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Abstract Recent studies aimed at elucidating the mecha-
nism controlling HIV-1 transcription have led to the
identification and characterization of two multi-subunit
complexes that both contain P-TEFb, a human transcription
elongation factor and co-factor for activation of HIV-1 gene
expression by the viral Tat protein. The first complex,
termed the 7SK snRNP, acts as a reservoir where active P-
TEFb can be withdrawn by Tat to stimulate HIV-1
transcription. The second complex, termed the super
elongation complex (SEC), represents the form of P-TEFb
delivered by Tat to the paused RNA polymerase II at the
viral long terminal repeat during Tat transactivation.
Besides P-TEFb, SEC also contains other elongation
factors/co-activators, and they cooperatively stimulate
HIV-1 transcription. Recent data also indicate SEC as a
target for the mixed lineage leukemia (MLL) protein to
promote the expression of MLL target genes and leukemo-
genesis. Given their roles in HIV-1/AIDS and cancer,
further characterization of 7SK snRNP and SEC will help
develop strategies to suppress aberrant transcriptional
elongation caused by uncontrolled P-TEFb activation. As
both complexes are also important for normal cellular gene
expression, studying their structures and functions will
elucidate the mechanisms that control metazoan transcrip-
tional elongation in general.
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Transcriptional elongation as a major gene expression
control point

Transcription by RNA polymerase II (RNAPII) can be
subdivided into multiple stages, of which the initiation and
elongation stages are considered the two primary targets for
controlling eukaryotic gene expression (Kuras and Struhl
1999; Saunders et al. 2006; Core and Lis 2008). However,
during most of the past three decades, attention of the
transcription field had been largely focused on the initiation
stage, as the recruitment of RNAPII to a few model gene
promoters was found to be the major rate-limiting step for
their transcription (Kuras and Struhl 1999; Ptashne 2005).
In comparison, transcriptional control at the elongation
stage had been generally neglected and viewed as a
mechanism that is used by only a few selected genes and
under highly specialized conditions.

A major paradigm shift in the transcription field
occurred in 2007 when global analyses conducted in both
Drosophila and human stem cells revealed that a large
number of genes that often play important roles in
controlling cell growth, renewal, and differentiation have
paused RNAPII at their promoter-proximal regions even
under resting, un-stimulated conditions (Guenther et al.
2007; Muse et al. 2007). For these genes, transcriptional
activation does not involve the recruitment of RNAPII and
setting up a pre-initiation complex at the promoters, which
can be very time-consuming. Rather, the transition of
RNAPII from its promoter-proximal paused state into
highly productive elongation mode is the defining
moment of their activation. Because these genes are
already in a state of suspended transcription prior to
activation, the subsequent induction of RNAPII elonga-
tion can proceed very rapidly, thus allowing highly
sensitive and synchronous response that is essential for
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cell growth and developmental control. The widespread
existence of paused RNAPII in metazoan genomes
suggests that transcriptional elongation plays a much
more prominent and general role in regulating gene
expression than previously appreciated.

Tat activation of HIV-1 transcriptional elongation

The detection of promoter-proximal pausing of RNAPII at
many gene promoters was indeed a major breakthrough in
the transcription field at large. However, to those who had
been studying HIV-1 gene expression control, the discovery
came as no great surprise. Prior to the recognition of the
general importance of elongation control, HIV-1 tran-
scription had long been known to be regulated exqui-
sitely at the elongation stage (Kao et al. 1987). In fact,
HIV-1 had been used as a favored model system to study
this phenomenon. As such, our understanding of elonga-
tion control has benefited greatly from studies of HIV-1
and its activation by a combination of viral and host
transcription factors.

