Skip to main content
Log in

Fano Resonance in Plasmonic Crystals Enables High-Sensitive Arsenite Detection

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Fano resonance exhibiting characteristic asymmetric spectral line shape is a universal phenomenon, observed in diverse systems and is widely studied for its numerous potential applications. Here, we demonstrate a simple approach for high-sensitive arsenite detection using the changes in the spectral asymmetry of optical Fano resonance in precisely designed metamaterials, namely waveguided plasmonic crystals. For this purpose, we exploit selective binding of the toxic arsenite (As(III)) ions with optimized concentration of fluorescein-derived phenyl isothiocyanate molecules that are coated on top of a waveguided plasmonic crystal sample comprising of one dimensional periodic plasmonic gold grating on indium tin oxide waveguiding layer. The scattering spectra from the plasmonic crystal system with transverse magnetic (TM) polarization excitation show systematic changes in the Fano asymmetry parameter q with increasing concentration of arsenite, which is exploited for sensing arsenite down to a concentration of 1 ppm. Based on these results, we propose a robust plasmonic crystal metadevice that uses the polarized scattered intensities at two optimized wavelengths for high sensitive arsenite detection in natural aqueous environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data and Code Availability Statement

The data and code that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Ouypornkochagorn S, Feldmann J (2010) Dermal uptake of arsenic through human skin depends strongly on its speciation. Environ Sci Technol 44(10):3972–3978. https://doi.org/10.1021/es903667y

    Article  CAS  PubMed  Google Scholar 

  2. Farzan SF et al (2016) Infant infections and respiratory symptoms in relation to in utero arsenic exposure in a U.S. cohort. Environ Health Perspect 124(6):840–847. https://doi.org/10.1289/ehp.1409282

    Article  CAS  PubMed  Google Scholar 

  3. Chen Y et al (2011) Arsenic exposure from drinking water and mortality from cardiovascular disease in Bangladesh: prospective cohort study. BMJ 342:d2431–d2431. https://doi.org/10.1136/bmj.d2431

  4. Yu H et al (2016) Arsenic Metabolism and toxicity influenced by ferric iron in simulated gastrointestinal tract and the roles of gut microbiota. Environ Sci Technol 50(13):7189–7197. https://doi.org/10.1021/acs.est.6b01533

    Article  CAS  PubMed  Google Scholar 

  5. Roy JS, Chatterjee D, Das N, Giri AK (2018) Substantial evidences indicate that inorganic arsenic is a genotoxic carcinogen: a review. Toxicol Res 34(4):311–324. https://doi.org/10.5487/TR.2018.34.4.311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Rossman T (2003) Mechanism of arsenic carcinogenesis: an integrated approach. Mutat Res Mol Mech Mutagen 533(1–2):37–65. https://doi.org/10.1016/j.mrfmmm.2003.07.009

    Article  CAS  Google Scholar 

  7. Fischer JM et al (2005) Co-mutagenic activity of arsenic and benzo[a]pyrene in mouse skin. Mutat Res Toxicol Environ Mutagen 588(1):35–46. https://doi.org/10.1016/j.mrgentox.2005.09.003

    Article  CAS  Google Scholar 

  8. Mohammed Abdul KS, Jayasinghe SS, Chandana EP, Jayasumana C, De Silva PM (2015) Arsenic and human health effects: a review. Environ Toxicol Pharmacol 40(3):828–846. https://doi.org/10.1016/j.etap.2015.09.016.

