thermore, activation of α7nAChR modulates inflammatory 
pathways like, TLR4/NF-κB inflammasome and mTOR 
mediated autophagy and reduces pro-inflammatory cyto-
kines (IL-6, IL-1β, TNF-α) (Bencherif et al. 2011; Ke et al. 
2017). Consistent with these findings cotinine, a nootropic 
agent that modulates α7nAchR could be used as adjunc-
tive therapy for PTSD (Table 1) and other neuropsychiatric 
conditions that cause neuroinflammation and dysfunction of 
learning and memory (Fig. 3) (Mendoza et al. 2018).

Reduced cognitive flexibility has recently been linked 
to predicting PTSD symptoms, where low flexibility has 
been suggested to be a risk factor for more severe PTSD 
symptoms (Ben-Zion et al. 2018). The cholinergic deficit 
has also been reported in the SRS-induced PTSD model 
in rodents, where donepezil ameliorated the SRS-induced 
cognitive inflexibility, downregulation of α7nAChR and 
expressed a reduced activity of choline acetyltransferase 
(ChAT) along with the increased activity of acetylcholine 
esterase (AChE) enzymes respectively (Prajapati and Krish-
namurthy 2021). AChE activity in the basolateral amygdala 
in rats altered the strength or duration of cholinergic trans-
mission during fear extinction (Kellis et al. 2020). In PTSD 

after a traumatic experience. Inescapable foot shock (IFS) 
enhanced the stress-induced extracellular concentration of 
NA in the amygdala and diminished locomotion as an indi-
cator of hyperarousal in the PTSD condition (Jacek Dębiec, 
David E. A. Bush 2014; Ronzoni et al. 2016).

The release of CRH from CRH-containing termi-
nals in the LC stimulates NA release (Jedema and Grace 
2004) (Fig. 1). While increased noradrenergic activa-
tion of hypothalamic PVN may explain why CRH levels 
in PTSD patients are high. These data suggest that both 
acute and persistent upsurge in CRH outflow to the LC 
can boost noradrenergic outflow (O’Donnell et al. 2004). 
Further activation of CRH receptors may be altered by 
repeated stress-induced NA release (Rajbhandari and Bak-
shi 2020). Convergent models of PTSD show that cortisol 
and NA release leads to more intrusive memories in PTSD 
and the combination of NA and cortisol substantially pre-
dicts intrusive memories in PTSD patients. These findings 
imply a strong correlation between stress hormones and 
memory consolidation in PTSD requires a state of height-
ened arousal (Fig. 3) (Nicholson et al. 2014; Mather et al. 
2016). Various clinical studies pointed out that patients with 
PTSD exhibited considerably increased NA secretion and 
decreased cortisol levels (Pervanidou 2012; Wingenfeld et 
al. 2015). This amplified NA release can provoke the syn-
thesis of proinflammatory cytokines such as IL-1 and IL-6 
via nuclear factor-κB (NF-κB)-dependent processes. Fur-
ther excessive noradrenergic stimulation potentiates fear 
conditioning by inducing calcium influx in astrocytes via 
adrenergic receptors (Gazarini et al. 2013). Cortisol hinders 
sympathetic nervous system (SNS) hyperactivity via sup-
pressing NF-κB signaling, which can reduce the production 
and release of proinflammatory cytokines (Tan et al. 2007). 
However, a persistent state of hypocortisolism in people 
with PTSD may lead to SNS hyperactivity, which acceler-
ates inflammation.

In rats, ICV administration of arachidonic acid raised 
adrenaline and noradrenaline plasma levels after 20–30 min 
signifying that instigation of the brain phospholipase 
A2-arachidonic acid cascade promotes central sympatho-
adrenomedullary outflow (Yokotani et al. 2000). Cen-
trally administered CRH also enhances the expression of 
COX-1 and COX-2 in spinally projecting PVN neurons 
and COX-2 in LC neurons, indicating that COX isozymes 
are implicated in CRH-induced sympathetic modulation in 
rats (Yamaguchi and Okada 2009). Emerging evidence also 
suggests that PGE2 modulates sympathoexcitatory actions 
that are primarily arbitrated by the EP3 receptor (Zhang et 
al. 2011; Shimizu et al. 2014). These findings imply that 
the central excitatory effects of COX-2 and PGE2 on PVN 
neurons, in tandem with heightened sympathetic activity, 
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Nrf2/HO-1 (Egea et al. 2015; Patel et al. 2017). Recent 
rodent experiments revealed that activation of α7nAChR 
reduced COX-2 expression, microsomal prostaglandin E 
synthase-1 (mPGES-1), and secretion of PGE2 (Piovesana 
et al. 2021; Peng-Fei et al. 2021). Nevertheless, in PTSD, 
hypoactivity of the cholinergic system with downregulated 
α7nAChR receptors could favor the negative mood and cog-
nition aggravated with an inflammatory condition (Fig. 2).