Unlike simpler retroviruses that rely almost exclusively
on the host cellular machinery for replication, lentiviruses,
of which HIV-1 is a prime example, encode additional
accessory proteins that further control the viral life cycle.
The transcriptional transactivator (Tat) is one such key
accessory protein encoded by HIV-1. During active
infection, Tat is expressed early after the proviral DNA
integrates into the host genome. Without Tat, RNAPII has
been found to clear the HIV-1 long terminal repeat (LTR)
successfully but soon pause, producing only short viral
transcripts (Kao et al. 1987). Ample evidence indicates that
Tat does not act alone and must cooperate with host cellular
co-factors to activate HIV-1 transcription. After many years of
effort aimed at elucidating the mechanism of Tat trans-
activation, the late 1990s finally saw the identification of the
human positive transcription elongation factor b (P-TEFb) as
a specific and essential human co-factor for Tat function
(Mancebo et al. 1997; Zhu et al. 1997; Wei et al. 1998).

Consisting of the cyclin-dependent kinase 9 (CDK9) and
its regulatory partner cyclin T1 (CycT1; other minor
cyclin forms also exist but do not interact with Tat), P-
TEFb is recruited to the HIV-1 LTR through interacting
with Tat and the transactivation response (TAR) element,
an RNA stem-loop structure formed by the nascent 5′
end of viral transcripts that are synthesized before
RNAPII pauses (for reviews, see Peterlin and Price
2006; Zhou and Yik 2006). Once positioned next to the
paused polymerase, the CDK9 kinase phosphorylates its
primary substrates, the C-terminal domain (CTD) of the
largest subunit of RNAPII and a pair of negative transcription
elongation factors, DSIF and NELF. These phosphorylation

events antagonize the actions of the negative elongation
factors and release RNAPII from promoter-proximal pausing,
leading to the production of full-length viral transcripts
(Peterlin and Price 2006; Zhou and Yik 2006).

Cellular control of P-TEFb activity

P-TEFb is not a transcription elongation factor made just
for HIV-1. Rather, its activity is also important for the
expression of a vast majority of cellular genes in uninfected
cells (Chao and Price 2001). Recent whole genome
analyses have shown that inhibiting P-TEFb activity
prevents the release of paused RNAPII at most active gene
loci in embryonic stem cells (Rahl et al. 2010), again
underlining P-TEFb’s general role in transcription.

Given the importance of transcriptional elongation in
controlling both HIV-1 and cellular gene expression and a
key role for P-TEFb in this process, one can expect that the
activity of P-TEFb is tightly regulated in the cell in order to
optimally address the transcriptional needs of both the virus
and its host. Indeed, P-TEFb has been shown to interact
with a variety of protein and RNA regulators, and these
interactions dynamically modulate the level of active P-
TEFb available for HIV-1 and cellular gene expression
(Fig. 1; Zhou and Yik 2006). For example, under normal
growth conditions, more than half of the P-TEFb popula-
tion in the HeLa nucleus are sequestered in a catalytically
inactive complex termed the 7SK snRNP that also contains
the 7SK snRNA and nuclear proteins HEXIM1 (or the
homologous HEXIM2), LARP7, and MePCE (Fig. 1;
Nguyen et al. 2001; Yang et al. 2001; Yik et al. 2003;
Jeronimo et al. 2007; He et al. 2008). Within this complex,
7SK, an evolutionally conserved snRNA transcribed by
RNA polymerase III, is protected against exonuclease
cleavage by the actions of MePCE, the 7SK methylphos-
phate capping enzyme, as well as LARP7, a La-related
protein associated with the 3’-poly(U) track of 7SK
(Jeronimo et al. 2007; He et al. 2008; Xue et al. 2010). In
return, 7SK functions as a molecular scaffold to maintain
the integrity of 7SK snRNP, which sequesters P-TEFb and
allows the CDK9 kinase activity to be inhibited by
HEXIM1/2 in a 7SK-dependent manner (Fig. 1; Yik et al.
2003; Michels et al. 2004).

