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Abstract
With the current national opioid crisis, it is critical to examine the mechanisms underlying pathophysiologic interactions between
human immunodeficiency virus (HIV) and opioids in the central nervous system (CNS). Recent advances in experimental
models, methodology, and our understanding of disease processes at the molecular and cellular levels reveal opioid-HIV
interactions with increasing clarity. However, despite the substantial new insight, the unique impact of opioids on the severity,
progression, and prognosis of neuroHIV and HIV-associated neurocognitive disorders (HAND) are not fully understood. In this
review, we explore, in detail, what is currently known about mechanisms underlying opioid interactions with HIV, with emphasis
on individual HIV-1-expressed gene products at the molecular, cellular and systems levels. Furthermore, we review preclinical
and clinical studies with a focus on key considerations when addressing questions of whether opioid-HIV interactive pathogen-
esis results in unique structural or functional deficits not seen with either disease alone. These considerations include, under-
standing the combined consequences of HIV-1 genetic variants, host variants, and μ-opioid receptor (MOR) and HIV chemokine
co-receptor interactions on the comorbidity. Lastly, we present topics that need to be considered in the future to better understand
the unique contributions of opioids to the pathophysiology of neuroHIV.
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Overview

The Opioid Crisis

Opioid abuse in the United States (U.S.) has reached cata-
strophic levels. According to the latest World Drug Report,
53.4 million people worldwide used opioids in 2017, which is
56% higher than in the previous year (UNODC 2019a). North
America remains the region with the highest non-medical use
of opioids with a staggering 4% of the population aged 15–64
using opioids (UNODC 2019a, c). In 2017, the burden of
opioid use in the U.S. had accounted for 42 million healthy
years of life lost due to premature death and disability
(Institute for Health Metrics and Evaluation 2017; UNODC
2019a). During 2017, there were 70,237 overdose related
deaths, out of which 47,600 (67.8%) were caused by opioids,
which was a 12% increase from 2016 (Scholl et al. 2018;
UNODC 2019c). The Centers of Disease Control and
Prevention (CDC) reports that on average 130 Americans
die from an opioid overdose each day (CDC 2017). Due to
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the constant rise in deaths involving opioids, the U.S.
Government declared the opioid crisis/epidemic a public
health emergency in 2017 (U.S. Department of Health and
Human Services 2017). Injection drug use increases the like-
lihood of contracting human immunodeficiency virus (HIV)
and drug abuse and HIV have long been described as interre-
lated epidemics (Swan 1997; Leshner 1998; Nath et al. 1999,
2002). Despite this understanding, opioid use disorder (OUD)
and HIV remain a huge public health concern (Strathdee and
Beyrer 2015; Peters et al. 2016). In fact, the opioid crisis is
seen as a major roadblock in several aspects of public health,
including thwarting the goal of eliminating HIV within the
next decade (Fauci et al. 2019; Lerner and Fauci 2019).

OUD is also likely to exacerbate many negative as-
pects of the COVID-19 pandemic (Alexander et al.
2020; Becker and Fiellin 2020; NIDA 2020; Wakeman
et al. 2020). Not only are individuals with OUD more
vulnerable to SARS-CoV-2 and liable to spread the in-
fection, social-distancing practices create isolation, de-
spair, and economic hardships, heightening opioid abuse
(with inherent respiratory depression depending on the
amount of tolerance developed) and the probability of
overdose (Becker and Fiellin 2020; Wakeman et al.
2020). By virtue of its greater safety profile and de-
creased likelihood for abuse (Bell and Strang 2020),
the use of buprenorphine via telemedicine has become
advantageous for managing OUD during the COVID-19
pandemic (Leppla and Gross 2020; Samuels et al. 2020)
but presents new challenges (Khatri and Perrone 2020).

The current opioid crisis did not happen quickly; in
fact, it has been described as occurring in three phases.
The first phase began in the late 1990s with an increase
in the number of prescription opioids. This led to over-
dose deaths that were attributable to natural and semi-
synthetic opioids, such as methadone (Kolodyny et al.
2015; CDC 2017). The second phase began in 2010 in
which heroin took the lead as the principal cause of
overdose deaths. The most recent, third wave, began in
2013 in which highly potent synthetic opioids, such as
fentanyl and its analogs became the main cause of mor-
tality (Kolodyny et al. 2015; CDC 2017). The entry of
fentanyl and its analogs into the clandestine market has
changed the dynamics of the opioid market in the U.S.
The synthetic opioids, such as fentanyl, are several or-
ders of magnitude more potent than morphine, easily
smuggled, and frequently and inconsistently mixed with
lower quality drugs increasing the probability of
overdosing. According to the National Forensic
Laboratory Information System of the U.S. Drug
Enforcement Administration (DEA), fentanyl accounted
for one-third of the illicit opioids seized in 2017
(UNODC 2019c) and has become a global problem
(UNODC 2019b).

The Pathophysiology of Opioid Abuse

The effects of opioid abuse on the central nervous system
(CNS) have been extensively examined. Immediate effects
of opioids result in decreased levels of consciousness, seda-
tion (Collett 1998; Thompson 2000; Indelicato and Portenoy
2002), drowsiness, and sleep disturbances (Moore and
Dimsdale 2002; Bourne and Mills 2004; Qureshi and Lee-
Chiong 2004). While acute opioid exposure can impair cog-
nition in healthy subjects (Lawlor 2002; Ersek et al. 2004),
enduring cognitive and psychomotor deficits occur with
chronic opioid use (Sjogren et al. 2000; Dublin et al. 2015;
Roberts et al. 2018; Wollman et al. 2019; Serafini et al.
2020), including altered pain perception (opioid-induced
hyperalgesia), dysregulated reward/saliency processing,
hyperkatifeia, and epigenetic changes, which can persist
years following abstinence (Ersche et al. 2006; Browne
et al. 2020). The behavioral changes seen with long-term
opioid use are accompanied by lasting structural and epige-
netic (e.g., altered DNA methylation and expression of non-
coding RNAs) alterations in brain regions implicated in
mood, reward, and motivation (Upadhyay et al. 2010;
Dublin et al. 2015; Volkow and Morales 2015; Koob and
Volkow 2016; Serafini et al. 2020).

Up to 90% of post-mortem tissues sampled from opiate
abusers display brain edema (Buttner 2011), astrogliosis and
microgliosis especially in the hippocampus (Oehmichen et al.
1996), white matter, and subcortical regions at autopsy
(Tomlinson et al. 1999; Anthony et al. 2005; Buttner et al.
2006; Buttner and Weis 2006). The reactive gliosis is accom-
panied by increases in proinflammatory cytokines and inflam-
matory mediators, including TNF-α, IL-1β, and nitric oxide
synthase (NOS) (Dyuizen and Lamash 2009). Opiates espe-
cially drive the enhanced activation of heme-oxygenase,
NOS, and cyclic GMP-dependent-protein kinase (Liang and
Clark 2004) and production of reactive nitrogen species
(RNS) such as peroxynitrite (Salvemini 2009), and resultant
nitrosative damage (Zou et al. 2011). Nitrosative damage is an
important endpoint for opiate exposure (Pasternak et al. 1995;
Liang and Clark 2004; Salvemini 2009) and key site of con-
vergence for the oxidative stress accompanying HIV protein
exposure (Hauser and Knapp 2014; McLane et al. 2018).

For delayed heroin overdose death after a survival period of
5 h or more, studies report neurovascular disorders, hypoxic
ischemic leukoencephalopathy, and region-specific atrophy
with neuronal losses that can include the hippocampal forma-
tion, the cerebellar Purkinje cell layer and olivary nucleus
(Protass 1971; Ginsberg et al. 1976; Gosztonyi et al. 1993),
as well as other areas (Buttner 2011; Cadet et al. 2014). Loss
of neurons and synaptic connections is supported by postmor-
tem reports of smaller mean relative volumes in various brain
regions in individuals with OUD, including cortical areas
(Danos et al. 1998; Pezawas et al. 1998), the basal ganglia
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(Muller et al. 2015, 2019), prefrontal cortex (Cadet et al.
2014), and hypothalamus (Muller et al. 2018). Interestingly,
leukoencephalopathy, atrophy (Cadet et al. 2014), and in-
creased hyperphosphorylated tau-containing neurofibrillary
tangles are reported with chronic opiate abuse compared to
age-matched controls (Ramage et al. 2005; Anthony et al.
2010; Kovacs et al. 2015). Glycogen synthase kinase 3 α or
β (GSK-3α/β; the pan antibody used in this study does not
discern α from β isoforms) and/or cyclin-dependent kinase-5
(Cdk-5) are increased in the frontal and temporal cortices, the
locus coeruleus, and the hippocampus, respectively, and cor-
relate with microgliosis (Anthony et al. 2010). Further, more
prolonged use increases the risk of accelerated age-related and
even Alzheimer’s-like pathological changes (Ramage et al.
2005; Anthony et al. 2010; Kovacs et al. 2015) and cognitive
impairment (Gruber et al. 2007).

Moreover, heroin use is associated with symmetric T2 and
fluid-attenuated inversion recovery (FLAIR) hyperintense
white matter lesions of the CNS using magnetic resonance
imaging (MRI), which coincide with increased microgliosis
and inflammation at the same sites (Upadhyay et al. 2010;
Bora et al. 2012; Qiu et al. 2013; Alaee et al. 2014; Li et al.
2016; Shrot et al. 2017). Although a few studies have started
to examine opiate-HIV interactions in white matter (see be-
low), we predict that the interactive effects on myelin dysreg-
ulation will significantly worsen CNS outcomes.

Preclinical studies indicate opioid-induced neuroimmune
signaling alter the saliency of opioid reward and physical de-
pendence (Narita et al. 2006; Hutchinson et al. 2008, 2009).
Direct injections of astrocyte-conditioned medium containing
cytokines into the nucleus accumbens (NAc) increase mor-
phine conditioned place preference (Narita et al. 2006).
Drugs reported to selectively attenuate glial inflammation
block morphine conditioned place preference and attenuate
symptoms of opioid withdrawal (Narita et al. 2006;
Hutchinson et al. 2009; Liu et al. 2010). μ (MOR), δ
(DOR), and κ (KOR) opioid receptors are expressed by sub-
sets of astrocytes and microglia (Stiene-Martin and Hauser
1991; Eriksson et al. 1992; Stiene-Martin et al. 1993;
Ruzicka et al. 1995; Gurwell et al. 1993; Hauser et al. 1996;
Turchan-Cholewo et al. 2008; Maduna et al. 2018) and are
involved in opioid tolerance and dependence to varying de-
grees (Kieffer and Gaveriaux-Ruff 2002; Berger and Whistler
2010; Morgan and Christie 2011). Despite some reports of
morphine triggering immune activation via Toll-like receptor
4 (TLR4) (Terashvili et al. 2008; Hutchinson et al. 2010;
Coller and Hutchinson 2012; Hutchinson et al. 2012;
Theberge et al. 2013; Lacagnina et al. 2017) by binding to a
myeloid differentiation protein-2 intermediary (Wang et al.
2012), this is contrary to the typical actions of opiates, which
by themselves (and in the absence of a priming event such as
HIV co-exposure) tend to suppress immune function
(Eisenstein 2019). A vast majority of the immune,

antinociceptive, and other physiological effects of opioids
are mediated by opioid receptors per se and not TLR4 (Hu
et al. 2011; Fukagawa et al. 2013; Stevens et al. 2013; Mattioli
et al. 2014; Eisenstein 2019).

