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Abstract
Despite decades of research demonstrating the effectiveness of treatments for heroin 
dependence, rates of heroin use, dependence, and death have dramatically increased over 
the past decade. While evidence has highlighted a range of risk and protective factors for 
relapse, remission, and other outcomes, this presents clinicians with the challenge as to 
how to synthesise and integrate the evolving evidence-base to guide clinical decision-mak-
ing and facilitate the provision of personalised healthcare. Using data from the 11-year 
follow-up of the Australian Treatment Outcome Study (ATOS), we aimed to develop 
a clinical risk prediction model to assist clinicians calculate the risk of a range of her-
oin-related outcomes at varying follow-up intervals for their clients based on known risk 
factors. Between 2001 and 2002, 615 people with heroin dependence were recruited as 
part of a prospective longitudinal cohort study. An ensemble machine learning approach 
was applied to predict risk of heroin use, remission, overdose, and mortality at 1-, 5-, and 
10 + year post-study entry. Variables most consistently ranked in the top 10 in terms of 
their level of importance across outcomes included age; age first got high, used heroin, or 
injected; sexual trauma; years of school completed; prison history; severe mental health 
disability; past month criminal involvement; and past month benzodiazepine use. This 
study provides clinically relevant information on key risk factors associated with heroin 
use, remission, non-fatal overdose, and mortality among people with heroin dependence, to 
help guide clinical decision-making in the selection and tailoring of interventions to ensure 
that the ‘right treatment’ is delivered to the ‘right person’ at the ‘right time’.
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Increasing heroin use is a major contributor to the global opioid crisis. Rates of heroin 
use, dependence, and death have grown dramatically over the past decade, and the bur-
den of disease associated with opioid use disorder is greater than any other illicit drug 
class (Degenhardt et al., 2013, 2019; National Institute on Drug Abuse, 2021). In the USA, 
national opioid-related deaths more than doubled between 2010 and 2019 (WONDER, 
2020) and more than 28% of overdose deaths in 2019 involved heroin (WONDER, 2021). 
While the prevalence of opioid-related incidents across Europe are comparatively lower 
than the USA, opioid-related deaths in Scotland surged between 2009 and 2018, exceeding 
those in the USA (29% vs. 14% in 2018), and 45% of drug-related deaths involved heroin 
(van Amsterdam et al., 2021). In Australia, opioids (including heroin) have been the lead-
ing cause of drug-related deaths for the past two decades (Australian Institute of Health & 
Welfare, 2021b). One in four drug-induced Australian deaths in 2019 was due to heroin; 
the highest since 1997 (Chrzanowska et al., 2021). This global trend has continued despite 
decades of research demonstrating the effectiveness of a range of treatments available 
for heroin dependence, supported by numerous high-quality randomised-controlled trials 
(RCTs) and naturalistic longitudinal studies (Degenhardt et  al., 2019; Hser et  al., 2015; 
Mattick et al. 2009a; Mattick et al., 2014).

Research has also revealed a range of risk and protective factors for relapse, remis-
sion, and other outcomes (Chen et al., 2019, 2020; Darke, 2011; Mattick et al. 2009b). For 
example, poorer treatment outcomes have been associated with more severe heroin use, 
more extensive polydrug use (Chen et  al., 2019; Darke et  al., 2007; Hser et  al., 1999), 
criminal involvement (Flynn et al., 2003; Strang et al., 2020), psychological distress, and 
poorer mental health (Hser, 2007; Schaar & Öjehagen, 2001; Strang et al., 2020). In con-
trast, ‘treatment readiness’ has been linked to improved client outcomes (Darke et  al., 
2005; Flynn et  al., 2003). Long-term stable treatment, across fewer treatment episodes, 
has been associated with improved outcomes, regardless of treatment modality (Flynn 
et al., 2003; Gossop et al., 1999; Teesson et al., 2015), with the exception of detoxifica-
tion. Due to its nature as a short-term intervention, detoxification is not associated with 
improved outcomes; on the contrary, repeated episodes of detoxification have been associ-
ated with poorer outcomes (Teesson et  al., 2015). As with other long-term, stable treat-
ment approaches, the evidence regarding residential rehabilitation demonstrates its efficacy 
across a range of outcomes (Darke et  al., 2006; de Andrade et  al., 2019; Gossop et  al., 
1999).