NLRP3 Inflammasomes and PTSD

Emerging evidence of research emphasized the menacing 
role of NOD-like receptor family pyrin domain-containing 
protein 3 (NLRP3) in the etiology of many neurodegenera-
tive disorders (Holbrook et al. 2021), traumatic brain and 
spinal cord injury (Zhou et al. 2022) and neuroinflamma-
tion (Lin and Mei 2021). The NLRP3 inflammasome is a 
multimeric protein complex that initiates pyroptosis and 
causes proinflammatory cytokines to be released (Yang et 
al. 2019b). It is made up of a sensor (NLRP3), an adapter 
(ASC; also known as PYCARD) and an effector (caspase 
1). NLRP3 contains amino-terminal pyrin domain (PYD), 
a core NACHT domain (Swanson et al. 2019), combined 
with the adapter molecule apoptosis-associated speck-like 
protein comprising CARD (ASC) to recruit the effector 
caspase-1 to allow the IL-1 family cytokines IL-1β and 
IL-18 to be proteolytically cleaved. TLR agonists induce 
NF-κB-mediated NLRP3 formation and pro-IL-1β expres-
sion (priming phase) along with ATP, K+ ionophores, heme, 
and pathogen-associated RNA promotes NLRP3 inflamma-
tory assembly (activation) caspase-1-mediated IL-1β, IL-18 
secretion, and pyroptosis (Yang et al. 2019b). In addition 
to these upstream activities, a variety of NLRP3-interacting 
proteins and posttranslational changes to NLRP3 often con-
trol inflammatory activation of NLRP3 (Duan et al. 2020).

There has been limited literature supporting the direct 
involvement of NLRP3 in PTSD. However, it has recently 
been shown in the SPS-induced PTSD rat model that 
inhibition of NLRP3 inflammasome activity by using an 
endogenous inhibitor, β-hydroxybutyrate (BHB) produces 
anxiolytic effects and reduced stress-induced TNF-α levels 
(Yamanashi et al. 2020). These findings imply that adminis-
tering BHB might effectively tackle the inflammatory path-
ways linked with PTSD (Yamanashi et al. 2020). Similarly, 
deletion of the NLRP3 gene in mice demonstrated that the 
NLRP3 inflammasome was stimulated in the hippocampus 
72 h following electric foot shocks in a contextual fear para-
digm, which was accompanied by an increase in the toll-like 
receptor, retinoic acid-inducible gene (RIG-I) like receptor 
signaling, and a decrease in post synaptic density (PSD)-
related proteins. Both genetic deletion and pharmacologic 

patients, single-photon emission computed tomography 
(SPECT) revealed that high concentrations of β2nAChRs 
in the thalamus promote re-experiencing symptoms through 
altering sensory input to the cortex and cortical neuroplas-
ticity related to learning and stress response (Czermak et 
al. 2008). Various studies have also indicated that activation 
of α7nAChR lowers the levels of pro-inflammatory media-
tors and has a high potential to lower a variety of inflam-
matory-mediated ailments and neurological disorders, 
including PTSD (Bencherif et al. 2011; Sun et al. 2017; Ke 
et al. 2017). Inflammation, reduced baroreflex sensitivity 
(BRS), diminished parasympathetic nervous system (PNS), 
and excessive sympathetic nervous system (SNS) activity 
is proposed as contributory mechanisms for the severity of 
PTSD in a study including military veterans (Ulmer et al. 
2018; Fonkoue et al. 2020).