Overall, the findings indicate that immune signaling plays a
critical role in the pathophysiology of OUD and associated
physical dependence. How opioids effect neuroHIV, as well
as how opioid abuse and dependence are altered by neuroHIV
or whether opioid-HIV interactions result in a unique disease
state are discussed.

HIV Neuropathology in the Context of Opioid
Use Disorder – Clinical and Preclinical
Evidence

Preclinical and Clinical Findings—a Complicated
Picture

People infected with HIV (PWH) with OUD have an in-
creased incidence of neuroHIV and CNS complications
(Bell et al. 1998; Nath et al. 1999, 2000a, 2002; Anthony
et al. 2008; Meyer et al. 2013; Smith et al. 2014). Injection
drug use increases the probability of contracting HIV (Nath
et al. 1999) and opioid drugs intrinsically alter the patho-
genesis of HIV. PWH who develop intractable pain syn-
dromes related to peripheral neuropathies often receive opi-
oid drugs for treatment (Mirsattari et al. 1999; Denis et al.
2019). PWH who misuse opioids are more likely to under-
take risky sexual behavior and are less likely to adhere to
combined antiretroviral (ARV) therapy (cART) regimens
(Lemons et al. 2019). Opioid receptors are widely
expressed on immune cells and opioids can modulate im-
mune function (Donahoe and Falek 1988; Plotnikoff 1988;
Rouveix 1992; Adler et al. 1993; Carr and Serou 1995; Carr
et al. 1996; Sheng et al. 1997; Banerjee et al. 2011; Purohit
et al. 2012), which typically (but not always) result in im-
mune suppression (Wybran et al. 1979; McDonough et al.
1980, 1981; Donahoe and Falek 1988; Donahoe et al. 1991;
Falek et al. 1991; Novick et al. 1991; Chao et al. 1996a;
Peterson et al. 1998; Rogers and Peterson 2003; Stein et al.
2003; Roy et al. 2006; Rittner et al. 2008). The “opiate
cofactor hypothesis” proposes opioids contribute directly
to the pathogenesis of acquired immune deficiency syn-
drome (AIDS) (Donahoe and Vlahov 1998), in part, be-
cause MOR activation can increase HIV replication in im-
mune cells (Peterson et al. 1990, 1992, 1993, 1999; Ho et al.
2003). Furthermore, MOR and HIV co-receptors, including
both CCR5 (El-Hage et al. 2013; Yuan et al. 2013; Arnatt
et al. 2016) and CXCR4 (Pitcher et al. 2014) can interact via
convergent downstream signaling and perhaps via direct
molecular interactions (Rogers et al. 2000; Rogers and
Peterson 2003; Steele et al. 2003; Chen et al. 2004; Song
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et al. 2011; Arnatt et al. 2016). MOR-CCR5 or CXCR4
interactions are highly contextual and can promote (Guo
et al. 2002; Steele et al. 2003) or inhibit (Strazza et al.
2014) HIV expression, depending on the nature and dura-
tion of exposure (see Fig. 9; Berman et al. 2006) and cell
type involved (Kim et al. 2018). Depending on the outcome
measure, Tat expression reduces morphine’s efficacy and
potency (Fitting et al. 2012, 2016; Hahn et al. 2016).
Antagonizing CCR5 with maraviroc reinstates morphine
potency in an antinociceptive assay and restores physical
dependence in Tat exposed, morphine-tolerant mice
(Gonek et al. 2018).

Epidemiological studies suggest OUD can increase AIDS
progression (Donahoe and Vlahov 1998; Dronda et al. 2004;
Meijerink et al. 2014, 2015). In the pre-cART era, opiate
abuse was found to exacerbate HIV encephalitis (HIVE)
(Bell et al. 1998, 2002). In Indonesian injection heroin abusers
who lacked access to cART, CD4 counts (a measure of HIV
progression) were reduced compared to PWH not using her-
oin (Meijerink et al. 2014). However, with the introduction of
cART, the clinical picture has significantly changed with a
50% decline in the rate of death from AIDS, reduced inci-
dence of opportunistic infections and HIVE, and a 40–50%
decrease in the incidence of HIV-associated dementia (HAD),
the most severe form of HIV-associated neurocognitive disor-
ders (HAND) (Maschke et al. 2000; McArthur et al. 2010;
Saylor et al. 2016). Nevertheless, chronic opiate exposure
(which almost always is confounded by the use of other illicit
and legal drugs) in PWH can worsen neuroHIV (Anthony
et al. 2005; Bell et al. 2006; Anthony et al. 2008) and cogni-
tive impairment (Rodriguez Salgado et al. 2006; Martin-
Thormeyer and Paul 2009; Byrd et al. 2011; Smith et al.
2014; Martin et al. 2018; Rubin et al. 2018) despite cART,
even though some studies fail to show that opioids worsen
neuroHIV (Royal et al. 1991; Applebaum et al. 2010) or
HAND (Martin et al. 2019). Opiate exposure in cART-
treated PWH worsens CD4 counts and viral loads (Ryan
et al. 2004), neuropathology (including increased tauopathy;
Smith et al. 2014), CNS inflammation (Anthony et al. 2005,
2008; Smith et al. 2014), and neurocognition (Applebaum
et al. 2009; Byrd et al. 2011; Meyer et al. 2013) including
deficits in memory and working memory (Byrd et al. 2011).
Table 1 gives an overview on reported interactive effects of
HIV and opioids in some of the clinical and preclinical CNS
studies referenced in this review.

Although translational, “bench-to-bedside”, research is im-
portant, reverse-translational approaches and multiple preclin-
ical models are essential to better understand complex disease
and improve established therapies (Singer 2019). Evidence
suggests that HIV compartmentalizes within the CNS early
during the course of the infection establishing a separate res-
ervoir harboring Bintact proviral” HIV (Churchill et al. 2016;
Bruner et al. 2019) within resident neural cell populations

(Bednar et al. 2015; Sturdevant et al. 2015; Veenhuis et al.
2019) and perivascular macrophages (Fischer-Smith et al.
2001; Burdo et al. 2013; Rappaport and Volsky 2015).
Preclinical studies assessing opioid interactions with HIV or
viral proteins permit mechanistic understanding of how par-
ticular CNS cell types, including neurons, astroglia, and mi-
croglia are affected and contribute to accentuating effects of
opiates on neuroHIV, which are discussed in detail below.

Cellular and Molecular Interactions in Astroglia,
Microglia, and Neurons

Prior reviews have outlined how opiate drugs likely exacer-
bate neuroHIV pathology in neurons and glia (Hauser et al.
2005; Dutta and Roy 2012; Hauser et al. 2012; Reddy et al.
2012; Hauser and Knapp 2014; Liu et al. 2016a; Murphy et al.
2019) including in the enteric nervous system (Galligan 2015;
Meng et al. 2015). Opioid-HIV pathophysiological interac-
tions are complex and differ depending on the timing and
duration of co-exposure, the pharmacology of the opioid drug
involved, the cell types and brain regions targeted, host and
viral genetics, and are highly contextual (Hauser and Knapp
2014, 2018). A summary of the cellular and molecular inter-
actions in various CNS cell types is also reviewed in detail in
Table 2.

Opioid and HIV Interactive Pathology in Astroglia

Although the extent to which astroglia display productive
infection is debated (Russell et al. 2017; Ko et al. 2019),
there is nevertheless considerable evidence of proviral inte-
gration in the CNS of PWH (Gorry et al. 2003; Churchill
et al. 2009), infectious animal models (Eugenin et al.
2011), and/or cultured human fetal astrocytes (Tornatore
et al. 1994; Liu et al. 2004; Do et al. 2014; Narasipura
et al. 2014; Li et al. 2015; Nath 2015; Li et al. 2020).
Integrated HIV sequences have been identified in astrocytes
in HIV-infected CNS tissue by laser capture microdissection
(Churchill et al. 2006). Astroglia appear to infect via non-
classical, CD4-independent mechanisms, that can have the
appearance of virologic synapses, adding to the debate (Liu
et al. 2004; Do et al. 2014; Li et al. 2015; Nath 2015; Al-
Harthi et al. 2019; Li et al. 2020).

Irrespective of whether they become infected, MOR-ex-
pressing, HIV or HIV protein-exposed astrocytes release
greater amounts of inflammatory cytokines and dysfunction
sufficient to harm bystander neurons upon treatment with opi-
ates (El-Hage et al. 2005, 2008b; Zou et al. 2011; El-Hage
et al. 2014). MOR-expressing subsets of glia, especially mi-
croglia and astroglia, are prominent in driving the interactive
opioid and HIV neuropathogenesis (Hauser et al. 2007, 2012;
Hauser and Knapp 2014; Liu et al. 2016a; Chilunda et al.
2019; Murphy et al. 2019). When MOR is deleted from glia
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(astrocytes and microglia), morphine no longer increases the
death of Tat-exposed striatal medium spiny neurons (MSNs)
(Zou et al. 2011). Conversely, if MOR is deleted fromMSNs,
morphine exacerbates the neurotoxic effects of Tat in MSNs
(Zou et al. 2011). The proinflammatory effects of Tat alone or
in combination with morphine on glia are mediated through a
Beclin-1-dependent autophagy pathway (Rodriguez et al.
2017; Lapierre et al. 2018). Drugs with selective glial anti-
inflammatory activity (i.e., ibudilast or AV411) attenuated
the deleterious effects of HIV and opiate exposure, including
HIV-1 replication, cytokine release, and neurotoxicity in vitro
(El-Hage et al. 2014). Thus, the observed neuronal death is
largely mediated by MOR-expressing glia (Zou et al. 2011),
including astroglia (El-Hage et al. 2005, 2008b) and microglia
(Turchan-Cholewo et al. 2008; Bokhari et al. 2009; Turchan-
Cholewo et al. 2009; Gupta et al. 2010).

The direct contributions of astrocytes to opioid and HIV
interactions have been discussed previously (Dutta and Roy
2012; Hauser et al. 2012; Reddy et al. 2012; Hauser and
Knapp 2014). Subsets of astroglia can express MOR, DOR
and KOR (Stiene-Martin and Hauser 1991; Eriksson et al.
1992; Ruzicka et al. 1995; Gurwell et al. 1996; Hauser et al.
1996; Peterson et al. 1998; Stiene-Martin et al. 1998, 2001),
as well as endogenous opioid peptides (Vilijn et al. 1988;
Shinoda et al. 1989; Spruce et al. 1990; Hauser et al. 1990;
Low et al. 1992). It appears that the ‘early’ events triggering
the release of proinflammatory cytokines (i.e., TNF-α and
IL-1β) from astroglia can be mediated by HIV Tat exposure
alone (El-Hage et al. 2005, 2006a, b, 2008a). Opioids en-
hance HIV-1-induced inflammation later during the inflam-
matory cascade by exacerbating the sustained release of
CCL5 from astrocytes, which subsequently triggers the re-
lease of CCL2 thereby enhancing the recruitment and acti-
vation of macrophages/microglia (El-Hage et al. 2008a)
(Fig. 1). This is caused by the morphine-dependent exacer-
bation of Tat-induced increases in intracellular calcium con-
centration ([Ca2+]i) in astroglia (El-Hage et al. 2005), which
accelerates the trafficking of NF-κB p65 (RelA) subunits to
the nucleus and sustained CCL2, CCL5, and IL-6 transcrip-
tion in astrocytes (El-Hage et al. 2008b).