The nuclear level of 7SK snRNP undergoes dynamic
changes under a variety of conditions that globally affect
cell growth and differentiation (Fig. 1). For example, the
exposure of cardiac myocytes to hypertrophic signals
triggers the release of P-TEFb from 7SK snRNP, leading
to an overall increase in cellular protein and RNA contents
and hypertrophic growth (Sano et al. 2002; Huang et al.
2004). Moreover, co-stimulating Jurkat T cells with anti-
CD3/anti-CD28 antibodies to activate the T cell receptor
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(TCR) pathway also results in the disruption of 7SK snRNP
and liberation of P-TEFb (Natarajan et al. 2010). When
cells are treated with stress-inducing agents such as DNA-
damaging agents actinomycin D and UV irradiation, and
the kinase inhibitors DRB (5,6-dichloro-1-β-D-ribofurano-
sylbenzimidazole), flavopiridol, staurosporine, and H7
(1-(5-isoquinolinesulfonyl)-2-methylpiperazine), P-TEFb
has also been found to dissociate from 7SK snRNP to
mediate the stress-induced HIV-1 and cellular gene expres-
sion (Nguyen et al. 2001; Yang et al. 2001; Chen et al.
2004; Biglione et al. 2007). Finally, the 7SK snRNP level
in murine erythroleukemia cells (MELC) shows a biphasic
response upon the exposure to hexamethylene bisacetamide
(HMBA; He et al. 2006), an inducer of MELC differenti-
ation. During the initial 1–2 h, HMBA induces a transient
disruption of 7SK snRNP, which is then followed by a
permanent increase in the levels of HEXIM1 and 7SK
snRNP after a prolonged treatment (He et al. 2006). Taken
together, all these observations are consistent with the
notion that the 7SK snRNP serves as a reservoir, from
which active P-TEFb can be withdrawn in response to
increased demands for elevated gene expression during
active cell growth and response to environmental changes/
stress (Zhou and Yik 2006).

Brd4 recruitment of P-TEFb for general transcription
but not Tat transactivation

Once P-TEFb is released from the 7SK snRNP, it often
finds its way into another complex that is characterized by
the presence of the bromodomain protein Brd4 (Fig. 1; Jang
et al. 2005; Yang et al. 2005). Brd4 is a ubiquitously
expressed nuclear protein belonging to the bromodomain
and ET domain family of proteins that contain two N-
terminal tandem bromodomains and an extraterminal
domain (Jeanmougin et al. 1997; Dey et al. 2000). While
the motif located near the C terminus of Brd4 has been
shown to be responsible for binding to P-TEFb (Bisgrove et
al. 2007), the two bromodomains residing in the N-terminal
region of Brd4 are involved in the interaction with the
acetylated tails of histone H3 and H4 (Dey et al. 2003).
Notably, the association of Brd4 with acetylated chromatin
can persist through mitosis (Dey et al. 2000; Dey et al.
2003; Yang et al. 2008). These properties enable Brd4 to
recruit P-TEFb to a chromatin template, beginning around
mid- to late anaphase and before nuclear envelope/lamina
formation and nuclear import of other general transcription
factors (Yang et al. 2008). This leads to activation of the
expression of P-TEFb-dependent genes in the early G1 phase

Fig. 1 The 7SK snRNP is a reservoir of nuclear P-TEFb that can be
withdrawn for activated transcription in response to HIV-1 infection,
stress and other growth-stimulating signals. In the nucleus, a major
portion of P-TEFb is sequestered in the 7SK snRNP, where the
integrity of 7SK snRNA is maintained by MePCE and LARP7 and P-
TEFb’s kinase activity is inhibited by HEXIM1 in a 7SK-dependent
manner. Under a number of conditions including HIV-1 infection,
certain stress treatments, exposure of cardiac myocytes to hypertrophic
signals and activation of TCR in T cells, 7SK snRNP is disrupted to
release P-TEFb for transactivation of P-TEFb-dependent genes. When
P-TEFb is released during HIV-1 infection, it joins the viral Tat

protein and several other host cellular proteins whose identification
and characterization will be discussed below. Under other conditions
that disrupt the 7SK snRNP, P-TEFb is picked up by Brd4 and
delivered to a chromatin template to stimulate general transcriptional
elongation. Contrary to those stress and growth-promoting signals,
treating murine erythroleukemia cells with the differentiation-inducer
HMBA shifts the P-TEFb equilibrium to the HEXIM1/7SK-bound
state. A low level of 7SK snRNP has also been detected on the HIV-1
LTR under basal, un-stimulated conditions although its physiological
significance is yet-to-be determined
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of the cell cycle (Mochizuki et al. 2008; Yang et al. 2008).
As such, Brd4 has been proposed to play a key role in
transmitting epigenetic memory across cell division (Dey et
al. 2003; Loyola and Almouzni 2004).

