Skip to main content
Log in

Surface Plasmon Resonance Field-Enhanced Fluorescence Properties of Gold Quantum Dots on Polyelectrolyte Multilayers and Their H2O2 Sensor Application

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

In this work, we investigate surface plasmon field-enhanced fluorescence (SPF) emission from gold quantum dots (AuQDs) on a polyelectrolyte multilayer ultrathin film deposited onto an Al thin film. Polyelectrolyte layers of poly(diallyl dimethyl ammonium chloride) (PDADMAC) and poly(sodium 4-styrenesulfonate) (PSS) are deposited onto the Al surface using a layer-by-layer (LbL) adsorption technique. AuQDs are subsequently deposited onto the PDADMAC/PSS ultrathin films to study their fluorescence enhancement/quenching phenomenon, as monitored by SPF spectroscopy. The distance between the AuQDs and the Al thin film is controlled by the number of deposited PDADMAC/PSS LbL films. With increasing number of the PDADMAC/PSS bilayers, the fluorescence intensity of the AuQDs increases until the optimum distance between the AuQDs and Al layers is achieved. Moreover, silver nanoprisms (AgNPrs) are coated onto the AuQDs for H2O2 sensing. When the AgNPrs are present, a decrease in the fluorescence intensity of the AuQDs due to energy transfer from the AuQDs to the AgNPrs is observed. Recovery of the fluorescence intensity of the AuQDs is observed upon injection of a H2O2 solution, where the recovery of the intensity is proportional to the H2O2 concentration in the range from 1 pM to 100 nM and results from the oxidation reaction or etching of the AgNPrs. The fluorescence recovery is attributed to weakening of the quenching effect by a reduction in concentration of the AgNPrs. The proposed system exhibits strong potential for the development of H2O2 sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

All data generated or analysed during this study are included in this article.

References

  1. Touahir L, Jenkins ATA, Boukherroub R, Gouget-Laemmel AC, Chazalviel JN, Peretti J, Ozanam F, Szunerits S (2010) Surface plasmon-enhanced fluorescence spectroscopy on silver based SPR substrates. J Phys Chem C 114(51):22582–22589

    Article  CAS  Google Scholar 

  2. Bakhtiar R (2013) Surface plasmon resonance spectroscopy: a versatile technique in a biochemist’s toolbox. J Chem Educ 90(2):203–209

    Article  CAS  Google Scholar 

  3. Englebienne P, Van Hoonacker A, Verhas M (2003) Surface plasmon resonance: principles, methods and applications in biomedical sciences. Int J Spectrosc 17:255–273

    Article  CAS  Google Scholar 

  4. Baba A, Kanda K, Ohno T, Ohdaira Y, Shinbo K, Kato K, Kaneko F (2010) Multimode surface plasmon excitations on organic thin film/metallic diffraction grating. Jpn J Appl Phys 49(1):01AE02

  5. Homola J, Piliarik M (2006) Surface plasmon resonance based sensors. In: Homola J (ed) Surface plasmon resonance (SPR) sensors. Springer, Berlin, Heidelberg, pp 45–67

    Chapter  Google Scholar 

  6. Nootchanat S, Jaikeandee W, Yaiwong P, Lertvachirapaiboon C, Shinbo K, Kato K, Ekgasit S, Baba A (2019) Fabrication of miniature surface plasmon resonance sensor chips by using confined sessile drop technique. ACS Appl Mater Interfaces 11(12):11954–11960

    Article  CAS  PubMed  Google Scholar 

  7. Baba A, Taranekar P, Ponnapati RR, Knoll W, Advincula RC (2010) Electrochemical surface plasmon resonance and waveguide-enhanced glucose biosensing with n-alkylaminated polypyrrole/glucose oxidase multilayers. ACS Appl Mater Interfaces 2(8):2347–2354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yu F, Yao D, Knoll W (2003) Surface plasmon field-enhanced fluorescence spectroscopy studies of the interaction between an antibody and its surface-coupled antigen. Anal Chem 75(11):2610–2617