Opioid and HIV Interactive Pathology in Microglia

Unlike in astrocytes, opiate and HIV interactions in microg-
lia tend to be self-limiting (Turchan-Cholewo et al. 2009).
Opiates initially trigger large increases in the production of
proinflammatory cytokines (Hauser, unpublished), reactive
oxygen (ROS) and nitrogen (RNS) species (Turchan-
Cholewo et al. 2009), and the release of glutamate (Gupta
et al. 2010) and ATP (Sorrell and Hauser 2014) extracellu-
larly in Tat-exposed microglia. The release of glutamate is
mediated by the catalytic subunit of the cystine-glutamate
antiporter xc

− (xCT) (Gupta et al. 2010). Interestingly,

following acute increases in the release of cytokines (e.g.,
TNF-α; unpublished), morphine no longer increases Tat-
induced cytokine levels at 24 h; instead, their levels are re-
duced by opiate-dependent proteasome inhibition. The pro-
teasome inhibitor, MG115, mimics the effects of morphine
in decreasing proteasome activity at 24 h and blocks TNFα,
IL-6, and CCL2 release frommicroglia, but does not increase
ROS or RNS production (Turchan-Cholewo et al. 2009). The
ubiquitin proteasome system (UPS) is typically viewed as
contributing to opiate tolerance and physical dependence
by modulating MOR downregulation (Massaly et al. 2014;
Caputi et al. 2019), rather than MOR activity constraining
the UPS. Thus, while HIV-exposed, MOR-expressing mi-
croglia show a burst of ROS and proinflammatory cytokine
production in response to morphine, the cytokine release
collapses within 24 h seemingly because sustained opiate
exposure inhibits the UPS thereby preventing degradation
of the IκB subunit and nuclear translocation of NF-κB
(Turchan-Cholewo et al. 2009).

While neither astroglia nor microglia alone mimic the full
inflammatory profile seen with opiates and HIV in the CNS;
in combination, the neuroimmune signature more accurately
mimics that seen in neuroHIV. Accordingly, we have pro-
posed that opioids promote positive feedback through sepa-
rate actions in astroglia and microglia in neuroHIV—
resulting in spiraling inflammation and cytotoxicity
(Hauser et al. 2005, 2007).

Opioid and HIV Interactive Pathology in Neurons

Besides accentuating HIV-induced neurotoxicity via glial-
mediated mechanisms, morphine appears to converge with
HIV Tat to dysregulate ion homeostasis and dendritic injury
through potential direct actions on neurons, even though
some contributions of glia cannot be excluded in this study
(Fitting et al. 2014a). Combined morphine and Tat exposure
accelerates the formation of Tat-induced focal dendritic
varicosities/swelling via a MOR-related mechanism that
was caused by focal increases in Na+ influx and [Ca2+]i, an
overload of Na+/K+-ATPase, ATP depletion, and a collapse
in mitochondrial inner membrane potential (Fitting et al.
2014a). Importantly, morphine’s additive effects were medi-
ated via a MOR-related mechanism, as the exacerbating ef-
fects of morphine were absent in neurons from MOR knock-
out mice, thus excluding TLR4 involvement (Fitting et al.
2014a). Further, morphine exacerbated Tat-dependent focal
losses in ion homeostasis by mobilizing [Ca2+]i through
ryanodine-2 (RyR2)-sensitive sites (Fitting et al. 2014a)
(Fig. 2). Although morphine typically acts via MOR in an
inhibitory manner by activating Gi/o-proteins (Sharma et al.
1977; Moises et al. 1994; Al-Hasani and Bruchas 2011),
MOR-dependent stimulation of PI3-kinase and Ca2+ mobili-
zation (Leopoldt et al. 1998) in neurons via the Gβγ protein
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subunit (Mathews et al. 2008) is presumed operative here
(Fig. 2).

Glial-derived neuronal injury is not unidirectional.
Neuronal damage-associated molecular patterns (DAMPs)
and dysfunction can trigger both infected and uninfected glia
to become reactive, resulting in further neuronal damage and
escalating pathology. Neuronal injury can reactivate HIV in
latently infected microglia (Alvarez-Carbonell et al. 2019).
While the events underlying the disruption of neuronal-
microglial activation that trigger the emergence of latent
HIV are unclear, the induction of HIV expression appears
to involve the production of DAMPs by injured neurons and
can be turned “on”, e.g., by methamphetamine-induced sig-
ma-1 (σ1) receptor activation, TNF-α and IL-1β, and TLR3
activation can be turned “off” by CX3CL1/fractalkine or
glucocorticoid receptor activation (Alvarez-Carbonell et al.
2017, 2019).

Neural Systems Selectively Disrupted by Opiate and
HIV Interactions

Blood-Brain Barrier and the Neurovascular Unit

Despite growing evidence on how opiates and HIV interact to
impact the neuropathology of HIV, little is known about their
interactive effects on the blood-brain barrier (BBB). BBB in-
tegrity and function are critical for maintaining CNS homeo-
stasis, and mediating neuroimmune interactions with the pe-
riphery and drug delivery into the CNS. HIV and many indi-
vidual HIV proteins can breakdown the BBB disrupting tight
junction proteins (Dallasta et al. 1999; Boven et al. 2000;
Andras et al. 2003; Mahajan et al. 2008; Banerjee et al.
2010; Gandhi et al. 2010; Xu et al. 2012; Patel et al. 2017)
and decreasing transendothelial electrical resistance (TEER)
(an in vitro measure of barrier integrity) (Mahajan et al. 2008;
Gandhi et al. 2010; Mishra and Singh 2014; Patel et al. 2017),
with resultant paracellular “leakage” of compounds/current
between compromised barrier endothelial cells (Mahajan
et al. 2008; Gandhi et al. 2010; Wen et al. 2011; McLane
et al. 2014; Leibrand et al. 2017, 2019). Although opioids
can also impair the BBB through alterations in tight junction
proteins and/or increased paracellular flux (Baba et al. 1988;
Mahajan et al. 2008; Wen et al. 2011; Leibrand et al. 2019),
others have found that it is morphine withdrawal, not the con-
tinued exposure to morphine, that most greatly disrupts BBB
integrity (Sharma and Ali 2006). In addition to perturbing
paracellular dynamics, morphine may also alter the expression
and/or function of drug efflux proteins, such as P-glycoprotein
(P-gp). Sub-chronic and chronic morphine exposure is report-
ed to increase P-gp expression and/or function (Aquilante
et al. 2000; Mahajan et al. 2008; Yousif et al. 2008;
Leibrand et al. 2019). Alternatively, other investigators report
no changes in P-gp with chronic exposure (Chaves et al.

2016), while some see increases upon morphine withdrawal
(Yousif et al. 2012; Chaves et al. 2016). Alterations in drug
transport proteins would impact the central accumulation and
efficacy of therapeutic drugs that are their substrates.

Using a primary human brain microvascular endothelial
cell (BMEC) and astrocyte co-culture model, Mahajan et al.
(2008) were among the first to demonstrate that co-exposure
to morphine and HIV-1 Tat resulted in greater increases in
TNF-α and IL-8 levels and decreases in barrier tightness
(measured by TEER) than either morphine or Tat alone.
Morphine and Tat co-exposure also additively increased
JAM-2, while zonula occludens-1 (ZO-1) levels were de-
creased by morphine or by Tat individually, and occludin
protein levels were decreased by morphine alone but not
Tat (Mahajan et al. 2008). Using the inducible Tat transgenic
mouse model, Leibrand et al. (2019), also demonstrated that
HIV-1 Tat and morphine act independently to disrupt BBB
integrity. In these studies, morphine, and to a lesser extent
Tat, exposure increased the leakage of fluorescently labeled
dextrans from the circulation into the brain (Leibrand et al.
2017, 2019) (Fig. 3). Morphine exposure decreased the pen-
etration of select ARVs in the brain, in a region-specific
manner (Leibrand et al. 2019) (Fig. 3). Morphine exposure
also resulted in increased expression and function of the drug

Fig. 1 Opioids exacerbate HIV-1-induced CNS inflammation, in part, by
augmenting CCL5-dependent increases in CCL2—key sites of opioid-HIV
convergent interactions in glial inflammatory signaling cascades.
Subpopulations of striatal glial fibrillary acidic protein (GFAP)-
immunoreactive astrocytes in wildtype mice normally express CCR2
immunoreactivity (a-b; arrows), CCL2 (c; arrow), or μ-opioid receptor
(MOR) (d; arrows) immunoreactivity (scale bars a-b = 25 μm; c-d =
15 μm). CCR2 deletion (−/−) significantly reduces HIV-1 Tat ±morphine-
induced increases inGFAP+ astroglia (e) and F4/80+macrophages/microglia
(f) compared to wild type (+/+) mice at sites near (300 ± 100 μm) the site of
Tat injection (*p < 0.05 vs. wild type mice) (see, El-Hage et al. 2006a). In
wild-type mice, Tat ± morphine administration markedly increases the
proportion of CCL2 immunoreactive astrocytes (g) or macrophages/
microglia (h) [*p < 0.05 vs. other groups in wild-type or CCL5(−/−) mice;
bp < 0.05 vs. vehicle- or Tat plus morphine-treated wild-type mice; #p < 0.05
vs. equivalent treatment in wild-type mice], while in CCL5 null mice,
significant increases in CCL2 immunoreactivity were only seen in
macrophages/microglia co-exposed to Tat and morphine (§p < 0.05 vs.
vehicle injected CCL5 knockout mice) (see, El-Hage et al. 2008a). CCL5
expression in striatal GFAP-immunoreactive astrocytes (arrows) increases
following Tat injections (i, j) compared to wild-type control mice (not
shown) (El-Hage et al. 2008a). Opioids exacerbate HIV-1-induced CNS
inflammation, in part, by increasing CCL5 and augmenting CCR5-
dependent increases in CCL2 production by astrocytes resulting in the
activation and recruitment of microglia/macrophages and spiraling
inflammation (k). Additional factors likely mediate the proinflammatory
cascade, but these are less well substantiated (?). Moreover, autocrine and
reciprocal paracrine (astroglial ↔ macrophage/microglial) intercellular,
feedback amplification mechanisms from macrophages/microglia are likely
to be operative (dashed red arrow) (also see, Kang and Hebert 2011) and
occur elsewhere within the cascade (not shown); effects of HIV-1 Tat/HIV,
red arrows; sites of opioid convergence, blue arrows; pro-BDNF:mature
BDNF (mBDNF) ratio (Kim et al. 2018). (a-f) Modified and reprinted with

b

J Neuroimmune Pharmacol (2020) 15:584–627 597



efflux transport protein, P-gp, suggesting a mechanism by
which morphine decreased the ARV concentrations
(Leibrand et al. 2019). This finding suggests that morphine
exposure could impact the efficient delivery of any therapeu-
tic drug that is a substrate of P-gp into the CNS. Future
research should also investigate morphine’s impact on other
drug transport proteins important for ARV delivery to the
brain.