  9. Mandal B (2002) Arsenic round the world: a review. Talanta 58(1):201–235. https://doi.org/10.1016/S0039-9140(02)00268-0

    Article  CAS  PubMed  Google Scholar 

  10. Smith AH, Goycolea M, Haque R, Biggs ML (1998) Marked increase in bladder and lung cancer mortality in a region of Northern Chile due to arsenic in drinking water. Am J Epidemiol 147(7):660–669. https://doi.org/10.1093/oxfordjournals.aje.a009507

    Article  CAS  PubMed  Google Scholar 

  11. Quansah R et al (2015) Association of arsenic with adverse pregnancy outcomes/infant mortality: a systematic review and meta-analysis. Environ Health Perspect 123(5):412–421. https://doi.org/10.1289/ehp.1307894

    Article  PubMed  PubMed Central  Google Scholar 

  12. Pokhrel D, Viraraghavan T (2006) Arsenic removal from aqueous solution by iron oxide-coated fungal biomass: a factorial design analysis. Water Air Soil Pollut 173(1–4):195–208. https://doi.org/10.1007/s11270-005-9056-z

    Article  CAS  Google Scholar 

  13. Cerveira C, Pozebon D, de Moraes DP, Silva de Fraga JC (2015) Speciation of inorganic arsenic in rice using hydride generation atomic absorption spectrometry (HG-AAS). Anal Methods 7(11):4528–4534. https://doi.org/10.1039/C5AY00563A

    Article  CAS  Google Scholar 

  14. Anawar HM (2012) Arsenic speciation in environmental samples by hydride generation and electrothermal atomic absorption spectrometry. Talanta 88:30–42. https://doi.org/10.1016/j.talanta.2011.11.068

    Article  CAS  PubMed  Google Scholar 

  15. Shishov A et al (2018) An automated continuous homogeneous microextraction for the determination of selenium and arsenic by hydride generation atomic fluorescence spectrometry. Talanta 181:359–365. https://doi.org/10.1016/j.talanta.2018.01.033

    Article  CAS  PubMed  Google Scholar 

  16. Qu H, Mudalige TK, Linder SW (2015) Arsenic speciation in rice by capillary electrophoresis/inductively coupled plasma mass spectrometry: enzyme-assisted water-phase microwave digestion. J Agric Food Chem 63(12):3153–3160. https://doi.org/10.1021/acs.jafc.5b00446

    Article  CAS  PubMed  Google Scholar 

  17. Donnell AM, Nahan K, Holloway D, Vonderheide AP (2016) Determination of Arsenic in sinus wash and tap water by inductively coupled plasma–mass spectrometry. J Chem Educ 93(4):738–741. https://doi.org/10.1021/acs.jchemed.5b00744

    Article  CAS  Google Scholar 

  18. Habte G et al (2016) Elemental profiling and geographical differentiation of Ethiopian coffee samples through inductively coupled plasma-optical emission spectroscopy (ICP-OES), ICP-mass spectrometry (ICP-MS) and direct mercury analyzer (DMA). Food Chem 212:512–520. https://doi.org/10.1016/j.foodchem.2016.05.178

    Article  CAS  PubMed  Google Scholar 

  19. Sitko R, Janik P, Zawisza B, Talik E, Margui E, Queralt I (2015) Green approach for ultratrace determination of divalent metal ions and arsenic species using total-reflection X-ray fluorescence spectrometry and mercapto-modified graphene oxide nanosheets as a novel adsorbent. Anal Chem 87(6):3535–3542. https://doi.org/10.1021/acs.analchem.5b00283

    Article  CAS  PubMed  Google Scholar 

  20. Pereira FJ, Vázquez MD, Debán L, Aller AJ (2016) Inorganic arsenic speciation by differential pulse anodic stripping voltammetry using thoria nanoparticles-carbon paste electrodes. Talanta 152:211–218. https://doi.org/10.1016/j.talanta.2016.02.011

    Article  CAS  PubMed  Google Scholar 

  21. Gürkan R, Kır U, Altunay N (2015) Development of a simple, sensitive and inexpensive ion-pairing cloud point extraction approach for the determination of trace inorganic arsenic species in spring water, beverage and rice samples by UV–Vis spectrophotometry. Food Chem 180:32–41. https://doi.org/10.1016/j.foodchem.2015.01.142

    Article  CAS  PubMed  Google Scholar 

  22. Ezeh VC, Harrop TC (2012) A Sensitive and selective fluorescence sensor for the detection of arsenic(III) in organic media. Inorg Chem 51(3):1213–1215. https://doi.org/10.1021/ic2023715