However, with the expansion in new knowledge comes the complex challenge for clini-
cians in how to synthesise and integrate the evolving evidence base to guide clinical deci-
sion-making in the provision of personalised healthcare—that is, the selection and tailoring 
of interventions to ensure that the ‘right treatment’ is delivered to the ‘right person’ at the 
‘right time’ (Bates, 2010; Primary Health Advisory Group 2016). There is a critical need 
for easy-to-use clinical tools that synthesise research evidence and provide clinically mean-
ingful information that can be applied in busy practice settings.

Delivering the right treatment to a client based on individual characteristics and per-
sonalised decision-making maximises the likelihood of positive outcomes and reduces 
the costs and negative side effects associated with using inappropriate treatments (Bates, 
2010). Personalised healthcare is based on a solid foundation of evidence-based clinical 
practice that acknowledges variability in patient response to treatments and seeks to incor-
porate client-specific factors as prognostic indicators (Bates, 2010). Prediction models sup-
port clinical decision-making by estimating the risk that a positive (or negative) outcome 
will occur within a designated timeframe, in a person with particular objective risk factors 
(Moons et  al., 2009). They are fundamental to guiding shared-decision-making between 
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clinicians and healthcare consumers (Moons et al., 2009; Steyerberg, 2019), in the selec-
tion of personalised, well-timed, and targeted interventions, care coordination, and referral.

The past two decades have seen rapid growth in the development and advancement in 
machine learning, with > 600 risk prediction models across medical fields including out-
comes related to cardiovascular disease (e.g., Damen et al., 2016), falls after stroke (e.g., 
Walsh et al., 2016), diabetes (e.g., Yang et al., 2021; Zhang et al., 2016), cancer (e.g., Lee 
et al., 2019; Usher-Smith et al., 2016), kidney injury (Wilson et al., 2016), and heart fail-
ure (e.g., Adler et al., 2020; Sahle et al., 2017). A small number of risk-prediction models 
have been developed in relation to opioid use; however, these have largely been restricted 
to examinations of the risk of overdose among people using prescription opioids for pain 
(Glanz et al., 2018; Klimas et al., 2019; Lo-Ciganic et al., 2019). Despite the wealth of evi-
dence regarding risk and protective factors that contribute to the maintenance and recovery 
from heroin dependence, as well as other outcomes including fatal and non-fatal overdose, 
mortality, and co-occurring psychopathology (Chen et al., 2019, 2020; Darke et al., 2014, 
2016; Davoli et  al., 2007; Hser et  al., 2001, 2017; Jimenez-Treviño et  al., 2011; Strang 
et  al., 2020; Teesson et  al., 2017), there are currently no existing models to assist clini-
cians utilise and integrate this critical information into their practice and guide treatment 
selection.

The present study aimed to address this gap using data from the 11-year follow-up of 
the Australian Treatment Outcome Study (ATOS), the largest and longest prospective lon-
gitudinal study of heroin dependence conducted in Australia, with a view to developing 
a clinical risk prediction model to assist clinicians calculate the risk of a range of heroin-
related outcomes at varying follow-up intervals for their clients, depending on baseline 
information. This information is critical to guiding clinicians in selecting the right treat-
ment, for the right person at the right time, potentially transforming healthcare for people 
with heroin dependence.

Method

Procedure

The ATOS cohort comprised 615 people with heroin dependence. Baseline data were col-
lected between 2001 and 2002 from 615 people with heroin dependence, 535 of whom 
were recruited from 19 agencies treating heroin dependence in the greater Sydney region, 
Australia (201 entering maintenance therapies, 201 entering detoxification, 133 entering 
residential rehabilitation) (Ross et al., 2005). A comparison group of 80 people who were 
not entering treatment were recruited from needle and syringe programs. Follow-up inter-
views were conducted with 549 (89.3%), 495 (80.5%), 469 (76.3%), 429 (69.8%), and 431 
(70.2%) people at 3, 12, 24, 36 months and 11 years, respectively, with 94.5% completing 
at least one follow-up interview. A search of the Australian National Death Index, a statu-
tory register of all deaths in Australia administered by the Australian Institute of Health 
and Welfare (AIHW), was conducted in July, 2015, and details of deaths that had occurred 
among participants since 2001 obtained. Participants were matched by full name, sex, and 
date of birth.