    Article  CAS  PubMed  Google Scholar 

  9. Baba A, Knoll W (2003) Properties of poly (3, 4-ethylenedioxythiophene) ultrathin films detected by in situ electrochemical-surface plasmon field-enhanced photoluminescence spectroscopy. J Phys Chem-B 107(31):7733–7738

    Article  CAS  Google Scholar 

  10. Tawa K, Hori H, Kintaka K, Kiyosue K, Tatsu Y, Nishii J (2008) Optical microscopic observation of fluorescence enhanced by grating-coupled surface plasmon resonance. Opt Express 16(13):9781–9790

    Article  CAS  PubMed  Google Scholar 

  11. Liebermann T, Knoll W (2000) Surface-plasmon field-enhanced fluorescence spectroscopy. Colloid Surf A-Physicochem Eng Asp 171:115–130

    Article  CAS  Google Scholar 

  12. Arima Y, Teramura Y, Takiguchi H, Kawano K, Kotera H, Iwata H (2009) Surface plasmon resonance and surface plasmon field-enhanced fluorescence spectroscopy for sensitive detection of tumor markers. Methods Mol Biol 503:3–20

    Article  CAS  PubMed  Google Scholar 

  13. Ruffato G, Pasqualotto E, Sonato A, Zacco G, Silvestri D, Morpurgo M, De Toni A, Romanato F (2013) Implementation and testing of a compact and high-resolution sensing device based on grating-coupled surface plasmon resonance with polarization modulation. Sens Actuators B-Chem 185:179–187

    Article  CAS  Google Scholar 

  14. Daghestani HN, Day BW (2010) Theory and applications of surface plasmon resonance, resonant mirror, resonant waveguide grating, and dual polarization interferometry biosensors. J Sens 10(11):9630–9646

    Article  CAS  Google Scholar 

  15. Sriwichai S, Janmanee R, Phanichphant S, Shinbo K, Kato K, Kaneko F, Yamamoto T, Baba A (2018) Development of an electrochemical-surface plasmon dual biosensor based on carboxylated conducting polymer thin films. J Appl Polym Sci 135(1):45641

    Article  Google Scholar 

  16. Shankaran DR, Gobi KVA, Miura N (2007) Recent advancements in surface plasmon resonance immunosensors for detection of small molecules of biomedical, food and environmental interest. Sens Actuators B-Chem 121(1):158–177

    Article  CAS  Google Scholar 

  17. Lesiak A, Drzozga K, Cabaj J, Banski M, Malecha K, Podhorodecki A (2019) Optical sensors based on II-VI quantum dots: review. J Nanomater 9(2):192

    Article  CAS  Google Scholar 

  18. Torimura M, Kurata S, Yamada K, Yokomaku T, Kamagata Y, Kanagawa T, Kurane R (2001) Fluorescence-quenching phenomenon by photoinduced electron transfer between a fluorescent dye and a nucleotide base. Anal Sci 17(1):155–160

    Article  CAS  PubMed  Google Scholar 

  19. Samanta A, Zhou Y, Zou S, Yan H, Liu Y (2014) Fluorescence quenching of quantum dots by gold nanoparticles: a potential long range spectroscopic ruler. Nano Lett 14(9):5052–5057

    Article  CAS  PubMed  Google Scholar 

  20. Phetsang S, Phengdaam A, Lertvachirapaiboon C, Ishikawa R, Shinbo K, Kato K, Mungkornasawakul P, Ounnunkad K, Baba A (2019) Investigation of a gold quantum dot/plasmonic gold nanoparticle system for improvement of organic solar cells. Nanoscale Adv 1(2):792–798

    Article  CAS  Google Scholar 

  21. Phetsang S, Nootchanat S, Lertvachirapaiboon C, Ishikawa R, Shinbo K, Kato K, Mungkornasawakul P, Ounnunkad K, Baba A (2020) Nanoscale Adv., 2, 2950–2957.

