Skip to main content
Log in

Realization of Lasing Emission from the Different Perovskite Quantum Dot–Doped Materials

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

The experimental results were compared with the different perovskite quantum dot–doped materials, which explicitly include losses, gain, lasing, and threshold. The random lasers emerge multiple emission peaks at different central wavelengths, due to the recurrent optical gain feedback and the localized field resonance effect in vicinity of particles. By the operation of the applied different devices, the perovskite quantum dots can be better materials for generating photons and can create stronger light scattering for transition from incoherent lasing to coherent lasing. Contrary to conventional random lasers, we found that the nature of the random lasing is dictated by the perovskite quantum dots, and the quantum dots with a high refractive index can be advantageous for random lasing in mediums. The experiments also reveal a regime including the fundamental aspects of surface plasmon resonance light scattering for facile active lasing mode switching. These results will guide future design of different quantum dot random lasers with controlled lasing wavelength output.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Availability of Data and Materials

Data underlying the results presented in this paper are not publicly available.

References

  1. Cao H, Zhao YG, Ho ST, Seelig EW, Wang QH, Chang RPH (1999) Random laser action in semiconductor powder. Phys Rev Lett 82:2278–2281

    Article  CAS  Google Scholar 

  2. Mujumdar S, Ricci M, Torre R, Wiersma DS (2004) Quasi-two-dimensional diffusive random laser action. Phys Rev Lett 93:053903

    Article  PubMed  Google Scholar 

  3. Cao H, JYX, Zhang DZ (2000)  Spatial confinement of laser light in active random media. Phys Rev Lett 84:24

  4. Consoli A, Soria E, Caselli N, López C (2019) López. Random lasing emission tailored by femtosecond and picosecond pulsed polymer ablation. Opt Lett 44(3):518C521

  5. Liu Z, Zhiping Hu, Zhang Z, Juan Du, Yang J, Tang X, Liu W, Leng Y (2019) Two-photon pumped amplified spontaneous emission and lasing from formamidinium lead bromine nanocrystals. ACS Photonics 6(12):3150–3158

    Article  CAS  Google Scholar 

  6. Ting F, Jiantao L, Yihong C, Wenxiong Y, Yongfa H (2019) Random lasing in cesium lead bromine perovskite quantum dots film. J Mater Sci: Mater Electron 30:1084C1088

  7. Kumar A, Prakash J, Deshmukh AD, Haranath D, Silotia P, Biradar AM (2012) Enhancing the photoluminescence of ferroelectric liquid crystal by doping with ZnS quantum dots. Appl Phys Lett 100:134101

  8. Park YS, Bae WK, Baker T, Lim J, Klimov VI (2015) Klimov. Effect of Auger recombination on lasing in heterostructured quantum dots with engineered core/shell interfaces. Nano Lett 15:7319–7328

  9. Li X, Wang Y, Sun H, Zeng H (2017) Amino-mediated anchoring perovskite quantum dots for stable and low-threshold random lasing. Adv Mater 29:1701185

    Article  Google Scholar 

  10. Murzin AO, Stroganov BV, Gnnemann C, Hammouda SB, Shurukhina AV, Lozhkin MS, Emeline AV, Kapitonov YV (2020) Amplified spontaneous emission and random lasing in MAPbBr 3 halide perovskite single crystals. Adv Opt Mater 8(17):2000690

    Article  CAS  Google Scholar 

  11. Liu Z, Zhiping Hu, Shi T, Juan Du, Yang J, Zhang Z, Tang X, Leng Y (2019) Stable and enhanced frequency up-converted lasing from CsPbBr 3 quantum dots embedded in silica sphere. Opt Express 27(7):9459–9466

    Article  CAS  PubMed  Google Scholar 

  12. Zhengzheng L, Jie Y, Juan D, Zhiping H, Shi ZZ, Yanqi L, Xiaosheng T, Yuxin L, Ruxin L (2018) Robust subwavelength single-mode perovskite nanocuboid laser. ACS Nano 12(6):5923–5931

  13. Li L-W, Deng L-G (2013) Random lasing from dye-doped chiral nematic liquid crystals in oriented and non-oriented cells. Eur Phys J B 86:112

    Article  Google Scholar 

  14. Longwu L, Luogen D (2013) Low threshold and coherent random lasing from dye-doped cholesteric liquid crystals using oriented cells. Laser Phys 23:085001-6