    Article  CAS  PubMed  Google Scholar 

  23. Baglan M, Atılgan S (2013) Selective and sensitive turn-on fluorescent sensing of arsenite based on cysteine fused tetraphenylethene with AIE characteristics in aqueous media. Chem Commun 49(46):5325. https://doi.org/10.1039/c3cc42238k

    Article  CAS  Google Scholar 

  24. Dey B, Saha R, Mukherjee P (2013) A luminescent-water soluble inorganic co-crystal for a selective pico-molar range arsenic(iii) sensor in water medium. Chem Commun 49(63):7064. https://doi.org/10.1039/c3cc43574a

    Article  CAS  Google Scholar 

  25. Bhattacharya S, Sarkar S, Shunmugam R (2013) Unique norbornene polymer based ‘in-field’ sensor for As(iii). J Mater Chem A 1(29):8398. https://doi.org/10.1039/c3ta11587a

    Article  CAS  Google Scholar 

  26. Amendola V, Pilot R, Frasconi M, Maragò OM, Iatì MA (2017) Surface plasmon resonance in gold nanoparticles: a review. J Phys Condens Matter 29(20):203002. https://doi.org/10.1088/1361-648X/aa60f3

    Article  PubMed  Google Scholar 

  27. Anker NJ, Hall WP, Lyandres O, Shah NC, Zhao J, Duyne RPV (2009) Biosensing with plasmonic nanosensors. Nanosci Technol 7:12

    Google Scholar 

  28. Abb M, Wang Y, Papasimakis N, de Groot CH, Muskens OL (2014) Surface-enhanced infrared spectroscopy using metal oxide plasmonic antenna arrays. Nano Lett 14(1):346–352. https://doi.org/10.1021/nl404115g

    Article  CAS  PubMed  Google Scholar 

  29. Yu H, Shan X, Wang S, Chen H, Tao N (2014) Plasmonic imaging and detection of single DNA molecules. ACS Nano 8(4):3427–3433. https://doi.org/10.1021/nn4062885

    Article  CAS  PubMed  Google Scholar 

  30. Im H et al (2014) Label-free detection and molecular profiling of exosomes with a nano-plasmonic sensor. Nat Biotechnol 32(5):490–495. https://doi.org/10.1038/nbt.2886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mei A et al (2014) A hole-conductor–free, fully printable mesoscopic perovskite solar cell with high stability. Science 345(6194):295–298. https://doi.org/10.1126/science.1254763

    Article  CAS  PubMed  Google Scholar 

  32. Mejía-Salazar JR, Oliveira ON (2018) Plasmonic biosensing: focus review. Chem Rev 118(20):10617–10625. https://doi.org/10.1021/acs.chemrev.8b00359

    Article  CAS  PubMed  Google Scholar 

  33. Koenderink AF, Alù A, Polman A (2015) Nanophotonics: shrinking light-based technology. Science 348(6234):516–521. https://doi.org/10.1126/science.1261243

    Article  CAS  PubMed  Google Scholar 

  34. Petersen J, Volz J, Rauschenbeutel A (2014) Chiral nanophotonic waveguide interface based on spin-orbit interaction of light. Science 346(6205):67–71. https://doi.org/10.1126/science.1257671

    Article  CAS  PubMed  Google Scholar 

  35. Shitrit N et al (2013) Spin-optical metamaterial route to spin-controlled photonics. Science 340(6133):724–726. https://doi.org/10.1126/science.1234892

    Article  CAS  PubMed  Google Scholar 

  36. Ahmadivand A, Gerislioglu B (2022) Photonic and plasmonic metasensors. Laser Photonics Rev 16(2):2100328. https://doi.org/10.1002/lpor.202100328

    Article  CAS  Google Scholar 

  37. Lal S, Link S, Halas NJ (2007) Nano-optics from sensing to waveguiding. Nat Photonics 1(11):641–648. https://doi.org/10.1038/nphoton.2007.223

