Skip to main content
Log in

Orientation Effects on Plasmonic Heating of Near-Infrared Colloidal Gold Nanostructures

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Photothermal therapy assisted by plasmonic nanostructure relies on the absorption of light energy by the metallic nanoparticle. The manifestation of a rational use of plasmonic-assisted superficial laser thermal therapy procedures requires the analyses of the thermoplasmonic behavior of colloidal nanostructures in random orientation. A quantitative analysis of orientation effect on optically heating metallic nanostructures still unrevealed. Here, we evaluate the thermal properties of metallic nanoparticles (SiO2/Au core-shell particles, Au nanotriangles, Au nanorods, and Au nanocages) irradiated by polarized light. We perform 3D full-wave field analysis to compare absorption properties and temperature rise of these nanoparticles as a function of the nanostructure orientation with respect to applied field polarization. The analysis shows a major variation in joule number of asymmetrical nanostructures (up to 50%) due to orientation effects, which may limit its performance on colloidal photothermal applications. In contrast, the high degree of rotational symmetry of core-shell nanoparticles and nanocages provide greater potential in thermal-assisted phototherapy applications, as their absorption is largely independent (less than 2%) of their orientation in colloid. Our computational results establish new insights for the use of gold nanocages, as a high performance plasmonic structure for thermal applications with colloidal samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Dreaden EC, Alkilany AM, Huang X, Murphy CJ, El-Sayed MA (2012) The golden age: gold nanoparticles for biomedicine. Chem Soc Rev 41:2740–2779

    Article  CAS  PubMed  Google Scholar 

  2. Farooq S, Neves WW, Pandoli O, Del Rosso T, de Lima LM, Dutra RF, de Araujo RE (2018) Engineering a plasmonic sensing platform for candida albicans antigen identification. J Nanophotonics 12(3):033003

    Article  Google Scholar 

  3. Mayer JH, Hafner KM (2011) Localized surface plasmon resonance sensors. Chem Rev 111(6):3828–3857

    Article  CAS  PubMed  Google Scholar 

  4. Farooq S, Gomez Malagon LA, de Araujo RE, Rativa D (2018) Spherical plasmonic structures for solar absorption. In: 2018 SBFoton international optics and photonics conference (SBFoton IOPC), pp 1–4

  5. Rativa D, Gómez-Malagón LA (2018) Colloidal plasmonic structures for harvesting solar radiation. Renew Energy 118:947–954

    Article  CAS  Google Scholar 

  6. Hutter E, Fendler JH (2004) Exploitation of localized surface plasmon resonance. Adv Mater 16(19):1685–1706

    Article  CAS  Google Scholar 

  7. Farooq S, Rativa D, de Araujo RE (2019) Exploring metallic semi-capped nanoshells chain for sensing applications. In: 2019 SBFoton international optics and photonics conference (SBFoton IOPC), pp 1–4.

  8. Kelly LK, Coronado E, Zhao LL, Schatz GC (2003) The optical properties of metal nanoparticles: the influence of size, shape and dielectric environment

  9. Liu K, Xue X, Furlani EP (2016) Theoretical comparison of optical properties of near-infrared colloidal plasmonic nanoparticles. Sci Rep 6:34189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Farooq S, Rativa D, de Araujo RE (2019) Optimizing the sensing performance of sio 2-au nanoshells. Plasmonics 14:1519–1526

    Article  CAS  Google Scholar 

  11. Ribeiro MS, de Melo LSA, Farooq S, Baptista A, Kato IT, Núñez SC, de Araujo RE (2018) Photodynamic inactivation assisted by localized surface plasmon resonance of silver nanoparticles: In vitro evaluation on escherichia coli and streptococcus mutans. Photodiagn Photodyn Therapy 22:191–196

    Article  CAS  Google Scholar 

  12. Hatef A, Fortin-Deschênes S, Boulais E, Lesage F, Meunier Ml (2015) Photothermal response of hollow gold nanoshell to laser irradiation: continuous wave, short and ultrashort pulse. Int J Heat Mass Transf 89:866–871

    Article  CAS  Google Scholar 

  13. Chu Z, Yin C, Zhang S, Ge L, Li Q (2013) Surface plasmon enhanced drug efficacy using core–shell au@ sio 2 nanoparticle carrier. Nanoscale 5(8):3406–3411

    Article  CAS  PubMed  Google Scholar 

  14. Ma H, Bendix PM, Oddershede LB (2012) Large-scale orientation dependent heating from a single irradiated gold nanorod. Nano Lett 12(8):3954–3960

    Article  CAS  PubMed  Google Scholar 

  15. Stauffer PR (2000) Thermal therapy techniques for skin and superficial tissue disease. In: Matching the energy source to the clinical need: a critical review, vol 10297, pp 102970E. International Society for Optics and Photonics

  16. Asnaashari M, Moeini M (2013) Effectiveness of lasers in the treatment of dentin hypersensitivity. J Lasers Med Sci 4(1):1

    PubMed  PubMed Central  Google Scholar 

  17. Morarescu R, Shen H, Vallée RAL, Maes B, Kolaric B, Damman P (2012) Exploiting the localized surface plasmon modes in gold triangular nanoparticles for sensing applications. J Mater Chem 22(23):11537–11542

    Article  CAS  Google Scholar 

  18. Yorulmaz M, Nizzero S, Hoggard A, Wang L-Y, Cai Y-Y, Su M-N, Chang W-S, Link S (2015) Single-particle absorption spectroscopy by photothermal contrast. Nano Lett 15(5):3041–3047

    Article  CAS  PubMed  Google Scholar 

  19. Mohamed MB, Ismail KZ, Link S, El-Sayed MA (1998) Thermal reshaping of gold nanorods in micelles. J Phys Chem B 102(47):9370–9374

    Article  CAS  Google Scholar 

  20. Loo C, Lin A, Hirsch L, Lee M-H, Barton J, Halas N, West J, Drezek R (2004) Nanoshell-enabled photonics-based imaging and therapy of cancer. Technol Cancer Res Treatment 3(1):33– 40

    Article  CAS  Google Scholar 

  21. Johnson PB (1972) R-W_ Christy optical constants of the noble metals. Phys Rev B 6(12):4370

    Article  CAS  Google Scholar 

  22. Farooq S, de Araujo RE (2018) Engineering a localized surface plasmon resonance platform for molecular biosensing. Open J Appl Sci 8(03):126

    Article  CAS  Google Scholar 

  23. Baffou G, Quidant R, de Abajo FJG (2010) Nanoscale control of optical heating in complex plasmonic systems. ACS Nano 4(2):709–716

    Article  CAS  PubMed  Google Scholar 

  24. Lalisse A, Tessier G, Plain J, Baffou G (2015) Quantifying the efficiency of plasmonic materials for near-field enhancement and photothermal conversion. J Phys Chem C 119(45):25518–25528

    Article  CAS  Google Scholar 

Download references

Funding

The authors are grateful to Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), the National Institute of Science and Technology of Photonics (INCT de Fotônica), and the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renato E. de Araujo.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farooq, S., Rativa, D. & de Araujo, R.E. Orientation Effects on Plasmonic Heating of Near-Infrared Colloidal Gold Nanostructures. Plasmonics 15, 1507–1515 (2020). https://doi.org/10.1007/s11468-020-01148-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-020-01148-0

Keywords

Navigation