HIV, HIV-1 viral proteins, and opiate-induced barrier dys-
function is associated with increased infiltration of monocyte-
derived macrophages (MDMs) into the brain. Enhanced influx
of peripheral (infected) macrophages into the brain can serve to

replenish viral reservoirs and further promote neuroinflamma-
tion. Several studies have examined the individual impact of
HIV, Tat, or morphine on monocyte adhesion or migration into
the CNS (Nottet et al. 1996; Wu et al. 2000; Fischer-Smith et al.
2001; Pello et al. 2006; Williams et al. 2013a, 2014; Strazza
et al. 2016; Leibrand et al. 2017; Chilunda et al. 2019).
However, fewer studies have examined the combined effects
of HIV/Tat and opiates. Co-exposure of HIV-1 Tat and mor-
phine on astrocytes increases the product ion of
chemoattractants, primarily CCL2 and CCL5, and increases
microglial migration. These effects were inhibited by MOR
blockade (El-Hage et al. 2006b). Co-exposure of Tat and
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morphine or buprenorphine to a BBB model increases
monocyte transmigration in response to CCL5 and other
chemokines (Mahajan et al. 2008; Jaureguiberry-Bravo
et. al. 2016). In S. pneumoniae-infected mice, morphine
and/or Tat exposure significantly enhances immune cell
trafficking into the brain via actions at TLR2 and TLR4
(Dutta and Roy 2015).

Taken together, BBB damage from HIV and/or opi-
ates can disrupt the homeostasis within the brain.
Breakdown of paracellular processes, through decreases
in tight junction proteins and increased cellular adhesion
proteins, increased leakage of circulating molecules into
the brain and increased monocyte/MDM adhesion and
transmigration into the brain, which if infected, can
serve to replenish viral reservoirs within the CNS.
Furthermore, alterations in drug transport proteins within
the brain can decrease ARV efficacy by decreasing drug

concentrations. Collectively, these changes serve to
maintain HIV infection within the brain (see Fig. 4;
Tables 1 and 2).

White Matter/Oligodendroglial Pathology

HIV can cause white matter damage (Gosztonyi et al. 1994;
Langford et al. 2002; Xuan et al. 2013) even with less severe
forms of HAND (Chen et al. 2009; Leite et al. 2013; Correa
et al. 2015). Diffusion tensor magnetic resonance imaging
(DTI) demonstrates white matter damage early in HAND
(Ragin et al. 2004; Stubbe-Drger et al. 2012; Leite et al.
2013; Correa et al. 2015). White matter deficits are associated
with cognitive impairment, including shortfalls in memory
(Ragin et al. 2005), executive function (Correa et al. 2015),
motor speed (Wu et al. 2006; Stubbe-Drger et al. 2012), and
perhaps depression (Schmaal and van Velzen 2019).

Fig. 2 Morphine exacerbates the excitotoxic effects of HIV Tat by
mobilizing Ca2+ from ryanodine (RyR)-sensitive internal stores. (a) Tat-
induced increases in [Ca2+]i were not attenuated by ryanodine, whereas
ryanodine and pyruvate attenuate combined Tat and morphine-induced
increases in [Ca2+]i. Nimodipine (L-type Ca2+ channel blocker) and
dantrolene did not show any effects. (b) Average [Ca2+]i over 10 min
indicated ryanodine significantly blocked combined Tat and morphine-
induced increases in [Ca2+]i, whereas no effects were noted for
nimodipine, dantrolene, or pyruvate. *p < 0.05 vs. control, #p < 0.05 vs.
Tat 50 nM, §p < 0.05 vs. TM, TM: Tat 50 nM+Morphine 500 nM. (c)
Summary of HIV-1 Tat and morphine interactive neuronal injury in
striatal medium spiny neurons. Combined Tat and morphine promotes
structural and functional defects in dendrites via α-amino-3-hydroxy-5-

methyl-4-isoxazolepropionic acid receptors (AMPAR), N-methyl-D-
aspartic acid receptors (NMDAR), and MOR, causing influxes of Na+

and/or Ca2+, compensatory increases in Na+/K+-dependent ATPase
activity, and a rapid loss in ATP mobilization with an inability to
extrude excess Na+ via Na+/K+-ATPase caused by mitochondrial
hyperpolarization. Dysregulation of [Ca2+]i homeostasis by combined
Tat and morphine appears to be mediated downstream of [Na+]i at the
level of calcium mobilization, which in turn appears to be regulated via
ryanodine (RyR)-sensitive sites, and enhanced by morphine exposure
likely via MOR-dependent stimulation of PI3-kinase and Ca2+

mobilization via the Gβγ protein subunit. (a-b) Modified and reprinted
with permission from Fitting et al. (2014a)
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Preclinical studies in simian immunodeficiency virus- (SIV-)
infected rhesus macaques (Marcario et al. 2008) and HIV-
infected humanized mice (Boska et al. 2014) support the clin-
ical findings. Injury to oligodendrocytes (OLs) can occur very
early in the disease (see review, Liu et al. 2016b). Viral pro-
teins, including Tat, gp120, and Nef, have been implicated in

OL injury in vitro (Kimura-Kuroda et al. 1994; Bernardo et al.
1997; Radja et al. 2003; Nukuzuma et al. 2012; Zou et al.
2015), and in animal models in vivo (Radja et al. 2003;
Hauser et al. 2009; Zou et al. 2015). Importantly, Tat has been
detected in OLs in the brains of AIDS patients (Del Valle et al.
2000).
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HIV likely damages OLs through both direct and indirect
actions. OLs lack CD4, and reports of OL infection by HIV
are variable (Esiri et al. 1991; Albright et al. 1996;
Wohlschlaeger et al. 2009); thus, HIV infection of OLs is
unlikely a major avenue of OL or white matter damage
(discussed below). Alternatively, bystander damage to OLs
through the production of “virotoxins” and “cellular toxins”
(Nath 1999) by infected neighboring cells is more likely to be
operative (Hauser et al. 2009; Zou et al. 2015; Jensen et al.
2019; Zou et al. 2019). ARVs also contribute to OL cytotox-
icity (Jensen et al. 2015; Festa et al. 2019; Jensen et al. 2019).
HIV-1 Tat directly induces damage in isolatedOLs throughα-
amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid
(AMPA)/N-methyl-D-aspartic acid (NMDA) receptor-depen-
dent mechanisms (Zou et al. 2015) and is also associated with
abnormal Kv1.3 activity (Liu et al. 2017). Immature OLs are
preferentially targeted by Tat compared to differentiated OLs
(Khurdayan et al. 2004; Hahn et al. 2012; Zou et al. 2015,
2019). While the reasons why immature OLs are more sus-
ceptible to Tat are unclear, unlike mature OLs, Tat preferen-
tially upregulates GSK-3β signaling in undifferentiated OLs
by inhibiting Ca2+/calmodulin-dependent protein kinase II β
(CaMKIIβ) (Zou et al. 2019).

Opioid abuse by itself can result in demyelination,
leukoencephalopathy, and lesions in white matter (Offiah
and Hall 2008; Eran and Barak 2009; Morales Odia et al.
2010; Bora et al. 2012; Li et al. 2013), and the degree of
myelin disruption correlates with the duration of opiate depen-
dence (Ivers et al. 2018). Chronic oxycodone exposure in rats
causes some axonopathies and reduces the size of axonal fas-
cicles, decreases myelin basic protein levels, and causes the
accumulation of amyloid-β precursor protein (APP) (Fan
et al. 2018). Most preclinical studies have examined the ef-
fects of opioids and opioid receptor blockade on OL matura-
tion and/or the timing of myelination (Hauser et al. 1993;
Knapp et al. 1998; Stiene-Martin et al. 2001; Sanchez et al.
2008; Knapp et al. 2009; Vestal-Laborde et al. 2014). OLs can
transiently express MORs and other opioid receptor types
(Knapp et al. 1998; Tryoen-Toth et al. 2000; Knapp et al.
2001; Stiene-Martin et al. 2001). Selective MOR and possibly
KOR activation can directly modulate the growth of OLs
in vitro (Knapp and Hauser 1996; Knapp et al. 1998, 2001).

Despite long-standing evidence of white matter damage
early during the infection even in asymptomatic PWH (Price
et al. 1988; Gray et al. 1996; Chen et al. 2009; Stubbe-Drger
et al. 2012; Jensen et al. 2019), few studies have examined
how opiate exposure affects OLs and myelin in neuroHIV
(Tables 1 and 2). Increased demyelination is reported in
SIV-infected rhesus macaques chronically treated with mor-
phine (4× daily, up to 59 weeks) (Marcario et al. 2008).
Specifically, morphine-treated SIVmacaques developed more
subtle, focal, dysmyelinating lesions, with accumulations of
macrophages in areas of myelin loss (Marcario et al. 2008), as
well as accompanying gliosis (Marcario et al. 2008; Rivera-
Amill et al. 2010a; Bokhari et al. 2011). Morphine exposure
increased degeneration of OLs in Tat+mice, which was ac-
companied by elevations in caspase-3 activation and TUNEL
reactivity in OLs and reversible by naloxone or naltrexone,
respectively (Hauser et al. 2009). Although OLs can express
MOR both in vivo (Stiene-Martin et al. 2001) and in vitro
(Hauser et al. 2009), it remains unclear the extent to which
MOR activation in OLs directly mediates HIV pathogenesis.

Neural Progenitors as an HIV Reservoir and Target for Opioids

Even though neural progenitors (Krathwohl and Kaiser 2004;
Lawrence et al. 2004; Rothenaigner et al. 2007; Schwartz et al.
2007; Balinang et al. 2017), neuroblast cell lines (Ensoli et al.
1994; Rothenaigner et al. 2007), and/or immature astroglia
(Atwood et al. 1993; Tornatore et al. 1994; Barat et al.
2018) can harbor HIV infection (reviewed by Hauser and
Knapp 2014; Putatunda et al. 2019), the degree to which they
are a source of active infection or serve as a latent viral reser-
voir (Blankson et al. 2002; Bruner et al. 2019) by retaining
intact proviral DNA within incipient macroglial progeny is
uncertain. In fact, spurious reports of HIV-infected adult

Fig. 3 Effects of HIV-1 Tat and morphine on BBB leakiness and on
antiretroviral brain concentrations. After 14 days of Tat induction, there
was a significant increase in the 10 kDa (Cascade Blue®) tracer leakage
into the brain in Tat + placebo as compared to Tat − placebo mice (*p <
0.05) and in Tat −mouse brains upon exposure to morphine as compared
to Tat − placebo mice (*p < 0.05) (a). There was a significant main effect
of morphine, resulting in reduced integrity of the BBB and increased
leakage of the higher molecular weight (40 kDa and 70 kDa) tracers in
morphine-exposed groups as compared to the those groups (Tat + and
Tat − together) not exposed to morphine (placebo) (#p < 0.05;
significant main effect of morphine) (b, c). Data represent the fold
change in mean fluorescence intensity ± SEM; n = 8 Tat−/placebo, n =
6 Tat+/placebo, n = 9 Tat−/morphine, and n = 7 Tat+/morphine mice.
Additionally, morphine exposure increased horseradish peroxidase
(HRP) extravasation from the vasculature into the perivascular space
and/or parenchyma in the striatum (d, e). HRP antigenicity was
detected by indirect immunofluorescence (red) in tissue sections
counterstained with Hoechst 33342 (blue) to reveal cell nuclei and
visualized by differential interference contrast (DIC)-enhanced confocal
microscopy. HRP extravasation into the striatal perivascular space/
parenchyma was especially prevalent in morphine-exposed mice
(arrowheads; left-hand panels in e versus d). The dotted lines (············)
indicate the approximate edge of the capillaries/post-capillary venules;
while intermittent dotted lines (· · · · · · ·) indicate the approximate edge
of a partly sectioned blood vessel that appears partially outside the plane
of section. The asterisks (*) indicate white matter tracts within the
striatum. Representative samples from ≥ n = 4 mice per group. All
images are the same magnification. Scale bar = 10 μm. Antiretroviral
tissue-to-plasma ratios in striatum (f–g). Irrespective of Tat exposure,
morphine significantly reduced the levels of dolutegravir (f) and
abacavir (g), but not lamivudine (h), within the striatum, as compared
to placebo. (* p < 0.05; main effect for morphine). Data represent the
tissue-to-plasma ratios ± SEM sampled from n = 9 Tat−/placebo, n = 9
Tat+/placebo, n = 6 Tat−/morphine, and n = 8 Tat+/morphinemice. (a–h)
Modified and reprinted with permission from Leibrand et al. (2019)

R
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neurons (Torres-Munoz et al. 2001; Canto-Nogues et al.
2005) may result from the retention of proviral genes that
integrated into pluripotent neural progenitors or neuroblasts
at earlier stages during maturation. Importantly, prolonged
exposure to opioids can increase the production of HIV in
human neural progenitor cells (hNPCs). Exposure of R5-
tropic HIVBaL-infected hNPCs to morphine continuously for
21 d increased viral production compared to HIVBaL infection
alone in vitro (Balinang et al. 2017).

