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Abstract

Properties of plasmonic materials are associated with surface plasmons—the electromagnetic excitations coupled to coherent
electron charge density oscillations on a metal/dielectric interface. Although decay of such oscillations cannot be avoided,
there are prospects for controlling plasmon damping dynamics. In spherical metal nanoparticles (MNPs), the basic properties
of localized surface plasmons (LSPs) can be controlled with their radius. The present paper handles the link between the size-
dependent description of LSP properties derived from the dispersion relation based on Maxwell’s equations and the quantum
picture in which MNPs are treated as “quasi-particles.” Such picture, based on the reduced density matrix of quantum open
systems ruled by the master equation in the Lindblad form, enables to distinguish between damping processes of populations
and coherences of multipolar plasmon oscillatory states and to establish the intrinsic relations between the rates of these
processes, independently of the size of MNP. The impact of the radiative and the nonradiative energy dissipation channels

is discussed.
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Introduction

Plasmonics is a promising research area with many potential
applications ranging from photonics, chemistry, medicine,
bioscience, energy harvesting, and communication to infor-
mation processing (e.g., [1-15]) and quantum optics
(e.g., [16-26]). Plasmonics is based on the excitation of
plasmons—electromagnetic excitations coupled to electron
charge density oscillations on metal-dielectric interfaces,
which result in confinement and enhancement of electro-
magnetic (EM) fields at metal/dielectric interfaces.

The optical features of metal nanoparticles (MNPs) are
dominated by their ability to resonate with the EM radiation.
Excitation of collective surface charge oscillations in form
of the standing waves known as localized surface plasmons
(LSPs) gives rise to a variety of effects such as the near-
field concentration to the region well below the diffraction
limit or the far-field resonant absorption and scattering in
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the spectral ranges which can be manipulated by MNP’s
dimensions and shape and the dielectric properties of the
environment [27-31].

Size-dependent spectral properties of noble MNPs (e.g.,
[32-35]) and plasmon dynamics are of basic importance
in many studied plasmonic issues. The example can be
harnessing hot electrons and holes, resulting from the
decay of LSPs which recently attracted considerable atten-
tion because of their promising applications in photode-
tection, energy harvesting, hot-carrier-induced chemistry,
photocatalysis, etc. [36—43]. The performance of plasmonic
devices correlate with numerous parameters that need to be
studied to reach the optimum and desired properties. In all
of them, LSP dynamics tailored by MNP size play a crucial
role.

The shapes and the spectral widths of the MNP spectra
are usually studied on the ground of the formalism known
as the Lorentz-Mie scattering theory with the solutions in
the form of a sum of an infinite series of the spherical
multipole partial waves. Such fully classical electrodynamic
description of scattering of a plane wave by a sphere (e.g.,
[44—48]) has been extended for the case of non-absorbing
hosts [11], multi-layered spheres [49, 50], and arbitrary
incident light beams [51]. LSP damping rates manifested
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in the broadening of the NPs spectra were experimentally
studied in the case of the dominant dipole contribution to the
spectra for NPs with available, limited sizes [33, 34, 52-55]
(and references therein). The resulting damping times and
the frequencies corresponding to the maxima in the far-field
intensity signals are often suggested to directly characterize
the LSP damping process and LSP resonance position.

However, the desired parameters (both for fundamental
reasons and with a view to applications) such as size-
dependent oscillation frequencies of multipolar modes cor-
responding to LSP’s resonances, or the decay rates (times)
of the excited oscillations, are not the explicit parameters
of the Lorentz-Mie scattering theory. In [56-59], such func-
tions were derived from considering the classical dispersion
relation [60, 61] for the surface localized EM (SLEM)
fields basing on the self-consistent Maxwell divergent-free
equations. The modelling [56—59] provides the explicit size
dependence of the oscillation frequencies of SLEM fields
and of the damping rates of such oscillations for the dipole
and higher order multipolar surface modes and goes beyond
the limitations related to the MNP’s size including those
which result from the often used quasistatic approximation
(e.g., [35]) which Kkills the size dependence (see also [17]
in the case of cavity QED formalism using the electrostatic
electric field potential).

However, such classical description of the dynamics of
LSP damping imposes constraints to fully understand the
LSP dynamics including the damping processes, because it
does not distinguish between the dephasing and population
damping. In case of the dipole LSP such quantities were
suggested to be connected to each other [34, 53-55] and
composed of radiative and nonradiative decay into electron-
hole excitations. However, more detailed analysis of the
problem was not given.