  15. Li L (2016) Random lasing from PM597-DCM solutions containing Pt nanoparticles. Optics Communications 364:24–28

    Article  CAS  Google Scholar 

  16. Carvalho PM, Felício MR, Santos NC, Gonçalves S, Domingues MM (2018) Application of light scattering techniques to nanoparticle characterization and development. Front Chem 6

  17. Wang Z, Meng X, Choi SH, Knitter S, Kim YL, Cao H, Shalaev VM, Boltasseva A (2016) Controlling random lasing with three-dimensional plasmonic nanorod metamaterials. Nano Lett 16(4):2471C2477

  18. Li Y, Li L (2022) A coherence random lasing for gain media based on lnP/ZnS quantum dots. Optics Communications 517:128350

    Article  CAS  Google Scholar 

  19. Son DI et al (2012) Emissive ZnO–graphene quantum dots for white-light-emitting diodes. Nat Nanotechnol 7:465C471

  20. Gryczynski I, Malicka J, Jiang W, Fischer H, Chan WC, Gryczynski Z, Grudzinski W, Lakowicz JR (2005) Surface-plasmon-coupled emission of quantum dots J Phys Chem B 109:1088–1093

  21. Wang Z, Cao M, Shao G, Zhang Z, Huiwen Yu, Chen Y, Zhang Y, Li Y, Baiping Xu, Wang Y, Yao J (2020) Coherent random lasing in colloidal quantum dots doped polymer-dispersed liquid crystal with low threshold and high stability. J Phys Chem Lett 11:767–774

    Article  CAS  PubMed  Google Scholar 

  22. Cao M, Zhang Y, Song X, Che Y, Zhang H, Dai H, Zhang G, Yao J (2016) Random lasing in a colloidal quantum dot-doped disordered polymer. Opt Express 24:9325–9331

    Article  CAS  PubMed  Google Scholar 

  23. Mirzaei J, Reznikov M, Hegmann T (2012) Quantum dots as liquid crystal dopants. J Mater Chem 22:22350

    Article  CAS  Google Scholar 

  24. Azmi AN, Wan Ismail WZ, Abu Hassan H, Halim MM, Zainal N, Muskens OL, Wan Ahmad Kamil WM (2022) Review of open cavity random lasers as laser-based sensors. ACS Sens 7:914–928

  25. Luan F, Gu B, Gomes ASL, Yong KT, Wen S, Prasad PN (2015) Lasing in nanocomposite random media. Nano Today 10:168–192

    Article  CAS  Google Scholar 

  26. Santos EP, Silva RF, Silva JF, Maciel CV, Luz DF, De Lima E, Maia LJ, Lima BC, Moura AL (2021) Gain clamping in random lasers. Laser Phys Lett 18:125002–8

  27. Rocha EG, Paz ÍR, Santos BJ, Soares WC, de Lima E, Leão LM, Maia LJ, Moura AL (2019) Self-induced optical parametric amplification of random laser emission. Laser Phys 29:045402

  28. Xie R-C, Tsay S-Y, Jin-Jei Wu, Kuo C-C, Zhang H, Lin J-H (2022) Manipulation of plasmonic random laser from dye-doped liquid crystals inside photonic crystal fiber by the electric field. Opt Laser Technol 151:108013

    Article  CAS  Google Scholar 

  29. Li Y, Li L (2022) Random lasing of the active organic nanocrystals of SFX-2-7-DDPA solution. Opt Mater 132:112723

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Science Research Start-up Funding of Langfang Normal University (Nos. XBQ202019, XPY202129, and XPT202105) and by the Guizhou Province Science Foundation (Grant [2016]1105).

Author information

Authors and Affiliations

Authors

Contributions

The author contributed to the preparation, creation, and/or presentation of the published work from the original research author, specifically critical review, commentary, or revision, including pre- or post-publication stages.

Corresponding author

Correspondence to Longwu Li.

Ethics declarations

Ethical Approval

There is no relevant ethical issue involving human tissue in the experiments.

Competing Interests

The author declares no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L. Realization of Lasing Emission from the Different Perovskite Quantum Dot–Doped Materials. Plasmonics 18, 607–615 (2023). https://doi.org/10.1007/s11468-023-01794-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-023-01794-0

Keywords

Navigation