  22. Pangdam A, Nootchanat S, Lertvachirapaiboon C, Ishikawa R, Shinbo K, Kato K, Kaneko F, Ekgasit S, Baba A (2017) Investigation of gold quantum dot enhanced organic thin film solar cells. Part Part Syst Charact 34(11):1700133

    Article  Google Scholar 

  23. Wang H, Wang X, Wang J, Fu W, Yao C (2016) A SPR biosensor based on signal amplification using antibody-QD conjugates for quantitative determination of multiple tumor markers. Sci Rep 6:33140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hutter E, Maysinger D (2011) Gold nanoparticles and quantum dots for bioimaging. Microsc Res Tech 74(7):592–604

    Article  CAS  PubMed  Google Scholar 

  25. Gao L, Ju L, Cui H (2017) Chemiluminescent and fluorescent dual-signal graphene quantum dots and their application in pesticide sensing arrays. J Mater Chem C 5(31):7753–7758

    Article  CAS  Google Scholar 

  26. Kawasaki H, Hamaguchi K, Osaka I, Arakawa R (2011) ph-dependent synthesis of pepsin- mediated gold nanoclusters with blue green and red fluorescent emission. Adv Funct Mater 21(18):3508–3515

    Article  CAS  Google Scholar 

  27. Zheng J, Zhang C, Dickson RM (2004) Highly fluorescent, water-soluble, size-tunable gold quantum dots. Phys Rev Lett 93(7):077402

    Article  PubMed  Google Scholar 

  28. Stamplecoskie KG, Chen YS, Kamat PV (2014) Excited-state behavior of luminescent glutathione-protected gold clusters. J Phys Chem C 118(2):1370–1376

    Article  CAS  Google Scholar 

  29. Chen LY, Wang CW, Yuan Z, Chang HT (2015) Fluorescent gold nanoclusters: recent advances in sensing and imaging. Anal Chem 87(1):216–229

    Article  CAS  PubMed  Google Scholar 

  30. Ruffato G, Zacco G, Romanato F (2012) Innovative exploitation of grating-coupled surface plasmon resonance for sensing. In: Ki Young Kim (ed) Principles and applications. Plasmonics, pp 419–444

  31. Kaya T, Nagatoishi S, Nagae K, Nakamura Y, Tsumoto K (2019) Highly sensitive biomolecular interaction detection method using optical bound/free separation with grating-coupled surface plasmon field-enhanced fluorescence spectroscopy (GC-SPFS). PLoS ONE 14(8):e0220578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Nicol A, Knoll W (2018) Characteristics of fluorescence emission excited by grating-coupled surface plasmons. Plasmonics 13(6):2337–2343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Trnavsky M, Enderlein J, Ruckstuhl T, Mcdonagh C, MacCraith BD (2008) Experimental and theoretical evaluation of surface plasmon-coupled emission for sensitive fluorescence detection. J Biomed Opt 13(5):054021

    Article  PubMed  Google Scholar 

  34. Chochol J, Postava K, Cada M, Pistora J (2017) Experimental demonstration of magnetoplasmon polariton at InSb(InAs)/dielectric interface for terahertz sensor application. Sci Rep 7:13117

    Article  PubMed  PubMed Central  Google Scholar 

  35. Zhou YL, Li YZ (2004) Layer-by-layer self-assembly of multilayer films containing DNA and Eu3+: their characteristics and interactions with small molecules. Langmuir 20(17):7208–7214

    Article  CAS  PubMed  Google Scholar 

  36. Wang N, Zhang D, Deng X, Sun Y, Wang X, Ma P, Song D (2018) A novel surface plasmon resonance biosensor based on the PDA-AgNPs-PDA-Au film sensing platform for horse IgG detection. Spectroc Acta Pt A-Molec Biomolec 191:290–295