The recruitment of P-TEFb by Brd4 is likely to be
important for general transcriptional elongation of both
cellular and viral genes including basal, Tat-independent
HIV-1 transcription (Fig. 1; Jang et al. 2005; Yang et al.
2005; Hargreaves et al. 2009). However, a number of
sequence-specific transcriptional activators (e.g., HIV-1 Tat,
NF-κB, Myc, CIITA, etc.) have been shown to interact with
P-TEFb (Barboric et al. 2001; Eberhardy and Farnham
2001; Kanazawa et al. 2003; Kanazawa et al. 2000), and
they could potentially bypass the requirement for Brd4 and
deliver P-TEFb directly to their respective target genes
(Zhou and Yik 2006). An excellent example to illustrate
this point is provided by HIV-1 Tat. Evidence has been
presented to show that the recruitments of P-TEFb by Tat
and Brd4 are two mutually exclusive events that cannot
occur at the same time (Yang et al. 2005; Bisgrove et al.
2007). In fact, Brd4 interferes with Tat transactivation as it
competes with Tat for binding to P-TEFb (Yang et al.
2005). Furthermore, it has been shown that overexpression
of the P-TEFb-interacting domain located at the C terminus
of Brd4 disrupts the Tat-P-TEFb interaction and inhibits Tat
transactivation and TNF-α-induced reactivation of latent
HIV-1 (Bisgrove et al. 2007).

Where does Tat get its P-TEFb?

The demonstrations that a major source of nuclear P-TEFb
exists in the 7SK snRNP raise the questions of where
exactly Tat obtains its P-TEFb. The answer to this question
has come from several independent studies all showing that
Tat triggers the release of P-TEFb from 7SK snRNP in vitro
and in vivo (Fig. 1; Schulte et al. 2005; Barboric et al.
2007; Sedore et al. 2007). Consistently, primary blood
lymphocytes display a reduced amount of nuclear 7SK
snRNP upon HIV-1 infection (Barboric et al. 2007). The
existence of multiple structural and sequence similarities
between the two P-TEFb-containing ribonucleoprotein
(RNP) complexes, with one containing the HIV-1 TAR
RNA and the other the cellular 7SK snRNA, likely
contributed to this phenomenon (Zhou and Yik 2006).

However, the exact mechanism used by Tat to extract P-
TEFb from 7SK snRNP remains controversial. Several
published studies show that this ability of Tat depends on
the integrity of its N-terminal activation domain and stems
from the high affinity interaction between Tat and CycT1,
which allows Tat to directly displace HEXIM1 from CycT1
(Schulte et al. 2005; Barboric et al. 2007; Sedore et al. 2007;
Krueger et al. 2010). Once P-TEFb leaves the complex, a

conformational change in 7SK blocks re-association of
HEXIM1 (Krueger et al. 2010).

Revealing a different mechanism used by Tat to capture
P-TEFb from the 7SK snRNP, a recent study implicates the
Arginine-rich TAR-binding domain of Tat as critical in
this process (Muniz et al. 2010). Tat is shown to use this
domain to interact with a portion of the 7SK snRNA,
which is normally contacted by HEXIM1 but structurally
similar to the Tat-binding site of HIV-1 TAR, and cause
the release of P-TEFb (Muniz et al. 2010). What remains
to be seen from this study is how the observed Tat-7SK
interaction will eventually be turned into the Tat/TAR/P-
TEFb-containing complex that is necessary for Tat trans-
activation.