Besides being able to infect hNPCs, HIV may also affect
their maturation and the fate of neural stem cells. That HIV or
gp120 can inhibit adult neurogenesis (Okamoto et al. 2007;
Lee et al. 2013; Putatunda et al. 2018) has been the topic of
past reviews (Schwartz and Major 2006; Venkatesan et al.
2007; Peng et al. 2008, 2011; Ferrell and Giunta 2014;
Hauser and Knapp 2014; Putatunda et al. 2019). How HIV
inhibits the self-renewal, tripotential differentiation, and sur-
vival of neural progenitors/stem cells or the genesis of adult
neurons in the subgranular zone (SGZ) of the dentate gyrus is
uncertain. HIV and gp120 [via actions at the same chemokine
receptor(s) (Tran and Miller 2005; Li and Ransohoff 2008)]
are proposed to modulate the adult neurogenesis via Notch
(Fan et al. 2016), by obstructing a cell cycle checkpoint via
the activation MAPK-activated protein kinase 2 and Cdc25B/
C (Okamoto et al. 2007), or through signaling by platelet-
derived growth factor BB (Chao et al. 2014) or BDNF (Lee
et al. 2013). The extent that HIV regulates the genesis of

neural progenitors within the subventricular zone of the devel-
oping CNS through similar mechanisms as in the adult SGZ of
the dentate gyrus is uncertain—even though HIV disrupts the
generation of neurons and glia during maturation or in adults.
For example, MAPK/ERK1/2 enhances p53- and p21-depen-
dent downregulation of cyclin D1 hindering progression
through the G1 phase of the cell cycle in hNPCs (Mishra
et al. 2010; Malik et al. 2014). Importantly, opioids too can
affect the genesis of neurons and glia during maturation or in
the adult directly via convergent pathways (Hauser and Knapp
2018; Kibaly et al. 2018) suggesting yet another site of opioid
and HIV interactions in dysregulating the creation and fate of
new neurons and glia.

Few studies have examined the interplay between opioids,
neural progenitors and HIV/HIV proteins. Sustained exposure
(4 d) to morphine (500 nM) and Tat1–72 (100 nM) decreased
the viability of MOR-expressing striatal glial precursors, and
to a lesser extent astrocytes, and this coincided with caspase-3
activation (Khurdayan et al. 2004). By contrast, comparably
administered morphine or Tat alone was sufficient to decrease
the viability of immature glia/glial progenitors in spinal cord
cultures, while Tat and morphine failed to interact (Buch et al.
2007). Collectively, these findings were the first to indicate
that opioid and/or Tat could enhance programmed cell death
in subpopulations of glial precursors in a developmentally
regulated and region-dependent manner (Khurdayan et al.
2004; Buch et al. 2007). In human glial progenitors, co-

Fig. 4 Schematic representation of the blood-brain barrier and other
components of the neurovascular unit. Under normal conditions
(represented above the dotted line), tight junctions are intact which
restricts the leakage of paracellular, typically small hydrophilic,
compounds, across the barrier and into the brain. Additionally, there is
a basal expression of efflux transporters, such as P-glycoprotein (P-gp),
which effluxes substrates out of the brain, serving to restrict overall
accumulation within the brain. In the setting of HIV and opiate

exposure (represented below the dotted line), there is a breakdown of
the tight junction proteins and increased leakage of paracellular
compounds into the brain. Additionally, opiate exposure increases
efflux transporter expression, including P-gp and potentially breast
cancer resistance protein (Bcrp), thereby restricting overall brain
penetration of drugs (like many antiretroviral drugs) which are
substrates for these transporters and in response to HIV and/or opioid
exposure.
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administering morphine (500 nM) increased the antiprolifera-
tive effects of Tat (12–48 h) or conditioned medium from
HIV-1SF162-infected MDMs (12 h), while paradoxically re-
versing the antiproliferative effects from HIV-1IIIB condi-
tioned medium (12 h) (Hahn et al. 2012). In these studies,
Tat or HIV exposure reduced the proliferation of Sox2+ and
Olig2+ undifferentiated glial and oligodendroglial progeni-
tors, respectively, while progenitor viability was unchanged
(Hahn et al. 2012). In human neural progenitor cells (hNPCs),
sustained infection with R5-tropic HIVBaL increased the pro-
liferation and premature differentiation of hNPCs into both
neurons and astrocytes, and both measures were significantly
enhanced by morphine co-exposure (Balinang et al. 2017).
Importantly, immunoneutralizing antibodies (Hahn et al.
2012) or the selective antagonist, maraviroc (Balinang et al.
2017), were able to significantly attenuate the consequences
of R5-tropic HIV infection on hNPC differentiation and fate
confirming a direct role of CCR5 in these processes. Lastly,
decreases in the proliferation of hNPCs seen with morphine
and Tat are, in part, regulated by ERK1/2-dependent increases
in p53 and p21 expression (Malik et al. 2014) and can be
modulated by PDGF BB suggesting a possible therapeutic
target (Malik et al. 2011). Thus, morphine can exaggerate
R5-tropic HIV-induced alterations in the maturation and fate
of human and rodent NPCs, thereby further disrupting the
balance of neural cell types and CNS function.

Matters Needing Further Consideration
in Opioid and HIV Comorbidity

The interplay of complex host and viral genetic differences is
likely to play a huge role in determining pathologic outcomes
in PWH. For example, differences in HIV strains/variants
(Rao et al. 2013) and human/host genetic variability
(Proudnikov et al. 2012), pharmacokinetics (Kuhlman et al.
1996; Eap et al. 2002; Elkader and Sproule 2005; Kharasch
2017; Kringen et al. 2017), and sex (Zubieta et al. 2002;
Taylor and Davies 2010; Venuto et al. 2014; Marinho et al.
2019) all contribute to variability in responsiveness. The fol-
lowing subsections will focus on key factors affecting opioid
and HIV comorbidity.

HIV-1 Genetics

Genetic differences among HIV-1 variants have a significant
impact on HIV transmission, disease progression, as well as
the response to ARV therapy (see reviews, Geretti 2006;
Taylor et al. 2008; Tyor et al. 2013; Tables 1 and 2). Pre-
cART studies provide substantial evidence that HIV clade
differences can influence HAND (Gupta et al. 2007; Sacktor
et al. 2009; Boivin et al. 2010; McArthur et al. 2010; Rao et al.

2013), with HAND severity being highest for clade D and B
strains, followed by C and A clades (Tyor et al. 2013). These
findings are supported by preclinical studies in which clade B
or clade C HIV-infected macrophages were intracranially
injected into severe combined immunodeficient mice (SCID)
mice. Exposure to clade B isolates induced more severe mem-
ory deficits, as well as greater astrogliosis and neuronal dam-
age (Rao et al. 2008, 2013). In another example, the Tat
dicysteine motif (CC) at positions 30 and 31, which is com-
monly found in clade B isolates, appears to worsen HAND
(Mishra et al. 2008; Rao et al. 2013) and has been studied
extensively in vitro (Ranga et al. 2004; Rao et al. 2008; Zou
et al. 2011; Krishnan and Chatterjee 2015). Clade B Tat is
more intrinsically cytotoxic to primary neurons in vitro than
clade C Tat (Li et al. 2008; Campbell et al. 2011; Zou et al.
2011), resulting in increased proinflammatory cytokine pro-
duction (e.g., IL-6 and TNF-α) (Gandhi et al. 2009) and
monocyte recruitment/migration into the brain (Ranga et al.
2004; Rao et al. 2008), and increased disruption of the BBB
(Gandhi et al. 2010). Similarly, the production of the inflam-
matory mediators prostaglandin E2 and the thromboxane A2

receptor by astrocytes is more significantly increased by clade
B than clade C gp120 (Samikkannu et al. 2011). Sequence and
structural alterations in gp120 have been demonstrated be-
tween clades B and C (Gnanakaran et al. 2007) and potentially
contribute to these observed differences.

When considering effects of HIV clade variants in
the presence of opioids, the overall toxicity in MSNs
seen with clade C Tat (30% neuronal losses) was con-
siderably less than with clade B (70% losses) (Zou
et al. 2011). Although clade B HIV predominates in
Western countries, future clinical longitudinal studies
are necessary that employ HIV clade testing in HIV-1
infected opioid users to confirm the hypothesis that opi-
oid interactive effects on HAND pathogenesis depend
on the HIV clade assessed.

Besides HIV genetic diversity, differences in HIV
tropism add another level of complexity. Morphine in-
teractions can differ significantly between X4 and R5-
tropic gp120 variants depending on the outcome mea-
sure (El-Hage et al. 2011b; Podhaizer et al. 2012;
Balinang et al. 2017; Kim et al. 2018). Increased infec-
tivity in the presence of morphine was noted for the
R5-tropic HIV-1SF162 strain in a human hepatoma
Huh7.5.1 cell line model, whereas the infectivity rate
with the X4-tropic HIV-1LAI/IIIB strain was unaffected
by morphine (El-Hage et al. 2011b).

To date, no clinical studies have assessed whether opioid
interactions with R5- or R4-preferring HIV strains differen-
tially impact the severity of HAND. However, the findings
from preclinical studies indicate that HIV-1 strain-specific
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differences are critical determinants in shaping both the timing
and pattern of neurotoxic interactions with opioid drugs.

Host Genetics

Host genetic variability can be a major determinant in individ-
ual susceptibility to HIV infectivity and may influence
neuroHIV progression in the context of opiate co-exposure.
The importance of CCR5 for HIV infectivity and polymor-
phisms in this gene are well established. Individuals who are
homozygous in the CCR5 gene (CCR5Δ32) are highly resis-
tant to infection by CCR5- (R5-) tropic HIV as demonstrated
by individuals heterozygous for CCR5Δ32 who display par-
tial resistance to infection and slower disease progression
(Huang et al. 1996; Liu et al. 1996; van Rij et al. 1999).
Besides CCR5, polymorphisms of other chemokine co-
receptors and/or their cognate ligands have been implicated
in HIV infectivity, including CCR2 (Smith et al. 1997;
Kostrikis et al. 1998), CCL5 (Liu et al. 1999; McDermott
et al. 2000), and CXCL12 (Winkler et al. 1998).
Authoritative reviews on other gene polymorphisms that mod-
ify HIV infectivity and disease progression have been pub-
lished (Lama and Planelles 2007; Singh and Spector 2009;
Chatterjee 2010; Aouizerat et al. 2011).