Factors associated with study retention were examined by Teesson et  al (2015), and 
included index treatment modality, age, sex, previous treatment history, number of her-
oin use days in the preceding month, number of drug types used in the preceding month, 
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major depression, post-traumatic stress disorder (PTSD), antisocial personality disorder 
(ASPD), and borderline personality disorder (BPD). The final model revealed that the sam-
ple re-interviewed at 11  years was broadly representative of the initial cohort; the only 
independent predictors of loss to follow-up were male sex (67.8 vs. 74.5%; OR = 0.65, 
95% CI = 0.44, 0.99) and a diagnosis of major depression at baseline (64.9 vs. 71.8%; 
OR = 0.67, 95% CI = 0.45, 0.99). ASPD was retained in the final model but was not related 
significantly to retention at 11 years (p = 0.074). Ethical approval was obtained from the 
University of New South Wales Human Research Ethics Committees and participating area 
health services.

Measures

Structured interview

Structured interviews were administered to participants at baseline and at each follow-up 
utilising measures with established psychometric properties and have been described in 
detail previously (Ross et al., 2005). In brief, baseline and follow-up interviews included 
demographic (age, sex, past month main source of income, and past month accommoda-
tion), treatment history, drug use history, injection-related health, physical and mental 
health, and psychopathology. Past-month drug use and criminal involvement were assessed 
using the opiate treatment index (OTI) (Darke et al., 1992). DSM-IV diagnoses of current 
heroin dependence and past-month major depression were obtained using the Composite 
International Diagnostic Interview version 2.1 (CIDI) (World Health Organisation 1993). 
Lifetime diagnoses of PTSD, ASPD, and BPD were assessed at baseline. DSM-IV diagno-
ses of ASPD were obtained using a modified version of the Diagnostic Interview Schedule 
(Robins et al., 1981); participants were screened for ICD-10 BPD using the International 
Personality Disorders Examination Questionnaire (Loranger et al., 1994); general mental 
health was measured using the Short Form-12 (SF-12) (Ware et al., 1996); and DSM-IV 
diagnoses of lifetime PTSD were obtained using the CIDI (World Health Organisation 
1993). Demographics, drug use, criminal involvement, general health, and depression were 
reassessed at each follow-up, in addition to the number of times participants had com-
menced treatment for heroin dependence and the treatment duration (Teesson et al., 2008). 
To maximise participant recall, the time-line follow-back (TLFB) method was used with 
the 11-year interviews, which anchors interview questions to significant events in partici-
pants’ lives (e.g., significant relationships or separations, births of children, deaths) (Hunt 
& Andrews, 1995). The life chart was conducted at the beginning of the interview, and par-
ticipants were referred back to the chart when further questions were asked that required 
the recall of dates.

Statistical analyses

Machine-learning algorithms include a set of predictive techniques, which are particularly 
useful when there are several predictor variables (i.e., high-dimensional) and the focus is 
on the generalisability and reliability of prediction. Guidelines from the National Institute 
on Drug Abuse (NIDA) highlight machine learning as ‘the most promising approach to 
identify predictive markers for psychiatric disorders and classify psychiatric populations 
with high-dimensional data’. For the prediction modelling, data preparation included stand-
ardisation of continuous predictors and dummy coding of categorical variables. Moreover, 
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as several outcomes presented in the current study are considered ‘rare events’ even in a 
high-risk sample, an adapted strategy is necessary to address the potential imbalance 
among those with and without the outcome. Hence, to address the class imbalance, an 
oversampling strategy was implemented for each outcome. Random oversampling involves 
randomly duplicating examples from the minority class and adding them to the training 
dataset. Examples from the training dataset are selected randomly with replacement. This 
means that examples from the minority class can be chosen and added to the new ‘more 
balanced’ training dataset multiple times; they are selected from the original training data-
set, added to the new training dataset, and then returned or ‘replaced’ in the original data-
set, allowing them to be selected again. This technique can be effective for those machine 
learning algorithms that are affected by a skewed distribution and where multiple duplicate 
examples for a given class can influence the fit of the model. This was followed by a three-
step analysis plan to establish the performance of an ensemble learning model using cross-
validation and investigate the importance of each predictor variable for each outcome.