The present paper aims to present such an analysis by
adopting the theory of quantum open systems and formu-
lating the conclusions which apply to the issue of the LSP
damping.

Plasmonic phenomena are inherently quantum (see, e.g.,
[62-64]). Quantum plasmonics has recently emerged as a
new fascinating field of research with a view of observ-
ing quantum phenomena in light-matter interactions at the
nanoscale (see [22, 63, 65-67] for reviews). In particular,
there have been a large number of theoretical studies of
interactions between a (dipole) emitters and confined plas-
monic structures in weak or also in strong-coupling regime
using different approaches (“macroscopic” QED using
Green’s functions, quasinormal decomposition, resonant-
state-expansion) [17-26, 68, 69]. The confinement of light
field to scales far below that met in the case of the conven-
tional optics by metalic nanostructures enables to describe
the interactions between atomic systems and plasmonic
structures in the formalism of cavity QED and (see, e.g.,
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[17]) to explore the potential of such systems [70] for
developing future quantum technologies like single-photon
transistor or for carrying quantum information (see [66, 67,
71] for reviews).

In this paper, we describe the intrinsic dynamics of
LSP which includes the relaxation pathways leading to the
dephasing and population damping of plasmon oscillations
within a quantum dynamical description of open systems.
The master equation in the Lindblad form within the
Born-Markov approximations [72] is used to describe the
evolution of an open quantum system of N electrons
confined in an MNP in absence of the driving EM field.
Conclusions allow to generalize the common understanding
of the LSP damping as the process which consists not only
from the dephasing of LSP oscillations, but also from the
population damping at the twice larger rate, irrespective the
MNP size and LSP multipolarity.

The results of such modeling have been related to the
previously derived multipolar damping rates versus MNP
radius which describe the LSP decoherence process. Such
rates resulted from the dispersion relation for the surface
localized electromagnetic (SLEM) fields [56-59] which
we shortly reconsider for completeness of the modelling.
Derived in absence of the illuminating light, the dephasing
and population damping rates tailor the transient LSP
dynamics but manifest also in the amplitudes and widths
of the spectra. The size dependence of studied parameters
allows predicting the optimum and desired properties of
LSPs, being a useful tool in tailoring MNP plasmonic
performance in experiments and applications also in the size
regions still practically unavailable.

Plasmon Oscillatory Eigenstates (Classical
Description)

Energy levels of atoms and molecules manifest in transi-
tions from one energy level to another when they absorb
and emit light. We use a similar picture of energy levels
for a plasmonic system of N free-electrons confined in a
spherical MNP. The starting point is based on the results
of rigorous classical electrodynamic description based on
the self-consistent divergent-free Maxwell equations (with
no external sources). This problem was completely solved
in a classical paper by Mie (1908) [44]. However, in the
present study based on the formulations [21, 56-59, 61, 73—
75], unlike in the case of the popular Lorentz-Mie scattering
theory (e.g., [44-48]), the radiation illuminating the MNP is
absent. A spherical metal/dielectric interface forms a cavity
[21] which allows excitation of diverse modes of the SLEM
fields in the form of the standing waves adjusted to the
MNP’s dimensions. Such modes can be excited after MNP
is illuminated by the light within the appropriate frequency
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range. The continuity relation at the spherical interface
leads to a set of separate dispersion relations for each
multipole mode of the partial wave. The solutions exist for
TM polarized modes only, because contrary to TE modes,
TM (or p polarized electric waves) posses the non-zero
normal to the surface (radial) components of the electric
field, which are able to couple with the surface free charges.

The dispersion relations for SLEM fields define the
complex, discrete eigenvalues hi(w; — iI7/2) and connect
the allowed oscillation frequency w; and the corresponding
damping rate I of the /th mode oscillations to the (inverse
of) NS’s radius R. The size dependence of w;(R) and
I7/2(R) define the dynamics of SLEM fields: exp (iw; —
I7/2)t) and is unambiguously determined by the material
properties of the MNP and its dielectric environment. Found
in absence of the illuminating radiation, w; and I inherently
characterize an MNP of the radius R in the same way as
the energy levels and the inverse of lifetimes characterize
an atom or a molecule. In both cases, these quantities
manifest in the spectra, when the systems are illuminated.
The example of w;(R) and I7(R) dependence for gold
MNPs embedded in water [59] is shown in Fig. 1.