Gene polymorphisms of opioid (OPRM1 and OPRK1) and
non-opioid (e.g., DRD1 and DRD2) drug/neurotransmitter re-
ceptor genes are associated with altered HIV infectivity, viral
loads and CD4+ cell counts (Proudnikov et al. 2012; Regan
et al. 2012; Jacobs et al. 2013; Proudnikov et al. 2013; Dever
et al. 2014). Not only do MORs mediate the behavioral con-
sequences of opiate abuse (Bond et al. 1998; Szeto et al. 2001;
Ikeda et al. 2005; Kreek et al. 2005; Xu et al. 2014b), but the
ability of MOR to modulate HIV chemokine co-receptor sig-
naling through cross desensitization or through direct molec-
ular interactions suggest MOR may influence HIV infectivity
at multiple levels. The unique ability of MOR to modulate
HIV co-receptor function, prompted inquiry regarding wheth-
er variants of the OPRM1 gene (polymorphisms or splicing
variants) might differentially effect HIV infectivity and/or opi-
ate addictive behaviors. In a sample of 1031 HIV-1-infected
women, 18 OPRM1 polymorphisms were significantly asso-
ciated with decreases or increases in HIV infectivity and re-
sponsiveness to cART (Proudnikov et al. 2012). Other gene
polymorphisms, such as enzymes affecting drug metabolism
(Meyer and Zanger 1997; Benowitz et al. 2006) and other
neurochemical systems (Herman and Balogh 2012; Koob
and Volkow 2016) can also affect drug dependence. The
A118G variant of OPRM1 alters the regulation of proinflam-
matory cytokine secretion (i.e., TNF-α, IL-10, IFN-γ) from
peripheral immune cells (Matsunaga et al. 2009). Overall,
these findings suggest that polymorphisms in MOR ligands/
genes (OPRM1) can influence the pathophysiology of HIV-1.

Nineteen different OPRM1 spliced variants have been de-
scribed in humans (Pasternak 2004, 2014; Xu et al. 2014a; Lu
et al. 2015). OPRM1 alternative splicing may also influence
susceptibility to HIV-1 infection (Dever et al. 2012, 2014).
Although many variants are thought to be non-functional
and fail to traffic from the endoplasmic reticulum, increasing
evidence suggests they may oligomerize other G Protein-
coupled receptors or bind chaperones to assist in trafficking
to the plasma membrane (Samoshkin et al. 2015; Zhu et al.
2019). Quantitative and qualitative differences in human
MOR splice variant expression levels have been noted across
different CNS cell types following exposure to HIV (Dever
et al. 2012, 2014). Interestingly, an excitatory, MOR-1 K
splice variant, that couples to GαS (Gris et al. 2010) is prefer-
entially expressed in human astroglia (Dever et al. 2012) and
has been shown to correlate with HIVE and cognitive impair-
ment (Dever et al. 2012, 2014).

MOR and Chemokine Receptor Interactions (CCR5,
CXCR4)

The ability of opiates to modulate HIV infection and HIV
neuropathogenesis/disease progression may be partly due to
the interactive effects seen between the opioid and chemokine
receptors, specifically MOR and CCR5 or CXCR4 (Rogers
and Peterson 2003; Steele et al. 2003; Szabo et al. 2003; Festa
and Meucci 2012). The potential mechanisms for this interac-
tion can include heterologous cross-desensitization via down-
stream signaling (Rogers et al. 2000; Steele et al. 2002; Song
et al. 2011) and/or potentially via direct opioid-chemokine
receptor dimeric or heteromeric interactions (Suzuki et al.
2002; Chen et al. 2004; Nash and Meucci 2014). MOR and
DOR activation can heterologously desensitize CCR5 respon-
siveness to CCL3, CCL4, and CCL5 in monocytes (Grimm
et al. 1998; Szabo et al. 2003; Chen et al. 2004). The cross-
desensitization appears to be regulated by MOR-dependent
PKCζ activation and CCR5 phosphorylation and downregu-
lation (Song et al. 2011). Alternatively, MOR-induced down-
regulation of CCL2 and CCL4 mRNA reciprocally
upregulates the expression of their associated receptors,
CCR2b, CCR3, and CCR5 (Mahajan et al. 2005). A previous
study reported significant upregulation of CCR5 and CXCR4
expression in CD14 monocytes with [D-Ala2, N-MePhe4,
Gly-ol]-enkephalin (DAMGO), a MOR ligand, exposure with
enhanced replication of both X4- and R5-tropic viral strains of
HIV (Steele et al. 2003). For CXCR4, bidirectional heterolo-
gous desensitization is less evident with MOR but has been
reported for KOR, with Ca2+ signaling experiments suggest-
ing that cross-desensitization occurs within seconds of KOR
or CXCR4 activation in a concentration-dependent manner
(Finley et al. 2008). Thus, opiates acting at different opioid
receptors in the presence of HIV appear to activate chemokine
receptor signaling and can contribute to the synergistic effects
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of HIV and opioid drug co-exposure seen in neuroHIV
progression.

The ability of opiates to modulate CCR5 expression in the
CNS has been demonstrated to occur in various cell types,
including microglia (Bokhari et al. 2009), and astrocytes
(Mahajan et al. 2002). Specifically, in astrocytes MOR acti-
vation enhanced CCR5 and additional HIV-1 entry co-
receptor (CCR3 and CXCR2) expression, whereas local pro-
duction of HIV-1 protective chemokines (IL-8, CCL4) was
inhibited (Mahajan et al. 2002). Deletion of CCR5 significant-
ly attenuates morphine-induced increases in astrocyte CCL2
immunoreactivity in Tat transgenic mice (El-Hage et al.
2008a) (Fig. 1). Interestingly, the proportion of CCL2

immunoreactive macrophages/microglia in CCL5(−/−) mice
after Tat and morphine co-administration still showed a sig-
nificant upregulation, suggesting CCL5 regulates Tat and
morphine-induced increases in CCL2 in astrocytes, but not
in microglia (El-Hage et al. 2008a) (Fig. 1).

The cell type specific interactions between CCR5 and
MOR were noted when using a bivalent ligand deriva-
tive of maraviroc linked to an opioid antagonist, nal-
trexone, with HIV-1 entry being significantly blocked
in astrocytes but not microglia (El-Hage et al. 2013)
(Fig. 5). Interestingly, maraviroc’s antiviral effects are
completely negated in both astrocytes and microglia
when morphine is present suggesting that maraviroc

Fig. 5 Differential inhibition of HIV-1 entry into human glia by
maraviroc and a bivalent CCR5-MOR antagonist (BVL) with cell-
specific interactions in combination with morphine. (a) Construction of
a MOR-CCR5 heterodimer model in a membrane (gray), and aqueous
surrounds (red) system. The green protein represents MOR and the blue
protein represents CCR5, while the bivalent ligand is colored in yellow.
(b) Different binding pocket (green) for the triazole moiety of the bivalent
ligand yellow) at 0 ns and 6.0 ns. (c) Construction of a chemical probe
that interacts with both the MOR and CCR5 receptors simultaneously. To
monitor HIV-1 infection (d) astrocytes and (e) microglia were transfected
with a pBlue3′LTR-luc reporter sensitive to Tat expression and luciferase
activity was measured. Data indicate that maraviroc’s antiviral effects are
completely negated in both astrocytes and microglia when morphine is

present (red bars). Interestingly, unlike maraviroc, the bivalent
compound blocked HIV entry in astrocytes irrespective of morphine
treatment. By contrast, the bivalent antagonist exacerbated HIV
infectivity in microglia in the presence of morphine (red bars). The
findings reveal fundamental differences in co-regulation of MOR and
CCR5 expression in astroglia and microglia upon HIV and/or morphine
exposure (see El-Hage et al. 2013). Values are luminescence intensity ±
SEM from 3 to 5 independent experiments at 18 h post-infection (*p <
0.005 vs. un-infected cells; $p < 0.05 vs. R5 HIV-1; #p < 0.05 vs. R5 +
morphine (M); ¶p < 0.05 vs. R5 +maraviroc (MVC); §p < 0.05 vs. R5 +
M+MVC; ¥p < 0.05 vs. R5 +M+MVC+ naltrexone). (a–b) Modified
and reprinted with permission from Arnatt et al. (2016). (c–e) Modified
and reprinted with permission from El-Hage et al. (2013)
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therapy may not be effective with opiate co-exposure.
Importantly, unlike maraviroc, the bivalent compound
blocked HIV entry in astrocytes irrespective of mor-
phine treatment, while exacerbating HIV infectivity in
morphine co-exposed microglia and revealing fundamen-
tal differences in the regulation of MOR and CCR5
expression in these glial types. Whereas, MOR and

CCR5 expression appear to be similarly regulated in
astrocytes, their expression patterns in microglia appear
to be inversely correlated upon HIV and/or morphine
exposure, with CCR5 being expressed at much higher
levels than MOR (see El-Hage et al. 2013). The differ-
ential effects of the bivalent ligand in astrocytes com-
pared to microglia might be due to the fact that the
expression levels of MOR and CCR5 are differentially
regulated by HIV in each of the cell types (El-Hage
et al. 2013; Yuan et al. 2013; Arnatt et al. 2016).

The importance of CCR5 activation in glia, but not
neurons, in mediating the neurotoxic effects of
morphine-dependent MOR activation is further support-
ed in a recent study demonstrating that the loss of
CCR5 from glia (but not neurons) eliminated neurotox-
icity due to Tat and morphine interactions (Kim et al.
2018). Similarly, short-duration (5 d) maraviroc pre-
treatment also eliminated neurotoxicity and attenuated
neuronal increases in [Ca2+]i caused by Tat ± morphine
(Kim et al. 2018). Selectively deleting either CCR5
(Kim et al. 2018) or MOR (Zou et al. 2011) from glia
completely protects MSNs from morphine’s ability to
exacerbate Tat neurotoxicity. However, deleting CCR5
from glia only revealed a paradoxical neuroprotective
effect of morphine on Tat toxicity that is mediated by
opioid receptors and appears to involve alterations in
BDNF processing and signaling (Kim et al. 2018).

EnhancedMature BDNF (mBDNF) Produced by CCR5 Deficient
Glia is Neuroprotective Mature BDNF (mBDNF) activates
tyrosine receptor kinase B (TrkB) and is neuroprotective,
while the precursor to BDNF, pro-BDNF, binds p75NTR and
can activate cell death pathways. Based on findings of signif-
icant, reversible reductions in glially produced BDNF after
exposure to HIV-infected cell supernatant ± morphine
(Masvekar et al. 2014), altered BDNF processing in lympho-
cytes from PWH (Avdoshina et al. 2011), and following ex-
posure to HIV-1 gp120 (Bachis et al. 2012), the pro-
BDNF:mBDNF ratio was analyzed in supernatants from
wild-type vs. CCR5-null striatal glial cultures exposed to
Tat ± morphine for 6 or 24 h (Kim et al. 2018) (Fig. 6).
CCR5-deficiency reduced this ratio by over 2-fold in cells
treated with Tat and morphine after 6 h (Fig. 6), indicating a
relative increase in mBDNF that may partially protect neurons
in the CCR5-deficient glial environment.

