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Abstract The surface plasmon resonances of silver
nanoshell particles are studied by Green’s function.
The nanoshell system of plasmon resonances results
from the coupling of the inner and outer shell surface
plasmon. The shift of the nanoshell plasmon resonances
wavelength is plotted against with different dielectric
environments, several different dielectric cores, the ra-
tio of the inner and outer radius, and also its assemblies.
The results show that a red- and blue-shifted localized
surface plasmon can be tuned over an extended wave-
length range by varying dielectric environments, the
dielectric constants and the radius of nanoshell core
respectively. In addition, the separation distances, the
distribution of electrical field intensity, the incident
directions and its polarizations are also investigated.
The study is useful to broaden the application scopes
of Raman spectroscopy and nano-optics.

Keywords Silver nanoshell particles - Green’s
function - Red-shifted - Surface plasmon resonances

Y.-W.Ma (X)) - J. Zhang - L.-H. Zhang
School of Physics and Electric Engineering,
Angqing Teachers College, Anqing 246011,
People’s Republic of China

e-mail: mayewan@agqtc.edu.cn

G.-S. Jian - S.-F. Wu

School of Physics and Optoelectronics Technology,
Dalian Universtiy of Technology, Dalian 116024,
People’s Republic of China

Introduction

Due to the quantum size and surface effects, no-
ble metal nanoparticles have different optical, electro-
magnetic and chemical properties from bulk materials
[1-4]. The intense optical absorption and scattering
effects induced by surface plasmon resonances have
attracted particularly strong study in recent years
[5-7]. Plasmon resonances are electromagnetic modes
associated with the excitation of collective oscillations
of the electronic charge density in metals. When plas-
mon is under certain electromagnetic disturbance, ac-
cording to metallic electrical theory, charge density may
not be zero in some regions, and a restoring force will
be generated to induce oscillating charge distribution
[8]. When frequencies of the electromagnetic distur-
bance and the plasmon oscillation match each other,
resonance will happen. The oscillation frequency is
determined by four factors: the density of electrons,
the electron mass, the size and the shape of the charge
distribution. The metal surface plasmon resonances is
the main factor in determining the optical properties
of metal nanoparticles. Many unique optical properties
can be achieved when adjusting the structure, mor-
phology, size, nanoshell and composition of the metal
nanoparticles [9-16]. Consequently, manufacturing and
application of metallic nanoparticles have become very
active topics in materials science. Furthermore, the
strong optical field generated in these systems could be
used in surface enhancement Raman scattering [17, 18],
devise new configuration for chemical and material sci-
ence [19, 20]. As all these devices are strongly sensitive
to the light frequency, it could be interesting to dis-
pose tunable nanoparticles to modify their frequency
range.
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This paper is organized as follows. In Section
Theoretical Background and Numerical Method, we
describe our numerical simulation method based on
Green’s function. In Section Numerical Simulation: Re-
sults and Analysis, we present spectrum calculations
for silver nanoshell particles in different dielectric en-
vironments, the ratio of the inner and outer radius, its
assemblies, the separation distances, the distribution of
electrical field intensity, the incident directions and also
its polarizations. In Section Conclusions, we summarize
our study.

Theoretical Background and Numerical Method

Generally, there are some numerical simulation meth-
ods to study the interaction between the light
and metal spheres such as FDTD (Finite-difference
Time-domain) [21], FEM (Finite Element Method)
[22], DDA (Discrete-dipole Approximation) [23] and
Green’s function [24] or called CDA (Coupled-dipole
Approximation) [25]. In this paper, Green’s function is
used to study the optical properties of silver nanoshell
particles. First, let’s briefly outline the main features of
the theoretical scattering formalism with the Green’s
function on which the numerical simulation is based
and associated numerical method. Given a scattering
object with a dielectric function &(r, ) embedded in
an infinitely homogenous background medium with a
dielectric parameter of &, (r, w), we can assume that
the electric and magnetic fields have a harmonic time
dependence exp(—iwt) in Maxwell’s equations. When
this system is illuminated by an incident field in the
background medium, the vectorial wave equation for
electric field can be expressed as:

VxVxE(r o) — kéem(r, w)E(r, w)

= K} [e5(r, ©) — e (r, )] E(r, ©) (1)

Where ¢, and ¢, are the scattering dielectric constant
and system dielectric constant respectively, and kj is the
wave number in vacuum.