In the first step, we trained and fine tuned an ensemble machine learning model for each 
outcome separately. Ensemble learning is a machine learning method that produces a sin-
gle prediction function based on a weighted average of all individual algorithms considered 
for prediction (i.e., ‘weak learners’) with an optimal trade-off between bias and variance 
(Pavlyshenko, 2018). The ensemble learning model used here was a combination of ran-
dom forests (RF), support vector machine (SVMs), and elastic-net algorithms. Using the 
tidymodels package in R statistical software, a nested iterative cross-validation procedure 
was used to tune the hyperparameters of each model and to evaluate the predictive power 
of models on independent observations. The cross-validation procedure partitioned the full 
sample into subsamples of data, using an iterative process where 25% of data was set aside 
as the test sample, and a ‘training model’ was fine tuned on the tenfold partitioned observa-
tions in the remaining data (training and validation sets). This fine-tuned training model 
was then used, in the second step, to predict the observations in the set-aside test fold, 
thereby ensuring the independence of the test fold sample.

In the second step, to measure the predictive performance of each algorithm, a set of 
prediction indices were calculated based on the model’s ability to predict later adverse 
outcomes in the test set (Šimundić, 2009). The performance of the machine-learning 
algorithms was evaluated using sensitivity, specificity, F1 prediction score, and accuracy 
(ACC). Briefly, sensitivity is defined as the number of true positives divided by the num-
ber of true positives plus false positives. Recall is defined as the number of true negatives 
divided by the number of true negatives plus the number of false negatives. The F1 pre-
diction score is defined as the balance between the precision and the recall. Finally, ACC 
is defined as the number of true positives plus the number of true negatives divided by 
the total sample. For all indices, values closer to 1.0 demonstrate better predictive power. 
Previous cut-points were used to determine strength of prediction with acceptable ranging 
between 0.6 and 0.75, good ranging between 0.75 and 0.9, and excellent ranging between 
0.9 and 1.

To improve the interpretability of our results, the third step focused on determining the 
relative feature importance of the predictive coefficients for each algorithm. For this, fea-
ture importance measures for each of the individual weak learners, namely RF, elastic net, 
and the SVM models, were extracted using the vip package in R. The Gini importance (or 
mean decrease impurity), a measure of information gain for each predictor, was used for 
the RF model, whereas the magnitude of non-shrinked coefficients was used for the elastic 
net model. As the SVM creates a hyperplane to maximise the distance between the pre-
dicted classes, the feature importance can be conceptualised as the vector of coordinates 
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orthogonal to the hyperplane. Finally, the features were ranked from the least to the most 
important and the mean rank of feature importance was calculated across the three weak 
learners.

Outcome variables: heroin use, remission, overdose, mortality

Four outcome domains were examined: heroin use, remission from heroin use, non-fatal 
overdose, and mortality. The risk of experiencing these outcomes over the short (1 year), 
medium (5 years), and long (10 years) term was modelled for all variables (degree of bal-
ance illustrated in Table 1 of the supplementary materials). Due to the availability of data, 
risk of mortality was additionally modelled over 15 years (Table 1).

Past-month heroin use was defined as any heroin use occurring in the month prior to 
1-year post-baseline, 5-year post-baseline, and 10-year post-baseline. Consistent with 
definitions of remission utilised in other areas of public health and community medi-
cine, remission from heroin use was operationalised into three groups: short-term remis-
sion (defined as ≥ 3 and < 12 months of continual abstinence from heroin use); medium-
term remission (defined as ≥ 12 months and < 5 years of continual abstinence from heroin 
use); and long-term remission (defined as ≥ 5 years of continual abstinence from heroin 
use) (Worley, 2017). Non-fatal overdose was defined as any self-reported heroin-related 
overdose that occurred between baseline and 1-, 5-, and 10-year post-baseline. Mortality 
from baseline to 1-, 5-, 10-, and 15-year post-baseline was based on data obtained from the 
AIHW.

Predictor variables

Informed by the literature, 41 baseline predictor variables were selected and included in the 
analysis, and included predictors relating to demographics, psychopathology, drug use, and 
treatment (Table 2). With the exception of age and years of school completed which were 
continuous, and drug used for first high which was categorical, all variables were binary 
(yes/no, male/female).