Exogenous mBDNF treatment has been found tomimic the
pro-survival effect of glial CCR5 deficiency against Tat ±
morphine, and its neuroprotective effects have been supported
in other neurodegenerative disease models (Cai et al. 2014;
Xu et al. 2018). Collectively, the findings suggest that the loss
of CCR5 may fundamentally change MOR signaling in HIV-
exposed glia in a BDNF-dependent manner. Thus, overall the
interaction of opioid and chemokine receptors, specifically

Fig. 6 Role of CCR5 and BDNF in mediating HIV-1 Tat and morphine-
induced interactive cytotoxicity in striatal medium spiny neurons
(MSNs). A proportion of glial fibrillary acidic protein (GFAP)-
immunolabeled striatal astrocytes display punctate patterns of μ-opioid
receptor (MOR) (a) and CCR5 (b) (43.8 ± 2.4%) immunofluorescence—
with some faint immunoreactivity extending into the cell processes; scale
bars = 10μm (a-b). HIV-1 Tat andmorphine are no longer toxic toMSNs
when CCR5 is deleted from glia (c-f). In C57BL/J wild-type mixed glia-
MSN co-cultures, Tat is neurotoxic (*p = 0.001 vs. controls), and co-
exposure to morphine enhanced Tat-induced toxicity over a 72-h period
(**p < 0.001 vs. controls, p < 0.05 vs. Tat) and antagonized by naloxone
(c). Naloxone or morphine by themselves had no effect on neuronal
survival (c). In co-cultures with CCR5-deficit glia and wild-type
neurons, exposure to Tat by itself is significantly toxic (*p < 0.001 vs.
controls); however, the enhanced toxicity seen with combined morphine
exposure was eliminated (d). Unexpectedly, morphine co-treatment
entirely abolished the toxic effects of Tat, restoring MSN survival to
control levels. Pre-treatment with naloxone re-established Tat toxicity,
suggesting that the paradoxical protective effects of morphine are
mediated by MOR (or perhaps another opioid receptor type) (d) (see
Kim et al. 2018). The neurotoxic patterns seen in CCR5-deficient
MSNs and wild-type glial co-cultures are similar to wild-type co-
cultures (e). Co-cultures in which MSNs and glia are both deficient in
CCR5 are similar to those in which CCR5 is only deficient in glia (f).
CCR5 deletion alters the expression and processing of BDNF precursor
(pro-BDNF) to mature (mBDNF) by mixed-glial cultures (g). BDNF is
expressed by both astroglia and microglia; mBDNF is neuroprotective,
while pro-BDNF can promote programmed cell death. mBDNF and pro-
BDNF levels were analyzed in conditioned media from wild-type or
CCR5-deficient mixed glia treated with Tat ± morphine after 6 h or
24 h to assess pro-BDNF and mBDNF levels. The proportion of pro-
BDNF/mBDNF levels was significantly higher in wild-type compared
to CCR5-null glia at 24 h (lower row; g), suggesting reduced neuronal
support. Although morphine significantly decreased pro-BDNF in
CCR5-deficient glia at both 6 h and 24 h compared to control levels
(not shown), the pro-BDNF/mBDNF ratios were unaltered (upper and
lower rows; g). By contrast, combined Tat and morphine significantly
decreased the pro-BDNF/mBDNF ratio at 6 h, suggesting transient
protection with CCR5 deficiency that was not fully sustained at 24 h
(p = 0.17) (*p < 0.05, wild-type vs. CCR5-null) (g). Exogenous
mBDNF is neuroprotective against combined Tat and morphine
treatment (h). Wild-type, mixed glial-MSN co-cultures were treated
with mBDNF and Tat, or combined Tat and morphine (represented by
dotted survival curves). Tat alone was neurotoxic (*p < 0.05), and Tat
was significantly worsened by co-exposing MSNs to morphine (**p <
0.0001). The addition of mBDNF (50 ng/ml; 72 h) fully protected MSNs
against combined Tat and morphine toxicity, but only tended to protect
(albeit not significantly) MSNs treated with Tat alone (#)(h). Overall, the
results in c-h suggest (1) an important role for glial CCR5 in mediating
HIV-1 and opiate neurotoxic interactions, (2) that CCR5 deficiency
influences signaling through MOR, and (3) that CCR5 (and perhaps
MOR) act via a BDNF intermediary to promote or obstruct neuronal
survival (Kim et al. 2018). (a-b) Modified and reprinted with
permission from Podhaizer et al. (2012). (c-h) Modified and reprinted
from Kim et al. (2018), which is an open access article distributed
under the terms of the Creative Commons CC BY license
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MOR and CCR5, may alter the neuropathogenesis of HIV in a
qualitatively unique manner not seen with either disorder
alone.

Does HIV Alter the Endogenous Opioid System?

Little is known about the effects of HIV on the endogenous
opioid system and the extent to which HIV might disrupt the
expression and function of opioid peptides and receptors, and
vice versa. Because opiate drugs act exclusively bymimicking
endogenous peptides and engaging opioid receptors, it is like-
ly that endogenous opioids also interact with HIV to some
extent to affect the pathogenesis of neuroHIV.

The endogenous opioid system comprises three originally
described opioid receptors,MOR, KOR, andDOR and endog-
enous opioid peptide-expressing genes proopiomelanocortin
(POMC), prodynorphin (PDYN), and proenkephalin (PENK)
(Brownstein 1993; Trescot et al. 2008; Bodnar 2010;
Pasternak and Pan 2013), as well as a fourth receptor
(OPRN1) and peptide (nociceptin/orphanin FQ) family mem-
ber. The endogenous opioid system has a fundamental role in
pain regulation and has been implicated in the pathophysiol-
ogy of various neurologic diseases (Nandhu et al. 2010;
Sauriyal et al. 2011; Benarroch 2012) and in pain manage-
ment (Bruehl et al. 2013).

Postmortem clinical studies indicate the endogenous opioid
system is disrupted in neuroHIV (Gelman et al. 2012; Yuferov
et al. 2014). Specifically, OPRK1 mRNA is significantly up-
regulated in PWH (Yuferov et al. 2014) and in transgenic
neuroHIV rodent models (Chang et al. 2007; Fitting et al.
2010b) potentially as a compensatory neuroprotective func-
tion in response to inflammatory processes in the presence of
HIV infection (Yuferov et al. 2014). The upregulation of
mRNA coding OPRK1 is triggered by factors released by
activated macrophages and glia and is supported by mecha-
nistic studies in dorsal root ganglia (Puehler et al. 2006;
Gabrilovac et al. 2012). Since leukocytes, including macro-
phages, can express β-endorphin and enkephalins, it is impor-
tant to consider the potential influence of leukocyte-derived
endogenous opioid peptides in neuroinflammation (Rittner
et al. 2001). Granulocytes express about 10-fold higher levels
of β-endorphin, a preferential MOR and lower affinity KOR
endogenous ligand, than lymphocytes (Pallinger and Csaba
2008). Increases in β-endorphin expression by peripheral
blood mononuclear cells (PBMCs) (Gironi et al. 2000;
Gironi et al. 2003), coincide with inflammation and relapse
in multiple sclerosis. Moreover, increases in inflammatory
cytokines, such as interleukin-1β (IL-1β), have been demon-
strated to differentially increase the expression of
proenkephalin transcripts in primary astrocytes cultured from
different brain regions (Ruzicka and Akil 1997) and increase
IL-10-stimulated β-endorphin expression in cultured primary
microglia (Wu et al. 2017). Interestingly, OPRM1 mRNA

levels do not differ between HIV+ and HIV− subjects
(Yuferov et al. 2014).

PENKwas downregulated in brain samples from 446 PWH
compared to 67 HIV negative patients (Gelman et al. 2012).
The subjects with HIV also expressed higher levels of inter-
feron regulatory factor 1 (IRF1) transcripts. The idea that
higher opioid peptide expression levels are neuroprotective
has been supported in human studies and experimental animal
models (Solbrig and Koob 2004; Sarkisyan et al. 2015; Nam
et al. 2019) suggesting the reductions in PENK expression are
deleterious.

The effects of HIV Tat on expression levels of opioid peptide
and receptor levels depend on the individual CNS region in-
volved as well as levels of tat transgene expression (Fitting
et al. 2010b). For example, while PDYN mRNA levels were
significantly reduced in the hippocampus and striatum of Tat-
expressing mice, POMC was only significantly reduced by Tat
induction in the striatum and PENK mRNA levels in the hippo-
campus were affected by chronic (but not acute) Tat exposure
(Fitting et al. 2010b). Thus, HIV may alter the endogenous opi-
oid system by modifying the expression of opioid peptides and
their receptors in a brain- and cell-type specific manner. The
consequences of HIV-1-dependent alterations in the endogenous
opioid system to HAND are uncertain.

Questions Remaining – Future Directions

Modeling the Pharmacology of Opioid Self-
Administration

Opiate self-administration as seen with addiction can have differ-
ent CNS consequences than “steady-state” (e.g., continuous via a
pump or time-release drug implant) exposure to the same drug
(Kreek 1987, 2001; Kreek et al. 2002), and we predict the phar-
macokinetic differences in opiate exposure will markedly impact
neuroHIV progression. Differential effects based on “on-off” and
“steady-state” drug administration schedules have been reported
for the stress-responsive hypothalamic-pituitary-adrenal (HPA)
axis, the endogenous opioid system, and the dopamine system
(Kreek 1973; Kreek et al. 2002;George et al. 2012). Acute opiate
exposure typically activates the HPA axis, corticotropin releasing
factor, and peripheral steroidogenesis in a species-dependent
manner (Koob and Kreek 2007; Cleck and Blendy 2008).
Alternatively, chronic self-administration of short-acting opiates
suppresses diurnal cortisol rhythmicity (Facchinetti et al. 1984;
Vuong et al. 2010), while opiate withdrawal typically evokes
HPA activation (Culpepper-Morgan and Kreek 1997; Kreek
2007; Paris et al. 2020). The daily, repeated bouts of relative
withdrawal seen with opiate addiction cause sustained HPA ac-
tivation, stress (Koob andKreek 2007; Koob 2020), and immune
suppression (Eisenstein 2019). Importantly, maintenance therapy
with the long-acting drugmethadone achieves steady-dose opiate
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levels and normalization of the HPA axis (Kreek 1973). Further,
it is known that HIV infection significantly alters the HPA axis,
due to CNS toxicity and cytokine production (Costa et al. 2000;
George and Bhangoo 2013; Chrousos and Zapanti 2014).

Additionally, the nature of opiate exposure in the context of
neuroHIV needs to be considered as it may induce different
outcomes on neurotransmitter metabolism and gene expression.
Specifically, theNAc shell demonstratesmolecular and structural
changes associated with intravenous heroin self-administration
(Jacobs et al. 2005). Moreover, earlier studies have reported dif-
ferential alterations in the turnover rates of various neurotrans-
mitters for active versus passivemorphine administration, includ-
ing dopamine, serotonin, γ-aminobutyric acid (GABA), acetyl-
choline, aspartate, and glutamate during exposure to morphine
(Smith et al. 1982, 1984). The disruptions were noticed specifi-
cally in brain regions involved in reinforcement processes, in-
cluding the NAc, frontal cortex, and striatum, and encompassed
increased dopamine and norepinephrine levels and turnover,
which are central in opiate reward processes (Smith et al.
1982). Heroin abuse is known to downregulate dopaminergic
activity in the NAc and may reflect a compensatory reduction
in of dopamine biosynthesis in response to excessive dopaminer-
gic stimulation resulting from chronic opiate exposure (Kish
et al. 2001). Additionally, HIV is known to interfere with dopa-
mine neurotransmission (Nath et al. 2000b; Gaskill et al. 2017)
causing reductions in presynaptic dopamine terminals and dopa-
mine transport in the striatum (Wang et al. 2004; Chang et al.
2008; Midde et al. 2012, 2015). The decline in dopamine func-
tion may exacerbate opioid abuse tendencies and drug-seeking
behaviors as the rewarding effects of opioids are discounted by
neuroHIV.