    Article  CAS  Google Scholar 

  38. Fano U (1961) Effects of configuration interaction on intensities and phase shifts. Phys Rev 124(6):1866–1878. https://doi.org/10.1103/PhysRev.124.1866

    Article  CAS  Google Scholar 

  39. Miroshnichenko AE, Flach S, Kivshar YS (2010) Fano resonances in nanoscale structures. Rev Mod Phys 82(3):2257–2298. https://doi.org/10.1103/RevModPhys.82.2257

    Article  CAS  Google Scholar 

  40. Luk’yanchuk B et al (2010) The Fano resonance in plasmonic nanostructures and metamaterials. Nat Mater 9(9):707–715. https://doi.org/10.1038/nmat2810

  41. Ray SK et al (2017) Polarization-tailored fano interference in plasmonic crystals: a Mueller matrix model of anisotropic Fano resonance. ACS Nano 11(2):1641–1648. https://doi.org/10.1021/acsnano.6b07406

    Article  CAS  PubMed  Google Scholar 

  42. Christ A, Tikhodeev SG, Gippius NA, Kuhl J, Giessen H (2003) Waveguide-Plasmon polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab. Phys Rev Lett 91(18):183901. https://doi.org/10.1103/PhysRevLett.91.183901

    Article  CAS  PubMed  Google Scholar 

  43. Chandel S et al (2016) Complete polarization characterization of single plasmonic nanoparticle enabled by a novel Dark-field Mueller matrix spectroscopy system. Sci Rep 6(1):26466. https://doi.org/10.1038/srep26466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhao J, Jensen L, Sung J, Zou S, Schatz GC, Van Duyne RP (2019) Interaction of plasmon and molecular resonances for rhodamine 6G adsorbed on silver nanoparticle. Nat Nanotechnol 14(10):913–913. https://doi.org/10.1038/s41565-019-0545-4

  45. Christ A, Zentgraf T, Kuhl J, Tikhodeev SG, Gippius NA, Giessen H (2004) Optical properties of planar metallic photonic crystal structures: experiment and theory. Phys Rev B 70(12):125113. https://doi.org/10.1103/PhysRevB.70.125113

    Article  CAS  Google Scholar 

  46. Singh AK et al (2018) Tunable Fano resonance using weak-value amplification with asymmetric spectral response as a natural pointer. Phys Rev A 97(5):053801. https://doi.org/10.1103/PhysRevA.97.053801

    Article  CAS  Google Scholar 

  47. Zhang Y et al (2018) High-quality-factor multiple Fano resonances for refractive index sensing. Opt Lett 43(8):1842. https://doi.org/10.1364/OL.43.001842

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by IISER-Kolkata, an autonomous institute funded by MHRD, Govt. of India. Additionally, S. K. R. acknowledges UGC, Government of India, for research fellowships and S. G. acknowledges CSIR, Government of India, for research fellowships. The authors would like to acknowledge the Science and Engineering Research Board (SERB), Government of India, for funding.

Funding

Indian Institute of Science Education and Research Kolkata, Ministry of Education, Department of Science and Technology, Government of India. The authors would like to acknowledge the Science and Engineering Research Board (SERB), Government of India, for the funding (grant No. CRG/2019/005558).

Author information

Authors and Affiliations

Authors

Contributions

SKR, SG, and AA performed the experiment. TS prepared the F-PITC. SKR and SG did the numerical simulation. RS and NG supervise the work. SKR, TS, and SG share equal contributions to this manuscript. All the authors have participated in writing the manuscript.

Corresponding authors

Correspondence to Shyamal Guchhait, Raja Shunmugam or Nirmalya Ghosh.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2979 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ray, S.K., Samanta, T., Guchhait, S. et al. Fano Resonance in Plasmonic Crystals Enables High-Sensitive Arsenite Detection. Plasmonics 17, 2015–2021 (2022). https://doi.org/10.1007/s11468-022-01687-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-022-01687-8

Keywords

Navigation