    Article  CAS  Google Scholar 

  37. Akbay N, Lakowicz JR, Ray K (2012) Distance-dependent metal-enhanced intrinsic fluorescence of proteins using polyelectrolyte layer-by-layer assembly and aluminum nanoparticles. J Phys Chem C 116(19):10766–10773

    Article  CAS  Google Scholar 

  38. Jang E, Son KJ, Koh WG (2014) Metal-enhanced fluorescence using silver nanoparticles-embedded polyelectrolyte multilayer films for microarray-based immunoassays. Colloid Polym Sci 292(6):1355–1364

    Article  CAS  Google Scholar 

  39. Wang X, He F, Zhu X, Tang F, Li L (2014) Hybrid silver nanoparticle/conjugated polyelectrolyte nanocomposites exhibiting controllable metal-enhanced fluorescence. Sci Rep 4:4406

    Article  PubMed  PubMed Central  Google Scholar 

  40. Komarala VK, Rakovich YP, Bradley AL, Byrne SJ, Corr SA, Gun’ko YK, (2006) Emission properties of colloidal quantum dots on polyelectrolyte multilayers. Nanotechnology 17(16):4117–4122

    Article  CAS  PubMed  Google Scholar 

  41. Lertvachirapaiboon C, Kiyokawa I, Baba A, Shinbo K, Kato K (2020) Controlling the luminescence of gold quantum dots by the plasmonic effect of silver nanoprisms. Plasmonics 15(1):3–9

    Article  CAS  Google Scholar 

  42. Lertvachirapaiboon C, Maruyama T, Baba A, Ekgasit S, Shinbo K, Kato K (2019) Optical sensing platform for colorimetric determination of silver nanoprisms and its application for hydrogen peroxide and glucose detections using a mobile device camera. Anal Sci 35(3):271–276

    Article  CAS  PubMed  Google Scholar 

  43. McShane MJ, Lvov YM (2014) Electrostatic self-assembly: layer-by-layer. In: Lyshevski SE (ed) Dekker encyclopedia of Nnanoscience and nanotechnology, 3rd edn. CRC Press, New York, pp 1342–1358

    Chapter  Google Scholar 

  44. Rawtani D, Agrawal YK (2014) Emerging strategies and applications of layer-by-layer self-assembly: review. Nanobiomedicine (Rij) 1(8):1–15

    Google Scholar 

  45. Feng AL, You ML, Tian L, Singamaneni S, Liu M, Duan Z, Lu TJ, Xu F, Lin M (2015) Distance-dependent plasmon-enhanced fluorescence of upconversion nanoparticles using polyelectrolyte multilayers as yunable spacers. Sci Rep 5:7779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by Japan Society for the Promotion of Science (JSPS) KAKENHI Grant Numbers JP20H02601 and JP20K21140. This work was partially supported by Chiang Mai University. P.Y. received scholarship from the Japanese Government (MEXT). K.O. and P.Y. were supported by the Graduate School (Chiang Mai University), Research Center on Chemistry for Development of Health Promoting Products from Northern Resources, Center of Excellence for Innovation in Chemistry (PERCH-CIC), Center of Excellence in Materials Science and Technology and Department of Chemistry, Faculty of Science, Chiang Mai University.

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed to the study conception and design. Material preparation and data collection were performed by Patrawadee Yaiwong. Data analysis was performed by Patrawadee Yaiwong, Chutiparn Lertvachirapaiboon, and Akira Baba. The first draft of the manuscript was written by Patrawadee Yaiwong, and all the authors commented on previous versions of the manuscript. All the authors read and approved the final manuscript.

Corresponding authors

Correspondence to Kontad Ounnunkad or Akira Baba.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yaiwong, P., Lertvachirapaiboon, C., Shinbo, K. et al. Surface Plasmon Resonance Field-Enhanced Fluorescence Properties of Gold Quantum Dots on Polyelectrolyte Multilayers and Their H2O2 Sensor Application. Plasmonics 16, 1195–1202 (2021). https://doi.org/10.1007/s11468-021-01388-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-021-01388-8

Keywords

Navigation