Another possible mechanism by which Tat extracts P-
TEFb from 7SK snRNP involves the use of protein
phosphatase 1 (PP1). This enzyme has been demonstrated to
play a key role in stress-induced disruption of 7SK snRNP
through dephosphorylating Threonine186 located at the tip of
the CDK9 T-loop (Chen et al. 2008). Interestingly, Tat has
been shown to bind PP1 directly (Ammosova et al. 2005),
which can presumably deliver the enzyme to the 7SK
snRNP to induce the latter’s disruption. Consistent with this
notion, inhibition of PP1 in cultured cells is reported to block
Tat activation of HIV-1 transcription and replication, and at
the same time, increase the nuclear 7SK snRNP level
(Ammosova et al. 2011). Since the engagement of PP1 by
Tat will likely lead to the release of P-TEFb with the
dephosphorylated CDK9 T-loop and thus catalytically
inactive, it is postulated that there must be a subsequent,
yet-to-be defined re-phosphorylation step to return P-TEFb
to its active state prior to its contribution to Tat activation of
HIV-1 transcription (Chen et al. 2008).

In addition to investigating the mechanisms of Tat
disruption of 7SK snRNP, recent efforts have also been
focused on determining the subnuclear location where this
event takes place. In binding studies conducted in vitro,
HEXIM1 has been shown to bind to the HIV-1 TAR RNA
and inhibit P-TEFb kinase activity (Sedore et al. 2007),
implicating a possible association of the 7SK snRNP with
the LTR through TAR. Using the chromatin immunopre-
cipitation assay, another study also detects the association
of 7SK snRNP with the pre-initiation complex formed on
the HIV-1 LTR (D'Orso and Frankel 2010). However, this
association is shown to proceed in the absence of TAR
RNA, and the synthesis of TAR actually triggers the release
of P-TEFb for activated HIV-1 transcription (D'Orso and
Frankel 2010). Although it is quite clear that 7SK snRNP
can indeed be found on the LTR during basal transcrip-
tion (as indicated on the ΔTAR template), its level
appears to be very low and cannot fully account for the
high P-TEFb level detected on the LTR upon Tat
activation (D'Orso and Frankel 2010), suggesting that the
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bulk of P-TEFb required for activated transcription may
come from a different route.

Obviously, more studies are needed to fully understand
the physiological significance of the association of 7SK
snRNP with the HIV-1 LTR (Fig. 1) and determine exactly
how and where the complex is targeted by Tat. Neverthe-
less, it is abundantly clear from the published data that Tat
has the ability to not only recruit P-TEFb to the LTR but
also increase the pool of functional P-TEFb for HIV-1
transcription through actively extracting P-TEFb from the
7SK snRNP.

Tat promotes the formation of a novel P-TEFb-
containing complex and recruits it to the HIV-1 LTR

Once P-TEFb is released from the 7SK snRNP, it had not
been clear whether it joins Tat on the HIV-1 LTR all by
itself or together with other yet-to-be identified factors
(Fig. 1). To address this question, a tandem affinity-
purification approach employing anti-Flag and then anti-HA
beads was used to purify the complex that contains both HA-
tagged Tat and Flag-tagged CDK9 (Fig. 2; He et al. 2010).
Although numerous cellular factors that can bind to either

Tat or P-TEFb separately had been identified in the past, this
was the first attempt to specifically isolate factors that are
integral components of a complex(es) that contains both
proteins (Fig. 2). Analyses of the purified materials by mass
spectrometry reveal that in addition to Tat, CDK9 and
CycT1, the Tat-P-TEFb complex also contains ELL2, AFF4,
ENL, and AF9 (He et al. 2010). Importantly, the binding of
these factors to Tat and P-TEFb has also been independently
confirmed by Sobhian et al. (2010). Through directly
isolating the Tat-associated proteins, the latter study has also
identified several additional proteins (Sobhian et al. 2010).
However, CDK9, CycT1, ELL2, AFF4, ENL and AF9
are likely the core subunits of a single multi-component
complex now called the super elongation complex (SEC; He
et al. 2010; Lin et al. 2010; Sobhian et al. 2010).