Let us note that the problem of eigenmodes for plas-
monic resonators recently attracted new interest resulting in
a number of theoretical studies of quasinormal modes for
plasmonic resonators and open cavities. In particular, based
on the concept of the resonant-state expansion (e.g., [21, 26,
76-78]), it was confirmed, that an open optical system like a
plasmonic confined structure can be characterized by the
complex eigenfrequencies with the real and imaginary parts
corresponding to, respectively, the spectral positions of the
resonances and defining the spectral linewidths of resonances.
However, such a classical description does not include
populations of the plasmon modes nor their damping.

The next step is to replace the oscillation energies hwy (or
hwy) of the classical modes by the discrete energy levels,
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Fig.1 The scheme leading to the dispersion relation for SLEM fields
(left) and the example of the resulting discrete complex eigenvalues
hw; — ih17/2 for the consecutive modes / = 1, 2,3 ... (right) for Au
MNPs embedded in water [59]

which are distinct from the zero-energy non-oscillatory
level by the energies hw;(R) (or hwj (R)) (see Fig. 2a, b).
The corresponding states of the plasmonic systems S in
the Hilbert space are |y;) with I = 1,2, 3... (see Fig. 2b).
The only possible transitions are those with the absorption
or emission of a photon with the energy hw;. Such transi-
tions occur between the state |;) and the non-oscillatory
state |1p).

The Density Matrix for N Electrons
of the Plasmonic System and the Quantum
Master Equation

The density matrix (the density operator) is an alternate
representation of the state of a quantum system which is
very convenient for systems in the mixed states and in time-
dependent problems. One of the reasons to consider the
mixed states is the entanglement of the systems with the
environment. The diagonal elements of the density matrix
correspond to the probabilities p, = N, /N of occupying a
quantum states |y,), n =0,1,2... , so they describe the rela-
tive populations of these states. The complex off-diagonal
elements of the density matrix in the basis {|vy), |Yo)}
contain a time-dependent phase factors that describe
the evolution of coherent superposition of the states.

The plasmonic system S we consider consists of N
electrons which in general can be distributed over the states
[Ym) . n = 0,1 = 1,2... with |¢g) for the ground, non-
oscillatory states and |v;) for the excited oscillatory states
of the plasmon modes / (see Fig. 2). Coherences between
the states |Yg) and |y;) can be created after the interaction
of the system, e.g., with the external EM field. As no
physical system is absolutely isolated from its surroundings,
the plasmonic system S has to be considered as an open
quantum system which is a subsystem of a larger combined
quantum system S+ E, where E represents the environment
to which the open system S is coupled. Following the main

Quantum

Classical

Fig. 2 Ascribing the energy levels (b) to the oscillation energies
hwi(R) (a) which resulted from the dispersion relation for SLEM
fields
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assumption of the basic theory of open quantum systems
[72], the environment is assumed to be a large system
with an infinite number of degrees of freedom, (with a
continuous and wide spectrum of characteristic frequencies)
in thermal equilibrium. Therefore, the state of the system
E is practically unaffected by coupling to the system S.
The interaction of the open system S with the environment
causes an irreversible behavior of the open system S
and leads to decoherence (randomization of phases) and
dissipation of energy into the surroundings.

The evolution of the open quantum system S can
be described by using a master equation which defines
the dynamics of the reduced density operator pS(r) =
trg p(t) obtained after tracing out the environment degrees
of freedom (e.g., [72]). The quantum Markovian process
represents the simplest case of the dynamics of an open
systems. Within the Markov approximation, the memory
effects of the system under influence of the environment
are negligible. The correlation functions of the environment
decay sufficiently fast over the time tg which is small
compared with the characteristic timescale of the relaxation
processes ts of the system S (e.g., [72, 79-81]).