Results

Cohort characteristics

The baseline characteristics of the ATOS cohort have been described in detail previously 
and are provided in Table 2 of the Supplementary Materials (Ross et al., 2005). In brief, the 
mean age at baseline was 29.3 years (standard deviation [SD] 7.8) and 66.2% were male. 
Participants reported completing a mean of 10.0 years (SD 1.7) of school education, and 
just under half (45.7%) reported government allowances as their main source of income. 
More than half (54.6%) had been involved in past month crime and 40.8% had spent time 
in prison. Participants reported a mean length of heroin-using career of 9.6 years (SD 7.4), 
and the mean number of drugs used in the past month was 9.0 (SD 1.7). There were high 
rates of psychopathology, with 24.6% meeting criteria for current major depression, 41.1% 
for lifetime PTSD, 71.5% for ASPD, and 45.5% screening positive for BPD.
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Table 2   Summary of predictor 
variables (n = 41) included in 
analysis

Category and predictor variables Response options

Sociodemographic
  Age Continuous
  Australian born Yes/no
  Main source of income in past month govern-

ment benefit
Yes/no

  Past month criminal involvement Yes/no
  Prison history Yes/no
  Sex Male/female
  Unstable housing Yes/no
  Years of school completed Continuous
Psychopathology
  Antisocial personality disorder (ASPD) Yes/no
  Attempted suicide in past 12 months Yes/no
  Borderline personality disorder (BPD) Yes/no
  Experienced interpersonal trauma Yes/no
  Major depression Yes/no
  Post-traumatic stress disorder (PTSD) Yes/no
  Severe mental health disability Yes/no
  Severe physical health disability Yes/no
  Experienced sexual trauma Yes/no
  Experienced trauma Yes/no
AOD use
  First got high > 13 years old Yes/no
  Age when first used heroin < 17 Yes/no
  Drug used for first high Categorical
  Ever overdosed Yes/no
  First injected > 17 years old Yes/no
  Overdosed past 12 months Yes/no
  Past-month alcohol use Yes/no
  Past-month amphetamine use Yes/no
  Past-month antidepressant use Yes/no
  Past-month benzodiazepine use Yes/no
  Past-month cannabis use Yes/no
  Past-month cocaine use Yes/no
  Past-month daily heroin use Yes/no
  Past-month hallucinogen use Yes/no
  Past-month other opioid use Yes/no
  Past-month tobacco use Yes/no
  Polysubstance use Yes/no
AOD treatment
  Detoxification Yes/no
  Methadone maintenance therapy Yes/no
  No treatment Yes/no
  Previous treatment Yes/no
  Residential rehabilitation Yes/no
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Model performance

The model performance for all outcomes is illustrated in Table 3 (area under the curves 
[AUC] and receiver operating characteristic curves [ROC] are provided in the Supple-
mentary Materials). For the past-month heroin use outcome, the ensemble learning model 
showed an acceptable performance (ACC = 0.73, F1 = 0.76) for 1-year post-baseline, a 
good performance (ACC = 0.83, F1 = 0.84) for 5-year post-baseline, and a good perfor-
mance (ACC = 0.85, F1 = 0.86) for 10-year post-baseline. For the short-term remission out-
come, the ensemble learning model showed a good performance (ACC = 0.87, F1 = 0.87) 
for 1-year post-baseline, an excellent performance (ACC = 0.91, F1 = 0.91) for 5-year post 
baseline, and a good performance (ACC = 0.88, F1 = 0.89) for 10-year post baseline. For 
the medium-term remission outcome, the ensemble learning model showed an acceptable 
performance (ACC = 0.75, F1 = 0.78) for 5-year post-baseline and a good performance 
(ACC = 0.82, F1 = 0.85) for 10-year post-baseline. For the long-term remission outcome, 
the ensemble learning model showed an acceptable performance (ACC = 0.75, F1 = 0.75) 
for 10-year post baseline. For the overdose outcome, the ensemble learning model showed 
an excellent performance (ACC = 0.91, F1 = 0.91) for 1-year post-baseline, a good 

Table 3   Details of the model performance measures for each outcome†

† Acceptable strength of prediction: between 0.6 and 0.75; good: between 0.75 and 0.9; excellent: between 
0.9 and 1