Opioid Substitution Therapies and the Role of
Selective/Biased Agonism in neuroHIV Pathogenesis

Although morphine, methadone, and buprenorphine all activate
MOR, each can impart different signals throughMOR, related to
the nature and timing of their coupling to Gα, Gβγ, β-arrestin
and/or regulators of G protein signaling (RGS), since each down-
stream effector couples into unique cell functions. Functional
selectivity occurs at each opioid receptor type, and for most
endogenous opioid peptides at all three receptor types (Gomes
et al. 2020). Moreover, opioid receptors can be expressed on a
subset of virtually every cell type in the CNS—with second
messenger coupling to each opioid receptor type potentially be-
ing unique, cell-type specific, and context dependent. Thus, the
“pluridimensional” (Galandrin and Bouvier 2006; Kenakin
2011; Costa-Neto et al. 2016) actions of any opiate at MOR
are sufficiently complicated that it is not possible to predict
whether, e.g., morphine, methadone or buprenorphine, would
similarly effect any aspect of neuroHIV pathology without em-
pirical testing. Despite their significant use asmedication-assisted
therapies for treating opioid addiction, few studies have directly

compared commonly used opiate substitution therapies (Bell and
Strang 2020), especially in relation to HIV (Khalsa et al. 2006;
Choi et al. 2020).

Opioid substitution therapies significantly reduce the frequen-
cy of injection drug use (Kwiatkowski and Booth 2001; Pettes
et al. 2010), decrease HIV transmission risk (MacArthur et al.
2012; Platt et al. 2016), and reduce drug-related mortality
(Mathers et al. 2013) and the risk of opioid overdose (Volkow
et al. 2014). Further, improved ARV outcomes among PWH
have been reported with opioid substitution therapies, including
the uptake and retention on ARV, medication adherence rates,
and viral suppression (Low et al. 2016;Mukandavire et al. 2017).
The two main medications used for opioid substitution therapy
include methadone, a MOR full agonist, and buprenorphine, a
MOR partial agonist and partial antagonist of KOR (Noble and
Marie 2018). In comparison to methadone, buprenorphine has
been shown to have fewer pharmacodynamic interactions with
ARVs and causes less opioid withdrawal symptoms potentially
due to its partial agonism on MOR, but also due to its high
affinity and long duration of MOR binding (Walsh et al. 1994;
McCance-Katz 2005; Whelan and Remski 2012). Further, dif-
ferential proinflammatory and neurotoxic effects have been noted
for various opioid treatments (Boland et al. 2014; Fitting et al.
2014b; Carvallo et al. 2015; Dutta and Roy 2015). In primary
astrocytes, agonist-selective actions at MOR and KOR can be
clearly demonstrated (Bohn et al. 2000; Belcheva et al. 2003;
McLennan et al. 2008; Hahn et al. 2010), and we found that
morphine, methadone, and buprenorphine differentially increase
ROS and [Ca2+]i alone or following Tat co-exposure (Fitting
et al. 2014b). Morphine can enhance HIV-1-induced production
of cytokines and specifically chemokines (El-Hage et al. 2008a;
Dave 2012; El-Hage et al. 2014), while other opioids including
methadone, oxycodone, buprenorphine, and DAMGO can de-
crease inflammatory function and decrease monocyte migration
(Boland et al. 2014; Carvallo et al. 2015; Jaureguiberry-Bravo
et al. 2016; Chilunda et al. 2019).

As most opiate drugs preferentially act via MOR, a potential
explanation for differential interactive effects of opioids in the
context of neuroHIV is the phenomenon of selective or “biased
agonism”, such that different agonists can trigger distinct signal-
ing events at the same receptor (Hauser et al. 2012). For example,
coupling of MOR to Gα, Gβγ, and/or β-arrestin have been
noted to differ depending on the MOR agonists involved
(McPherson et al. 2010; Thompson et al. 2015; Burgueno et al.
2017). Physiologic outcomes of MOR activation in any cell type
are determined by a bias for specific signaling pathways, the
initial step of which is activation of G proteins and/or β-
arrestin (Williams et al. 2013b; Violin et al. 2014; Suomivuori
et al. 2020). The subcellular organization of GPCR signaling
transduced by heterotrimeric G proteins and β-arrestin has been
recently reviewed in detail (Eichel and von Zastrow 2018).

In the context of HIV, it has been shown that selective MOR
agonists such as endomorphin-1, but not DAMGO or morphine,
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significantly increase HIV-1 replication in infected microglia
(Peterson et al. 1999). This effect might be due to an apparent
bias of endomorphin-1 towards arrestin recruitment and receptor
phosphorylation, which was significantly correlated with
agonist-induced internalization of MOR (McPherson et al.
2010). It is suggested that ligands that display bias towards G
protein-mediated pathways and away from β-arrestin 2 recruit-
ment may have improved therapeutic profiles against the devel-
opment of tolerance and dependence/addiction (McPherson et al.
2010).

Opioid Effects on Antiretroviral Efficacy within the
CNS and Vice Versa

Opioid misuse has been linked to poor adherence to cART
(Jeevanjee et al. 2014). However, adherence to ARV therapy
improves after initiation of opioid substitution therapy (Nosyk
et al. 2015; Low et al. 2016; Adams et al. 2020). Although better
adherence can improve therapeutic outcomes in PWH, little in-
formation is currently available on the interaction between opi-
oids or opioid substitution therapies and cART specifically with-
in the CNS.

There are several known drug-drug interactions between opi-
oids and ARVs that affect systemic concentrations. The partial
opioid agonist, buprenorphine, is metabolized primarily by cyto-
chrome P450 (CYP) 3A4 and 2C8. Both buprenorphine and its
active metabolite, norbuprenorphine, are glucuronidated by
UDP-glucuronosyltransferase (UGT) 1A1 and then excreted in
bile. Several ARVs inhibit or induce these metabolic pathways.
However, not all interactions are clinically relevant. The boosted
protease inhibitor combination, atazanavir/ritonavir, inhibits
CYP 3A4 andUGT1A1, leading to increases in overall systemic
exposure of buprenorphine and norbuprenorphine and also re-
sults in symptoms of opioid excess, such as increased sedation
and impaired cognition (McCance-Katz et al. 2007). Dose ad-
justments of buprenorphine are recommended when initiating
therapy with atazanavir to avoid symptoms of opioid excess.
Methadone is a full opioid substrate with multiple metabolic
pathways, including CYP 3A4, 2B6, 2C19, 2C9, and 2D6.
Several pharmacokinetic interactions are reported between meth-
adone and protease inhibitors. However, withdrawal symptoms
are rare, and therefore, dose adjustments are not recommended
(Bruce et al. 2006; Meemken et al. 2015). In contrast, efavirenz
and nevirapine induce CYP 3A4, resulting in decreased systemic
concentrations of methadone and the development of opioid
withdrawal symptoms. To avoid opioid withdrawal, increased
methadone dosing is recommended when either efavirenz or
nevirapine therapy is initiated (Marzolini et al. 2000; Clarke
et al. 2001; Meemken et al. 2015). Oxycodone metabolism is
inhibited by lopinavir/ritonavir, increasing oxycodone concentra-
tions as well as the self-reported drug effects (Nieminen et al.
2010; Feng et al. 2017).

The pharmacokinetic studies above focused on overall sys-
temic exposure of drugs. Plasma concentrations, however, are
not always accurate indicators of tissue exposure. Similarly,
CNS drug exposure is often estimated based on drug concentra-
tions within the CSF. However, CSF drug levels may not accu-
rately predict brain concentrations. For many drugs with high
efflux activities (e.g., substrates of P-gp), CSF tends to over-
predict brain tissue concentrations (Liu et al. 2006; Friden et al.
2009; Kodaira et al. 2011, 2014). This could be due, in part, to
differential expression of transporters at the blood-CSF barrier
vs. BBB. In a study of the ARV drug amprenavir, concentrations
of [14C]-amprenavir in CSF versus brain were 23.3 ± 11.2 and
3.33 ± 0.6 nCi/g, respectively, demonstrating overprediction of
brain concentrations by CSF (Polli et al. 1999). These studies
illustrate the high likelihood of misinterpreting drug brain pene-
trationwhen usingCSF as the surrogatemarker. Therefore, direct
measurement of brain tissue concentrations in animal models are
likely to be more predictive of the interactive effects of ARVs
and opioids on ARV and/or opioid brain exposure.

A few studies have investigated the impact of opioids and
ARV administration on drug concentrations within the brain.
One study investigated the impact of 5 d continuous exposure
to morphine on ARV brain concentrations (dolutegravir,
lamivudine and abacavir) and demonstrated that morphine expo-
sure resulted in regionally specific decreases in the concentra-
tions of select ARV drugs (Leibrand et al. 2019) and, further-
more, that the decreases in ARV concentrations (dolutegravir
and abacavir) were likely due to increased efflux by the drug
efflux transport protein, P-gp (Leibrand et al. 2019). Morphine
alterations in P-gp within the brain could have wide reaching
impact on other CNS active drugs.

HIV preferentially infects microglia and perivascular mac-
rophages within the brain, although BMECs, astrocytes, and
pericytes can also be infected (Kramer-Hammerle et al. 2005).
Achieving optimal intracellular ARV concentrations are essen-
tial to suppress the infection. Few studies have examined
whether ARV drugs differentially accumulate within different
neural cell types and especially within cells of the neurovascular
unit. Although nucleoside reverse transcriptase inhibitors
(NRTIs) and non-nucleoside reverse transcriptase inhibitors
(NNRTIs) are efficacious in inhibiting viral replication within
monocyte-derived macrophages, only a few drugs within each
ARV class can effectively inhibit viral replication within astro-
cytes (Gray et al. 2013), which could be a result of poor intra-
cellular accumulation within astrocytes. In vitro studies have
demonstrated darunavir and raltegravir intracellular concentra-
tions to be approximately 100-fold lower (with higher EC50

values) in microglia than in PBMCs (Asahchop et al. 2017).
Another study measured intracellular concentrations of

dolutegravir, tenofovir and emtricitabine in primary human as-
trocytes, microglia, pericytes and BMECs (Patel et al. 2019).
Intracellular ARV concentrations were typically significantly
higher in BMECs than in the other brain cell types.
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Dolutegravir achieved the highest relative concentrations within
each cell type, whereas tenofovir accumulated the least (Patel
et al. 2019). Furthermore, 24 h treatment with morphine signif-
icantly decreased intracellular accumulation of composite ARV
concentrations, but only in astrocytes. In contrast, morphine ex-
posure significantly increased the net accumulation of drugs
within BMECs compared to controls. BMECs may sequester
ARV drugs as a protective mechanism (Patel et al. 2019).

Using experimental data from SIV-infected, morphine-
addicted macaques, mathematical modeling suggests that mor-
phine exposure increases the proportion of cells with high sus-
ceptibility to SIV infection, at least in part, because of increased
co-receptor expression (Vaidya et al. 2016). In addition to pro-
moting a higher steady state viral loads and larger CD4 count
declines, the model also predicts that morphine exposure results
in the need for more efficacious ARV treatment than would be
necessary for animals not exposed to morphine (Vaidya et al.
2016). Although the direct impact of morphine on ARV concen-
trations was not investigated, the study provides evidence
supporting morphine’s negative impact on ARV efficacy.
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