The dynamics of open systems in the case of Markov
processes can be described by a first-order linear differential
equation for the reduced density matrix, which is known
as a quantum Markovian master equation in Lindblad form
[81-83]:

35 (1) i

ar A

(1.5 0] - DLp* ] ()

where p°(¢) is the reduced density matrix of the system S,
and D[p®(r)] is the so-called dissipator:

1 .
DIpS1=3) (LZLkpS +pSLiL; — 2LkpSL};) )
k

Summation over k extends over all processes of coupling
with the environment. The first term on the right-hand side
of the Eq. (1) describes the unitary evolution of the system S
under the action of a Hamiltonian H. The dissipator D[,OS ]
describes the environmental influence on the system state
(e.g., [72]). The “jump” operators L; (Eq. (2)) describe a
random evolution of the system which suddenly (at the time
scale of the evolution) changes under the influence of the
environment. Each Ly p¥ LZ term induces one of the possible
quantum jumps, while the remaining terms are needed to
normalize properly the case in which no jump occurs.

The simplest quantum system is a two-level system
whose Hilbert space is spanned by two states, an excited
state and a ground state. Such a two-level system is a very
important basic model for an atom or a system of spins
which is often used in quantum mechanics. The two-level
system can be successfully used, provided that the tran-
sitions to other levels can be neglected.
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In the case of LSPs, such picture can be related to
the classical description based on Maxwell equations (see
the section “Plasmon Oscillatory Eigenstates (Classical
Description)”), where the problem is solved separately for
each EM mode [ of the SLEM field, and the final result is
a sum over the solutions for consecutive modes with [ =
1,2, 3.... Basing on such analogy, we describe the plasmonic
system S as a sum of S of independent, open subsystems:

S = Z S 3)
=1

Each subsystem S; is a two-level system: the excited states
|[¥;) and the ground non-oscillatory state [y). The state
of each subsystem S; can be described by the 2 x 2
matrix operator p5 (). Each system S; is coupled to the
environment independently and all assumptions about the
coupling of the system S; to the environment remain ful-
filled for subsystems S. The dynamics of the system S thus
results from the independent dynamics of the systems S;:

pSty =" p% () “)
I

governed by the Lindblad Eq. (1). The form of the equation
(2) guarantees that also dynamics of each matrix operator
p3i(1) is governed by the equation in the Lindblad form.
Therefore, we can use the standard basis {|vy;), |Vo)}
represented by the two-dimensional column vectors:

0 1
|wo>=<1>, |wz>=(0) 5)

and represent the operator p3 (¢) in matrix form:

S ou®) pio(t)
PO = (Poz(t) Poo(l))' ©)

The diagonal elements of the matrix p represent the rel-
ative populations (more precisely, the population probability
densities) of the relevant states. The off-diagonal elements
represent quantum-mechanical coherences and are complex
conjugates of each other, carrying the same information.

The Hamilton operator H; = E;|y;) (V| — Eolvo)(¥ol])
with the energy eigenvalue Eg = 0 (Fig. 2) in the ground
state (H|Yo) = Eol¥o) = 0):

Hlyn) = Eilyn) (N
in the chosen basis is represented by the matrix:

10
Hz—E1<00)- ®)

The commutator [Hl, ,oSl] possess the non-zero off-
diagonal elements only.

The transition operator from the state |i;) to the state
[Yo): oY1) = [¥o){¥ilyn) = I[¥o), and its complex
conjugate (0-)" = o (o41%0) = V1) (Wolvo) = |yn))
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can be expressed in the basis {|1;), |¥0)} with the use of the
Pauli 2 x 2 matrices o and o7:

1 1
0—=§(01—i02)=((1) 8) o+=5<al+ioz)=(8 (1))
©)

which are eigenoperators of the Hamiltonian H; (Eq. (8)),
which describe the emission and absorption processes. As
usual, o_ is the operator lowering the energy and o is the
energy rising operator: [ Hj, 05| = Fhwox.

Dynamics of the Radiative Plasmon Damping

An excited plasmon, similarly as an excited atom, decays
to the state of lower energy spontaneously emitting a pho-
ton. In the theory of open quantum systems, such decay is
assumed to be due to the coupling of the system to the EM
vacuum (fluctuating) fields. The random vacuum fluctua-
tions (which pervades all space even at zero temperature)
cause random jumps influencing plasmon evolution. In the
case when only radiative damping is present, the Hamilto-
nian in the Linblad Eq. (1) H] = H; (8) and the eigenenergy
E = ha)l’
A single jump operator

L = /IVo- (10)

describes random, sudden emission of a photon from the
state |y;) to the state |y/g) of the S;, with I}/ being the
(spontaneous) radiation rates. The Lindblad master Eq. (1)
takes then the form:

9pS! i 1
-~ _ _ Hr’ SI]__ r
ot h[ L B
S S S
X <0+0_,o + ployo_ —20_p a+>. ar)

The evolution of the diagonal and off-diagonal elements of
Si
0

d(Pzz Pl())_- r( 0 PZO) r<Pll %1010)
- =1oy =1\
dt \ por Poo —por 0 3P0 =PIl

(12)
leads to the solutions (ty = 0):
ou(t) = pulto)exp (—17t), (13)
poo(t) = pu(to) (1 — exp (—171)) (14)
por(t) = poi o) exp (—iw) — I7/2), (15)
pio(t) = prolio) exp (iw] — I} /2) 1. (16)

> pu(to) exp (—1I7t)
pS(t) =

> protto) exp (it = $ 11t )
1

1
> porto) exp (= (iwrt = $1it) ) X puo) (1 = exp (~110)
[ [

Therefore, the radiative damping rate I} 7”7 = I

of populations pj; is twice as large as the radiative rate
ry coh — I77/2 of coherences pjo = pg;, so the relation
between the corresponding radiative lifetimes of popula-
tions and coherences is 27, P = T} <o,

Dynamics of the Total (Radiative and Collisional)
Plasmon Damping

Electrons in a metal inevitably undergo collisions which
lead to the dissipation of energy and release of heat. To
account for nonradiative relaxation processes, the system S
interacting with fluctuations of the vacuum is assumed to be
immersed in a dissipative heat-bath in a thermal equilibrium
state with an infinite number of degrees of freedom.
The heat reservoir dynamics is assumed to be much faster
than those of the open system S, so the dynamics of S;
(and those of §) is Markovian. The jump operators which
describe the collisional transition from the state |y;) to the
state |ig) are:

L= /"o (17)

where I7"" are the nonradiative rates describing the colli-
sional processes leading to the heat release. Summing over
radiative and nonradiative contributions in the dissipator
D[pS 1 (Eq. (2)), we get the master equation:

dpsi i s 1
— = —— | H , l] _ FV Fnr
a1 h[ ot | =5 (1)
N N S1
X <0+0_,0 + ploro_—20_p G+) . (18)

The random jumps in the evolution of p% (r) with the
rates I}” and I}"" are assumed to be uncorrelated. The
relaxation of the diagonal and off-diagonal elements of p5
is governed by the total relaxation rate I7 = I}” + I"". The
Hamiltonian H; (Eq. (8)) defines the eigenenergies E; =
hawy of the excited states [1/;) in presence of the radiative and
nonradiative damping processes.

Using the formalism recalled in the previous section and
Eq. (4), the evolution of the whole system S is described by
the dynamics of the density matrix pS (t) (Egs. (4) and (6)):

Yo ou) Y po()

S _ Ji i
= XZ:POl(f) Poo(t) (19)

with the diagonal and off-diagonal temporal dependence
given by:

(20)
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The populations of the oscillatory states are exponen-
tially damped with the rates:

I—yl[l()p — 1—117' + nnr, (21)

while the oscillations of coherences are damped with two

times lower rate:
. 1 1
I-vlcoh _ E IPOP — E (nr + 1"1'”‘) . 22)

So the lifetime of coherences is twice as large as the
lifetime of populations.

The temporal evolution of coherences p* proceeds
according to exp(iew; — I7/2)t, similarly to the evolution
of SLEM fields, which resulted from the dispersion rela-
tion (section “Plasmon Oscillatory Eigenstates (Classical
Description)”). So, the size dependence of w; and I in
Eq. (20) can be found by solving the dispersion relation for
SLEM field for successive R + AR, as it was done in our
previous papers [56-59].

The density matrix p5(1) (Eq. (20)) fulfills all the prop-
erties which are of basic importance for quantum statistics:
it is positive, self-adjoint, and with the trace equal 1.
The relative populations of the states |v,), n = 0, [:

D O Nu(/N = poo®) + Y pu(t) (23)
1 1

are the same at any time ¢ as the initial populations

D Ni@)/N =) pulto) =1 (24)
1 1

over the excited, oscillatory states |y;), [ =1,2,3...att = 19
(see Eq. (20)):