Like P-TEFb, the SEC subunit ELL2 is a well-
characterized elongation factor and a member of the ELL
family of transcription factors (Shilatifard et al. 1997).
Employing a mechanism different from that of P-TEFb,
ELL2 stimulates elongation by increasing the catalytic rate
and suppressing transient pausing of RNAPII (Shilatifard et
al. 1996). AFF4, another SEC subunit, is a member of the
AF4 family of transcription factors/co-activators. It is also
recognized as a fusion partner of the mixed lineage

Fig. 2 Tandem affinity-purification of SEC. Left, the HEX293-based
TTAC cell line that stably expresses CDK9-Flag (CDK9-F) and
conditionally expressing Tat-HA upon the induction by doxycycline
from transduced retroviral vectors has been established. CDK9-F and
Tat-HA interact with their natural partners to form various complexes
in the nucleus, and the one containing both proteins is the target of
purification. Right, in the first step of purification, nuclear extract
prepared from TTAC cells is incubated with the anti-Flag monoclonal

antibody (mAb) beads, which specifically attract CDK9-F and its
associated factors. After extensive washes, CDK9-F and its associated
factors are eluted off the beads with a buffer containing synthetic Flag
peptide. In the second step, the materials derived from the first step are
subjected to further purification with the anti-HA beads to yield the
purified SEC complex containing both CDK9-F and Tat-HA and other
associated factors
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leukemia (MLL) protein that causes infant acute lympho-
blastic leukemia (Taki et al. 1999). Just like AFF4, the other
two core SEC subunits ENL and AF9 are also fusion
partners of MLL and involved in MLL-associated leukemia
(Harper and Aplan 2008). Although AFF4, ENL, and AF9
have previously been reported to interact with P-TEFb and
each other (Estable et al. 2002; Mueller et al. 2007; Mueller
et al. 2009), this is the first time that they are specifically
linked to HIV-1 Tat.

The association of Tat with SEC has been shown to
serve two complementary purposes (Fig. 3). Firstly, Tat can
recruit SEC that contains at least two well-established
elongation factors of different classes to the viral LTR. This
allows P-TEFb and ELL2 to act simultaneously on the
same polymerase enzyme in a cooperative manner, which is
most likely responsible for the powerful elongation activity
attributed to Tat. Secondly, Tat has been shown to markedly
promote SEC formation. ELL2 turns out to be a short-lived
protein that is rapidly degraded by the proteasome (He et al.
2010). However, its stability can be greatly enhanced by the
presence of Tat in a process that likely requires the CDK9
kinase activity (He et al. 2010). Tat-mediated ELL2
stabilization and accumulation in the cell allows more
ELL2 to be sequestered into SEC, thus promoting SEC
formation and SEC-dependent HIV-1 transcription.

Tat-independent formation and function of SEC

Just like P-TEFb, SEC does not exist exclusively for Tat
transactivation. Besides being recruited by Tat for activated
HIV-1 transcription, SEC is also targeted by MLL fusion
proteins to induce aggressive acute leukemias in both children
and adults (Mueller et al. 2009; Lin et al. 2010; Yokoyama et
al. 2010). It is known that chromosomal translocations of the
MLL gene and its partners can give rise to fusion proteins
that cause misregulated expression of MLL target genes (e.g.,
the HOX genes) and uncontrolled proliferation of hemato-
poietic progenitors (Ayton and Cleary 2003; Cozzio et al.
2003). At least three subunits of SEC, namely AFF4, ENL,
and AF9, are known as fusion partners of MLL (Slany 2009).
When fused to the DNA-binding domain of MLL, these
proteins have been demonstrated to deliver SEC and its
powerful elongation stimulatory activity to the MLL target
genes to promote leukemic transformation (Mueller et al.
2009; Lin et al. 2010; Yokoyama et al. 2010).

