Skip to main content
Log in

Influence of Anisotropy on Optical Bistability in Plasmonic Nanoparticles with Cylindrical Symmetry

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

In this paper, the effect of radial anisotropy on optical bistability in the cylindrical nanoshells is theoretically investigated within the quasi-static approximation. We consider two cases: when the shell is anisotropic and the core is nonlinear metal and when the core is anisotropic and the shell is a nonlinear metal. The dependence of optical bistability on the size of the nonlinear/anisotropic shell or core, the embedding medium, the anisotropy parameter, and the type of noble metals as candidates for plasmonics is studied and demonstrated. We show that by changing the type of the plasmonic metal, the switching threshold field changes can be used to design nanoparticle-based all-optical sensors. It is also shown that significant optical bistability and all-optical switching behavior can be obtained in the cylindrical nanoshells due to nonlinearity enhancement via the plasmonic structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Fan X, Shen Z, Lukyanchuk B (2010) Huge light scattering from active anisotropic spherical particles. Opt Express 18:24868–24880

    Article  CAS  Google Scholar 

  2. Gao L, Gu L, Li Z (2003) Optical bistability and tristability in nonlinear metal-dielectric composite media of nonspherical particles. Phys Rev E 68(066601)

  3. Kauranen M, Zayats AV (2012) Nonlinear plasmonics. Nat Photonics 6:737–748

    Article  CAS  Google Scholar 

  4. Hoang TT, Le KQ, Ngo QM (2015) Surface plasmon-assisted optical switching/bistability at telecommunication wavelengths in nonlinear dielectric gratings. Curr Appl Phys 15:987– 992

    Article  Google Scholar 

  5. Ishimaru A (1991) Electromagnetic wave propagation radiation and scattering. Prentice-Hall, New Jersey

    Google Scholar 

  6. Gao L, Huang JP, Yu KW (2003) Giant enhancement of optical nonlinearity in mixtures of graded particles with dielectric anisotropy. Eur Phys J B 36:475–484

    Article  CAS  Google Scholar 

  7. Qiu C, Gao L, Joannopoulos JD (2010) Light scattering from anisotropic particles: propagation, localization, and nonlinearity. Laser Photonics Rev 4:268–282

    Article  CAS  Google Scholar 

  8. Yuen KP, Law MF, Yu KW, Sheng P (1997) Optical nonlinearity enhancement via geometric anisotropy. Phys Rev E 56:R1322

    Article  CAS  Google Scholar 

  9. Li Q (ed) (2015) Anisotropic nanomaterials: preparation, properties and applications. Springer International Publishing, Switzerland

    Book  Google Scholar 

  10. Gao L, Yu XP (2005) Effects of a coating of spherically anisotropic material in core-shell particles. Phys Lett A 335:457–463

    Article  CAS  Google Scholar 

  11. Liu DH, Xu C, Hui PM (2008) Effects of a coating of spherically anisotropic material in core-shell particles. Appl Phys Lett 92(181901)

  12. Wu DJ, Liu XJ (2009) Influence of spherically anisotropic core on the optical properties of gold nanoshell. Appl Phys A 94:537–541

    Article  CAS  Google Scholar 

  13. Yin YD, Gao L, Qiu CW (2011) Electromagnetic theory of tunable SERS manipulated with spherical anisotropy in coated nanoparticles. J Phys Chem C 115:8893–8899

    Article  CAS  Google Scholar 

  14. Shu-Min J, Da-Jian W, Ying C, Xiao-Jun L (2012) Manipulated localized surface plasmon resonances in silver nanoshells coated with a spherical anisotropic layer. Chin Phys B 21(127806)

  15. Razumova MA, Dmitruk IM (2013) Splitting of plasmon frequency in spherical metal nanoparticles in anisotropic medium. Plasmonics 8(1699):1706

    Google Scholar 

  16. Della Sala F, D’Agostino S, (eds) (2013) Handbook of molecular plasmonics. CRC Press, Boca Raton

    Google Scholar 

  17. Daneshfar N, Foroughi HR (2016) Optical bistability in plasmonic nanoparticles: effect of size, shape and embedding medium. Phys E 83:268–274

    Article  CAS  Google Scholar 

  18. Zhu J, Liu H, Huang LQ (2009) Wall thickness dependent double optical bistability in gold nanotube: a physical mechanism based on local field enhancement. J App Phys 105 (114319)

  19. Lide DR, (ed.) (2004) CRC handbook of chemistry and physics. CRC Press, Boca Raton FL

  20. Stoller P, Jacobsen V, Sandoghdar V (2006) Measurement of the complex dielectric constant of a single gold nanoparticle. Opt Lett 31:2474–2476

    Article  CAS  Google Scholar 

  21. Polo Jr JA, Mackay TG, Lakhtakia A (2013) Electromagnetic surface waves: a modern perspective. Elsevier, Waltham

  22. Boyd RW (2008) Nonlinear optics, 3rd edition. Academic Press, San Diego

    Google Scholar 

  23. Argyropoulos C, Chen PY, Monticone F, D’Aguanno G, Alu A (2010) Nonlinear plasmonic cloaks to realize giant all-optical scattering switching. Phys Rev Lett 108(263905)

  24. Chen HL, Gao DL, Gao L (2016) Effective nonlinear optical properties and optical bistability in composite media containing spherical particles with different sizes. Opt Express 24:5334–5345

    Article  CAS  Google Scholar 

  25. Ma P, Gao D, Ni Y (2016) Enhancement of optical nonlinearity by core-shell bimetallic nanostructures. Plasmonics. doi:10.1007/s11468-015-0036-x

  26. West PR, Ishii S, Naik GV, Emani NK, Shalaev VM, Boltasseva A (2010) Searching for better plasmonic materials. Laser Photonics Rev 4:795–808

    Article  CAS  Google Scholar 

  27. Chen H, Zhang Y, Zhang B, Gao L (2016) Optical bistability in a nonlinear shell-coated metallic nanoparticle. Sci Rep 6 :21741

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nader Daneshfar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Daneshfar, N., Naseri, T. & Foroughi, H. Influence of Anisotropy on Optical Bistability in Plasmonic Nanoparticles with Cylindrical Symmetry. Plasmonics 13, 385–392 (2018). https://doi.org/10.1007/s11468-017-0522-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-017-0522-4

Keywords

Navigation