Tr[05®] = o) + Y pu®) =Y put) = 1. 25)
[ l

Pure Dephasing

Pure dephasing takes place where the external reservoir is
the source of fluctuations which do not change the average
energy of the system. These fluctuations lead to a loss of
coherence in the system resulting in the decay of the off-
diagonal elements of the density matrix, without affecting
the diagonal elements. So, if there are processes which
lead to decoherence without affecting populations, the total
damping rate is increased by the “pure” decoherence rate
Fl*whi

1 1
lecoh — EFIPOP + Fl*coh — E (nr + Flnr) + le*coh. (26)

The population damping rates Flp 7 remain unchanged:
I"l[’()p — I'er + I—wlnr. (27)

In the case when the nanoparticle is illuminated by
light, such “pure” dephasing processes introduce additional
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broadening to the observed spectra in which LSP excitations
manifest.

Discussion and Conclusions

Localized surface plasmons in plasmonics are com-
monly described as the electromagnetic excitations cou-
pled to coherent electron charge densities oscillations on a
metal/dielectric interface. LSP’s parameters such as damp-
ing rates of plasmon oscillations in function of MNP’s size
(related to the decoherence processes) are usually derived
from the widths of scattering or absorption spectra for the
dipole (! = 1) plasmon mode only. In common practice,
such damping rates (and the frequencies corresponding to
the maxima in the far-field intensity signals) are suggested
to describe LSP dynamics what may lead to narrow under-
standing of LSP damping, which in fact is the process
embracing dephasing and depopulation of all the plasmon
modes involved, including those not evidenced as distinct
maxima in the spectra. Moreover, it is known that in general
LSP resonances can manifest in different manners in diverse
spectra in the near- and far-field regions [84-88].

Solutions of the dispersion relation for SLEM fields
(see the example in Fig. 1) allow to find the intrinsic LSP
dephasing rates and resonance frequencies of multipolar
plasmons in absence of illumination and predict their size
dependence in the large range of MNP radii [56—-59].

In the applied quantum description, an MNP is treated
as “quasi-particle,” similarly to an atom or molecule. Such
picture enables studying the intrinsic decay dynamics of
both populations and coherences of the quasi-particles
oscillatory states involving physical quantities and their
relations which have not been discussed in the previous
approaches. In particular, the damping rates of populations
and of coherences of consecutive plasmon modes occur to
be intrinsically different: 177"’ = 2I°", regardless of the
MNP size.

The present paper builds the bridge between the results
of the classical electrodynamic description supplying size
dependence of the dephasing rates and the quantum descrip-
tion of the intrinsic dynamics of plasmon decay pro-
cesses in MNPs which are essentially not restricted in size
(see Fig. 3). Such dynamics is affected by several fac-
tors to consider such as electron dumping in bulk metal
Ybulk»> the electron-surface scattering yr (the parameters of
the dielectric function), radiation damping, and prospec-
tively the interface damping resulting in energetic charge
carriers production. In the case of solving the dispersion
relation for SLEM fields using the Drude-like dielectric
function (electron dumping in bulk metal with the rate yp,,;x
and the radius-dependent electron-surface scattering rate
yr accounted), the damping rates I7(R) define the size
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Fig.3 The correspondence of deriving the radius-dependent quantities
which describe the dynamics of the SLEM fields within classical EM
modelling (left) and the corresponding scheme for the dynamics of
coherences in the quantum description (right)
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dependence of the total population and coherence damp-
ing rates resulting from the quantum modelling: I7(R) =
["(R) = I;"(R)/2 (see Fig. 3). Such link can be
a useful tool in tailoring MNP plasmonic performance in
experiments and applications also in the size regions still
practically unavailable. Suggested (Fig. 3) decomposition of
the contribution of the radiative rates from the total damping
rates after appropriate modification of the input dielectric
function of gold and silver (yp,x =0) will be the subject of
our next study.

The quantum picture offers the attractive prospects for
designing the plasmonic devices that operate at the quantum
level and exploit their lossy nature (e.g., [36, 89-91]), in
addition to the broad range of applications based on the
enhancement of EM fields at metal/dielectric interfaces. In
such a practical context, accounting for various dissipative
decay channels and quantification of their importance in the
plasmonic systems built of diverse material, size, and shape,
embedded in various matrices, is of basic importance.

Open Access This article is distributed under the terms of the
Creative Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted
use, distribution, and reproduction in any medium, provided you give
appropriate credit to the original author(s) and the source, provide a
link to the Creative Commons license, and indicate if changes were made.
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