Outcome Measure 1 year 5 years 10 years 15 years

Past-month heroin use Accuracy 0.73 0.83 0.85
Sens 0.86 0.83 0.94
Spec 0.62 0.82 0.76
F1 0.76 0.84 0.86

Remission (short term) Accuracy 0.87 0.91 0.88
Sens 0.90 0.90 0.95
Spec 0.84 0.91 0.81
F1 0.87 0.91 0.89

Remission (medium term) Accuracy - 0.75 0.82
Sens 0.83 0.98
Spec 0.67 0.64
F1 0.78 0.85

Remission (long term) Accuracy - - 0.75
Sens 0.78
Spec 0.72
F1 0.75

Overdose Accuracy 0.91 0.86 0.76
Sens 0.87 0.85 0.78
Spec 0.96 0.88 0.75
F1 0.91 0.86 0.77

Mortality Accuracy - - 0.85 0.89
Sens 0.87 0.89
Spec 0.83 0.90
F1 0.85 0.89
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performance (ACC = 0.86, F1 = 0.86) for 5-year post-baseline, and an acceptable perfor-
mance (ACC = 0.76, F1 = 0.77) for 10-year post-baseline. For the mortality outcome, the 
ensemble learning model showed a good performance (ACC = 0.85, F1 = 0.85) for 10-year 
post baseline and a good performance (ACC = 0.89, F1 = 0.89) for 15-year post-baseline.

Feature importance

The top 10 most important predictors for all outcomes identified by the ensemble learn-
ing model are shown in Figs. 1, 2, and 3. As illustrated, for heroin use occurring in the 
month prior to 1-, 5-, and 10-year post-baseline, the feature importance analysis high-
lighted the role of being Australian born, age, age when first got high, daily use of her-
oin (past month), and overdosed in past 12 months at baseline. Similarly, for short-term 
remission occurring 1-, 5-, and 10-year post-baseline, the feature importance analysis 
identified age, age of first heroin use, age when first got high, receiving a government 
benefit as main source of income, past month cocaine use, past month criminal involve-
ment, and prison history. For medium-term remission occurring 5- and 10-year post-
baseline, the feature importance analysis highlighted the important role of age first used 
heroin, drug used for first high, age when first experienced a high, and residential reha-
bilitation. Unstable housing and age when first used heroin were identified as prominent 
features associated with long-term remission.

For non-fatal heroin-related overdose that occurred up to 1-, 5-, and 10-year post-
baseline, the feature importance analysis identified age, age when first used heroin, 

Past month heroin use

Overdose

aPast month heroin use defined as any heroin use occurring in the month prior to 1-, 5- and 10-years post-baseline. bNon-fatal overdose defined as any self-reported heroin-related 

overdose that occurred up to 1-, 5- and 10-years post-baseline. Age = age at baseline; yrs school completed = years of school completed; age first heroin = age when first used 

heroin; major depression = past month major depression; pm oth opioids = past month other opioid use; prison hist = prison history at baseline; drug used first high = drug used for 

first high; resi rehab = in residential rehabilitation; ever od = ever overdosed; pm cannabis = past month cannabis use; age first heroin = age when first used heroin; sexual trauma 

= experienced sexual trauma; aspd = antisocial personality disorder; pm cocaine = past month cocaine use; sev mh disability = severe mental health disability; sev ph disability = 
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Panel 1: Top 10 performance and feature importance predictors of heroin usea and overdoseb

Fig. 1   Top 10 performance and feature importance predictors of heroin usea and overdoseb
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overdose history, experienced interpersonal trauma, past-month use of benzodiazepines, 
past-month criminal involvement, sex, and years of school completed.

In regard to mortality, the feature importance analysis highlighted age, age of first 
high, overdosed in the 12 months prior to baseline, and experienced sexual trauma. More 
detailed graphs illustrating the performance of all predictors in the model across all out-
comes are included in the Supplementary Materials.

Panel 2: Top 10 performance and feature importance predictors of remissionc
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Fig. 2   Top 10 performance and feature importance predictors of remissionc 

Panel 3: Top 10 performance and feature importance predictors of mortalitye

Mortality

eMortality based on data obtained from the AIHW, and modelled up to 1-, 5-, 10- and 15-years post-baseline.