Emerging data suggest that CRH modulates cogni-
tive functions that rely on the cholinergic basal forebrain 
(Hupalo et al. 2019) through CRH1R present on cholin-
ergic neurons and facilitates acetylcholine release (Day et 
al. 1998; Sauvage and Steckler 2001). Also, stress-induced 
responses activate the septohippocampal cholinergic path-
way, which eventually activates the HPA axis (Paul et al. 
2015) (Fig. 1). In bovine adrenal zona fasciculata/reticular 
(ZFR) cells, it was revealed that acetylcholine governs cor-
tisol release at the cellular level via muscarinic M3 receptor 
(M3R) connected to phospholipase C (Walker et al. 1990). 
Stress in rodents enhanced the release of acetylcholine in 
the limbic areas (Imperato et al. 1989) and the HPA axis has 
been attributed to the susceptibility of basal forebrain cho-
linergic nerve cells (Aisa et al. 2009). Interestingly, Done-
pezil (AChE enzyme inhibitor) increased ACh availability, 
lowering negative symptoms in PTSD patients, and also 
inhibited LPS-induced neuroinflammation via α7nAChRs, 
which is followed by the PI3K-Akt mechanism, and this 
pathway might serve as a reference for the emergence of 
new therapies for reversing neuroinflammation or offer 
new indications for existing treatments (Table 1) (Tyagi et 
al. 2010; Navarro et al. 2021; Prajapati and Krishnamurthy 
2021).

Cholinergic neurosignaling influences immune cell pro-
liferation, cytokine production, T helper differentiation, and 
antigen presentation. These effects are facilitated through 
cholinergic muscarinic and nicotinic receptors and other 
cholinergic constituents found in immune cells, such as 
AChE and ChAT. Acetylcholine protects neurons from LPS-
induced neuronal damage by suppressing the inflammatory 
response in rats (Li et al. 2019b). The anti-inflammatory 
mechanism favored by α7nAChR activation occurs through 
recruitment and stimulation of the Jak2/STAT3 pathway, 
which suppresses NF-κB nuclear translocation (Fig. 2) 
while activating the master regulator of oxidative stress 
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and enhances MAO-A transcription which then results in 
decomposition of serotonin (5HT) to 5 hydroxy indole ace-
tic acid (5-HIAA) and influences PTSD-like moods and 
behaviors in SPS model of PTSD. While SIRT1 knockout 
mice and its inhibitor exhibited diminished anxiety and fear 
memory behaviors following the SPS procedure. These 
findings suggested that SIRT1 may be associated with the 
development of PTSD-like symptoms in reaction to extreme 
stress (Libert et al. 2011). Enhanced contextual memory is 
persistently noticed in PTSD (Al Abed et al. 2020). In the 
brain, ventral CA1 (vCA1) hippocampal projections deliver 
aversive stimuli-related inputs to the basal amygdala (BA), 
which serves to encode conditioned fear memory (Kim and 
Cho 2020). Furthermore, loss of SIRT6 in neuronal progeni-
tors leads to tau-protein accumulation and loss of associa-
tive and non-associative memory, whereas overexpression 
of SIRT6 impairs long-term contextual fear memory by hin-
dering IGF/Akt signalling pathway, that stimulates cAMP 
response element-binding protein (CREB). This pathway 
may be activated and contributed to the increase of con-
textual fear memory (Yin et al. 2016; Kaluski et al. 2017). 
Interestingly, genetic SIRT6 depletion in excitatory neurons, 
showed significant elevated contextual fear memory while 
spatial memory was not effected suggesting that enhance-
ment in negative memory was due to reduced SIRT6 activ-
ity (Kim et al. 2018).

In the human umbilical vein endothelial cells (HUVECs), 
SIRT6 overexpression was associated with reduced NF-κB 
transcriptional activity, whereas knockdown of SIRT6 
boosted NF-κB expression and resulted in COX-2, PGE2, 
and pro-inflammatory cytokines production (IL-6, IL-8) 
(Fig. 2). The overall outcomes of this study reveals that 
the loss of SIRT6 in endothelial cells is connected with an 
increase in the expression of genes implicated in inflamma-
tion (Lappas 2012). Although sirtuins are involved in allevi-
ating neurodegenerative disorders (Yeong et al. 2020), SIRT 
1 paradoxically increases the risk of PTSD while SIRT6 
indirectly reduces PTSD symptoms. These findings further 
warrant more research to establish the detrimental or protec-
tive role of sirtuins in PTSD.