Not only is SEC essential for disease-associated transcrip-
tional elongation mediated by Tat and MLL fusions, it also
appears to be essential for normal transcriptional elongation of
cellular genes (He et al. 2010; Lin et al. 2010; Sobhian et al.
2010). In cells that are free of HIV-1 infection and MLL-
translocations, SEC can be detected readily (He et al. 2010).
Under such conditions, the formation of SEC relies on AFF4,
which functions as a scaffold to mediate the interactions of P-
TEFb with the rest of SEC (He et al. 2010; Yokoyama et al.
2010). Moreover, AFF4 behaves like Tat to increase the half-
life of ELL2, which in turn promotes ELL2’s incorporation
into and formation of SEC (He et al. 2010).

Our recent unpublished data indicate that ENL and AF9, the
two highly homologous core subunits of SEC, in fact exist in
separate SECs that display similar but non-identical functions.
In the absence of sequence-specific recruitment factors such as
Tat and MLL, the evolutionarily conserved YEATS domain of
ENL/AF9 targets SEC to chromatin by contacting the
polymerase-associated factor complex (PAFc), and through
PAFc, the paused Pol II. This explains why this domain is
dispensable for leukemogenesis when ENL/AF9 is translocated
to MLL (Slany et al. 1998; Yokoyama et al. 2010) whose
DNA-binding activity likely substitutes for the chromatin-
targeting function of the YEATS domain. Finally, contrary to
popular belief, the histone lysine79 methyltransferase Dot1L,
which is a well-known binding partner of ENL and AF9,
competes with AFF4 for binding to ENL/AF9 and thus does
not reside in SEC and also is unnecessary for SEC function.

SEC, 7SK snRNP, and the activation of HIV-1 latency

Latent reservoirs of HIV are the principal impediment to
eradication of infection because they harbor integrated,

Fig. 3 Tat recruits SEC that contains two distinct classes of
elongation factors to the HIV-1 LTR to synergistically activate viral
transcription by RNAPII. Soon after transcription begins at the HIV-1
promoter, the progression of RNAPII is blocked by the concerted
actions of negative elongation factors DSIF and NELF. This results in
the production of a short RNA transcript that folds into a stem-loop
structure called TAR. For RNAPII to escape from promoter-proximal
pausing, the HIV-1 encoded Tat protein binds to the host cellular SEC
complex that contains P-TEFb and ELL2, two well-known elongation
factors of different classes, and transcriptional co-activators AFF4 and
ENL or AF9. Tat then delivers SEC to the paused RNAPII through
forming a stable complex on TAR RNA. Subsequently, while P-TEFb
phosphorylates the RNAPII CTD as well as the negative elongation
factors DSIF and NELF, ELL2 directly stimulates the catalytic rate of
the same polymerase. This results in the synergistic activation of HIV-
1 elongation and the production of full-length viral transcripts
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transcriptionally silent proviruses that resume active
infection once therapy is disrupted. Methods are current-
ly being developed to rid of latent viral infection through
reactivating these reservoirs, which can then be cleared
by highly active antiretroviral therapy (HAART) and
specific anti-HIV immunotoxins or viral cytopathogenic-
ity (Margolis 2010; Trono et al. 2010). However, the most
commonly employed chemical activators of latency are
highly toxic and in need of major improvements to their
specificity and efficacy (Marsden and Zack 2009). Since
the repression of HIV-1 transcription plays a pivotal role
in establishing viral latency in CD4+ T cells (Lassen et al.
2004; Contreras et al. 2006), the best-characterized HIV-1
reservoir, a better understanding of the mechanism and
factors controlling HIV-1 transcription is crucial for the
development of specific and efficient ways to bypass
the requirement for the toxic activators and reactivate
HIV-1.