0 5 10 15

od past 12mths

aspd

age

ever overdosed

sexual trauma

first high >13yrs

pm alcohol

ever attempt suicide

age first high

pm benzos

Rank

Pr
ed

ic
to

r

0 5 10 15

sexual trauma

drug used first high

yrs school completed

age first heroin <17

first inj >17yrs

age first high

age

od past 12mths

prison hist

aust born

Rank

Pr
ed

ic
to

r

Mortality: 10-years post-baseline Mortality: 15-years post-baseline

Fig. 3   Top 10 performance and feature importance predictors of mortalitye 



	 International Journal of Mental Health and Addiction

1 3

Discussion

Using 11-year follow-up data from ATOS, the largest and longest prospective longitudinal 
study of heroin dependence conducted in Australia, this study developed machine learn-
ing models to predict the risk of heroin use, remission from heroin use, non-fatal heroin-
related overdose, and mortality, at varying follow-up intervals. Despite decades of research 
and significant economic investment, high levels of health service utilisation (Australian 
Institute of Health & Welfare, 2021a; Darke et  al., 2015), and a large body of research 
regarding evidence-based treatment (Degenhardt et  al., 2019; Hser et  al., 2015; Mattick 
et al. 2009a; Mattick et al., 2014), many people with heroin dependence do not receive the 
help they need.

One of the complex challenges for clinicians is the synthesis and integration of the rap-
idly evolving evidence base into information that can guide clinical decision-making, yet 
many clinicians lack time, resources, guidance, or procedures on how to best synthesise, 
analyse, or utilise this information in practice to deliver personalised care (DeRubeis et al., 
2014; Grol & Grimshaw, 2003; Oxman & Flottorp, 2001). Easy-to-use clinical tools can 
synthesise vast amounts of research evidence and provide meaningful information to guide 
clinicians in selecting the right treatment, for the right person at the right time.

This study builds on the strengths of the stacking approach to predictive modelling, 
which is combining different predictive models into one ensemble model. Ensemble mod-
elling is a recently developed yet a well-established and widely used technique to improve 
model performance that enables averaging out modelling error from diverse models and 
thereby enhances the generalisable signal detection (Gunes et al., 2017). The model per-
formances across all outcomes over all follow-up intervals were predominantly good. The 
exceptions were past-month heroin use at 1-year post-baseline, which was of acceptable 
performance; short-term remission that occurred 5-year post-baseline, and non-fatal over-
dose that occurred 1-year post-baseline, which were both of excellent performance. The 
stacking ensemble learning approach combines predictions from multiple machine learning 
algorithms and uses these predictions as inputs to a higher-level learning model. Recent 
studies highlighted that stacking-based predictive modelling is highly effective for time 
series forecasting and classification problems with highly imbalanced data (Pavlyshenko, 
2018).

A strength of the current study is the ability to examine a wide range of predictors. The 
variables most consistently ranked in the top 10 in terms of their level of importance across 
outcomes included age; age first got high, used heroin, or injected; sexual trauma; years of 
school completed; prison history; severe mental health disability; past-month crime; and 
past-month benzodiazepine use. Somewhat surprisingly given the consistent association of 
major depression and poor outcome in analysis of the ATOS data and other longitudinal 
studies of heroin dependence (Malik et al., 2019; Marel et al., 2023), severe mental health 
disability and the experience of sexual trauma were the only psychiatric variables identified 
among the most predictive factors in this study. In contrast, the absence of a mood disorder 
was found to reduce the likelihood of prescription opioid use disorder in a recent system-
atic review among those commencing prescription opioids for pain (Klimas et al., 2019).