Conclusion

The pharmacological treatment of PTSD has been restricted 
due to the narrow focus on the monoamine system and a 
lack of efficacy with current treatment approaches, indicat-
ing a gap in translating basic research to clinical research. 
Thus, future research on the pharmacological treatment of 
PTSD should not only concentrate on novel neurotrans-
mitter pathways but also aim to enhance the understand-
ing of the pathophysiology of the cognitive and emotional 

blockade of the NLRP3 inflammasome may improve 
extinction of contextual fear memory and reduce anxiety-
like behavior, offering a novel therapy for trauma and stress-
related disorders such as PTSD (Dong et al. 2020). In-silico 
and in-vitro studies employing phenylpropanoids performed 
in our lab, have yielded encouraging results against neuro-
inflammation. The compounds studied strongly suppressed 
the NLRP3 inflammasome pathway in glial cells, as shown 
by mRNA levels of key proteins and IL-1β production 
(Kinra et al. 2021).

In-vitro and in-vivo studies conducted by (Feng et al. 
2019) revealed that chronic stress activates the GR-NF-κB-
NLRP3 signaling in microglia, causing hippocampal neuro-
inflammation and depression-like behavior. Chronic stress 
also causes glucocorticoid resistance as observed in PTSD 
permits proinflammatory signaling pathways markedly by 
IL-1β which is a byproduct of NLRP3 activation, to bypass 
normal feedback control. The surge in IL-1β, in particular, 
may not be counteracted by a deficiency of cortisol, and this 
incidence might destabilize the CNS (Zefferino et al. 2021). 
NLRP3 is also engaged in serotonergic (Iwata et al. 2013), 
Glutamatergic (Yang et al. 2019a), GABAergic (Zhang et 
al. 2013; Xia et al. 2021), Dopaminergic (Yan et al. 2015), 
Adrenergic (Horstmann et al. 2016) and cholinergic (Ke et 
al. 2017; Wei et al. 2019) systems of CNS.

IL-1β can stimulate gene expression and production of 
COX-2 and PGE2 (Dinarello 2009). It has been proposed 
that COX-2 has a crucial role in PGE2-induced activation 
of the NLRP3 inflammasome, which is mediated via activa-
tion of NF-κB (Fig. 2) and caspase-1, as well as the release 
of mtDNA and mtROS. Furthermore, in response to the 
LPS-challenge, COX-2 inhibition in mice with celecoxib 
lowered IL-1β and caspase-1 in the spleen and liver. These 
findings provide novel insights on how COX-2 controls 
NLRP3 inflammasome activation and indicate that it might 
be a novel potential therapeutic target (Table 1) in NLRP3-
related illnesses (Zhang et al. 2018; Hung et al. 2019).

Sirtuins and PTSD

Sirtuins (SIRTs) are ubiquitous regulators of cell activities 
that are class III histone deacetylases and have been shown 
to have neuroprotective properties in a variety of neurode-
generative disorders (Liu et al. 2021; Ranadive et al. 2021). 
In PVN, SIRT1 stimulates the HPA axis and basal gluco-
corticoid (GC) levels by increasing CRH production via an 
increase in prohormone convertase 2 (PC2) biosynthesis, 
which is required for the maturation of CRH from pro-CRH 
(Toorie et al. 2016; Yamamoto and Takahashi 2018). SIRT1 
induces deacetylation of helix loop helix transcription 
factor 2 (NHLH2) in the ventral CA1 region of the brain 
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if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless 
indicated otherwise in a credit line to the material. If material is not 
included in the article’s Creative Commons licence and your intended 
use is not permitted by statutory regulation or exceeds the permitted 
use, you will need to obtain permission directly from the copyright 
holder. To view a copy of this licence, visit http://creativecommons.
org/licenses/by/4.0/.
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processes involved in PTSD. This will help to fully restore 
functions rather than merely compensating for posited defi-
cits, leading to therapeutic innovations in the field of PTSD. 
This review summarises the psycho-neuro-immunological 
interplay in PTSD which could pave the way for neuroin-
flammation. Hence parallel to mechanistic research, efforts 
should be aimed at identifying novel pathways that would 
unravel the new treatment outcome is an emerging chal-
lenge that could lead to effective methods of preventing and 
treating PTSD.
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