Since P-TEFb is not recruited to the HIV-1 LTR in
latently infected cells, this situation could potentially be
exploited to reactivate the latent virus. Consistent with
this idea, it has recently been shown that a restriction in
P-TEFb activity due to its sequestration in the inactive
7SK snRNP in resting T cells contributes to the
establishment of HIV-1 latency and can be overcome
by activation of the TCR, which releases P-TEFb (Tyagi
et al. 2010). Furthermore, HMBA and suberoylanilide
hydroxamic acid, two compounds capable of activating
latent HIV-1, have also been shown to release P-TEFb
from 7SK snRNP (He et al. 2006; Contreras et al. 2007;
Contreras et al. 2009), leading to the activation of viral
replication in latently infected cell lines as well as
primary T cells from HAART-treated patients (Vlach and
Pitha 1993; Klichko et al. 2006; Contreras et al. 2007;
Contreras et al. 2009).

The recent demonstration that the multi-subunit SEC
complex represents the form of P-TEFb that is involved
in both Tat-independent and Tat-dependent HIV-1 tran-
scription (He et al. 2010; Sobhian et al. 2010) suggests
the possibility of increasing the level and/or activity of
SEC to activate latent viruses. Toward this goal, our data
indicate that when the core SEC subunits ELL2 and AFF4
are co-expressed in a cell, ELL2 becomes stabilized and
accumulates to a high level. This results in the synergistic
and, more importantly, preferential activation of HIV-1
transcription to a level similar to that caused by HIV’s
own Tat protein (He et al. 2010). Since the activation of
latent HIV-1 must initially proceed in the absence of Tat,
the ability of co-expressed ELL2 and AFF4 to mimic the
Tat action underscores the importance to test the hypoth-
esis that co-expressing these two proteins could provide
an opportunity to activate viral replication in latently
infected T cells.

Summary and perspectives

Human P-TEFb was first identified in 1997 as a specific
host cellular co-factor for Tat activation of HIV-1 transcrip-
tion (Mancebo et al. 1997; Zhu et al. 1997; Wei et al. 1998).
Since then, this landmark discovery has provided the basic
framework for our understanding of Tat function in the
HIV-1 life cycle. Recently, the conventional view of HIV-1
gene expression control has been significantly expanded by
the demonstrations that Tat captures P-TEFb from the 7SK
snRNP, the major P-TEFb reservoir in the nucleus,
promotes the formation of a novel P-TEFb complex termed
SEC that also contains elongation factor ELL2 and several
other transcription factors/co-factors, and delivers SEC to
the paused RNAPII on the viral LTR (Fig. 3; He et al. 2010;
Sobhian et al. 2010). The ability to allow P-TEFb and
ELL2, representatives of two different classes of elongation
factors, to act on the same polymerase enzyme explains
why Tat is such a powerful transcriptional activator. These
findings have not only provided fresh mechanistic insights
into the control of HIV-1 gene expression but also revealed
new targets for the development of improved anti-viral
treatments as well as more specific and efficient therapeutic
strategies to eradicate the latent HIV-1 reservoirs.

Despite these progresses, there are still a number of
outstanding questions that remain to be answered. Firstly,
the structures and functions of both 7SK snRNP and SEC
await further characterization, which will enable us to better
understand how and where Tat captures P-TEFb from
7SK snRNP and also the precise mechanism by which
SEC stimulates HIV-1 and cellular transcriptional elon-
gation. Furthermore, the relationship among several
known P-TEFb-containing complexes requires further
clarification. For example, it is known that the recruit-
ment of P-TEFb by Brd4 occurs predominantly at the
promoter region and is important for general transcrip-
tional elongation (Jang et al. 2005; Yang et al. 2005).
Once recruited by Brd4, it is unclear how P-TEFb is
eventually converted to SEC that is believed to be the
form of P-TEFb actually engaged in elongation. In
addition, to determine how SEC contributes to transcrip-
tional elongation in general, it is imperative to perform
genome-wide analyses of the function and distribution of
SEC under both normal and disease conditions. Finally,
the investigation into the control of SEC formation and
stability may hold the key to the development of effective
strategies to reactivate latent HIV-1 and suppress the
progression of aggressive acute leukemias.
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