These findings are of particular clinical importance for identifying those most at risk 
across a number of outcome domains, with implications for prevention and early interven-
tion (for example, school-based programs aimed at delaying age of onset (Gardner et al., 
2023), early intervention for people who have experienced sexual trauma).
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Findings from this study are broadly consistent with the few studies that have under-
taken similar modelling procedures to assess opioid-related risk. The majority of this work 
has been undertaken to estimate non-fatal and/or fatal overdose risk, using administrative 
and linked datasets to develop models, such as Medicare or prescription claims (Chang 
et al., 2019; Heo et al., 2022; Lo-Ciganic et al., 2019), insurance plans (Sun et al., 2020), 
pharmacy-based opioid therapy (Glanz et  al., 2018), prescription claims (Chang et  al., 
2019; Heo et al., 2022), hospital or public health services (Nguyen et al., 2023; Ripperger 
et al., 2021; Saloner et al., 2020), the criminal justice system (Ripperger et al., 2021), and 
death certificates (Nguyen et al., 2023; Saloner et al., 2020). Age, mental health disorder, 
substance abuse/dependence, tobacco use/abuse/dependence, and long-acting or extended-
release opioid formulation were associated with the risk of two-year fatal and non-fatal 
opioid overdose in a US study utilising data from patients enrolled in pharmacy-based opi-
oid therapy (Glanz et al., 2018). Similarly, being male, younger, and a greater number of 
benzodiazepine prescriptions were associated with higher odds of non-fatal opioid over-
dose in a retrospective cohort study, which utilised prescription and patient data in Mary-
land (Chang et al., 2019). However, the exclusive use of administrative data in these studies 
prevented the capturing of non-fatal overdose that did not result in hospitalisation, and the 
risk of non-prescribed opioid use on overdose was not included.

To our knowledge, this is the first study to predict a range of heroin-related outcomes 
across different follow-up intervals. While recent advances in modelling and machine 
learning have led to the development of models to assess single outcomes associated with 
the use of opioids, these have predominantly been limited to prescription opioid use (Glanz 
et  al., 2018), chronic pain-care patients (Klimas et  al., 2019), or exclusively based on 
administrative data (Lo-Ciganic et al., 2019). While these studies have been able to gen-
erate large sample sizes from constructed cohorts and incorporate other health outcomes 
depending on the data sources, the exclusive use of administrative data can be problem-
atic. The sole reliance on administrative data for investigating outcomes associated with 
highly disadvantaged and vulnerable population groups is likely to result in systematic 
bias, particularly when data are dependent on self-disclosure in environments that are typi-
cally highly stigmatising and marginalising toward people with mental and substance use 
disorders (Calderwood & Lessof, 2009; Marel & Mills, 2018). These cohorts are also sub-
ject to Berkson’s bias (Westreich, 2012), whereby the combination of exposure to a risk 
(e.g., heroin dependence) and occurrence of disease make it more likely that an individual 
will present to health services, leading to elevated associations between the exposure and 
the health outcomes under investigation relative to that which would be found among the 
broader population of people with heroin dependence.

The findings from this study should be interpreted with several caveats in mind. 
Firstly, the study was based on self-report measures. While there has been debate sur-
rounding self-report as a tool for measuring substance use, there has been extensive lit-
erature consistently demonstrating its validity and reliability in research settings (Jack-
son et al., 2005; Napper et al., 2010; Teesson et al., 2015). However, participants were 
asked to report on events up to a 10- to 11-year period, and findings may be subject to 
recall bias. Secondly, while the demographic characteristics and substance use histories 
of the ATOS cohort were consistent with previous international and Australian stud-
ies of people with heroin dependence (Darke et  al., 2002; Gossop et  al., 2000; Hub-
bard et al., 1997), care should be taken in generalising these results to other treatment 
systems outside Australia. Despite the strengths of using the modelling techniques in 
this study, one limitation is that direction of effects cannot be attributed to individual 
variables as they are derived based on two- to three-level interactions across the myriad 
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variables and averaged over three models in the ensemble. As such the ‘direction’ of 
each predictor cannot be ascertained independently of the numerous other predictors. 
In addition, the current study used between-group data to assume individual level pre-
dictions. While these results might provide some indication of outcomes for at-risk 
individuals determined at one time point, they do not reveal the potential impact of 
time-varying covariates and whether within-person trajectories might result in differ-
ing outcomes or more accurate predictions. Furthermore, variables used in this model 
were examined as static predictors. Future research should examine the effects of time-
varying risk and protective factors in model development that may further inform the 
timing of interventions.

In spite of these limitations, the current study provides clinically relevant information 
on key risk factors associated with heroin use, remission, non-fatal overdose, and mortal-
ity among people with heroin dependence. The ability to identify such clinically meaning-
ful outcomes has vital implications for healthcare practitioners and policymakers who lack 
access to accurate information on which to base decisions on the delivery and timing of 
targeted interventions.
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