The method of solving scattering field is based on the
Lippmann-Schwinger equation E = E;,. + E;, where
E;,. and E, are the incident field and the scatter-
ing field respectively. Taking the Dirac delta function
into account, Eq. 1 can be resolved to the following
three-dimension vector Lippmann-Schwinger integral
equation:
E(r, w) = Ejy(r, w)

+ Go(r, v, w)Ae(r, 0)E[T, 0)d’F 2)
Va
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Gy(r, r', w) is the Green’s tensor for an infinitely homo-
geneous background medium ¢,,, which is expressed as:

Go(r, 7, w)
e ikyR—1_ 3 —3ik,R—Kk:R?
= k2 <I+ R R RR
exp(ik,, R) ,
R TET )

Where [ is the unit dyadic, R=r —r', R = |r —r| and
Ae(r', w) = g5 — &,. There is a singularity in Eq. 2 when
r =r/, which have been solved by Yaghjian in detail
[26]. The implicit Eq. 2 can be solved via numerical
simulation based on discretization, which results in:

E(ri, 0) = Ejpc(ri, o)
N
+ Y Gri,rj, 0)AsE(rj, o)V,
j=1
i=1,---,N (4)

V; is the volume of the scattering particle. Since the
scalar Green’s tensor is dependent only on the absolute
relative distance R, and is reciprocal, i.e., G(r;, r)) =
G(r;, 1)), or written as G(r;, rj) = G;_;. We can gener-
ate the following equation by substituting G(r;, r)) =
G;_;into Eq. 4 and rearranging terms:

N
> (I-GijAe;V)Ej=Ep(ri,0), i=1-- N
j=1

®)

E; and E;,. are 3N-dimensional vector, while G;_; is a
3N x 3N matrix. The total electric field can be derived,
along with spectral and optical parameters, after solving
these 3N complex linear equations. The researchers
could obtain magnetic field H and Poynting vector §
with the similar method [27]. The optical efficiencies
[28] (i.e., extinction cross section, absorption cross sec-
tion and scattering cross section) are defined as:

N
o
ext m mct' l
|Eincl? 4

Jnf

Where * means complex conjugate, P; = «; - Ej,.,

Ejpe = (&5 + 28m)/3]E with o; = —((six((r'tl;oa)))-:;s’:ln((";:a;;)))) %’

scattering cross section can be obtained by Ci., =

drk &

ub\ =
|EmC|2
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Cext — Caps. The extinction and absorption efficiency
are Qey = Cey/S and Qs = Cyey/ S respectively, S is
the effective area of scattering particles.

In order to achieve desired simulation accuracy, it is
necessary to use a large number of dipoles, to model
features properly with the Green’s function. In this pa-
per, depending on the error in the calculation for silver
nanoshell particles, the cube size of each dipole is lesser
than 1.5 nm, and the number of dipoles (N) is between
1.7 x 10* and 5.8 x 10*. For the linear equations Eq. 5,
we could solve them effectively with CCGM (Complex-
conjugate Gradient Method) [29]. But during each iter-
ative process, the product between the matrix and the
vector is very time consuming. Thanks to the product
which satisfies the convulsion, we can use FFT (Fast
Fourier Transform Algorithm) to accelerate it [30]. Our
results confirm that CPU run time with FFT method
is reduced significantly comparing to case without
FFT [31].

Numerical Simulation: Results and Analysis

In this section, the optical properties of silver nanoshell
particles are studied, the numerical simulation system
is given in Fig. 1. The optical constants for silver are
taken from reference [32]. Spectroscopic effects occur
when the dielectric response of the particles shows a
strong dispersion as a function of the incident wave-
length. It is well known that the dielectric response of
metals displays this behavior which is associated with
the phenomenon of local plasmon resonances of small
metallic particles for the variation wavelengths. The
physical and chemical properties of metallic nanoshell
have been studied in recent years due to their attractive
features which make them used in nanoscale optical
regions [33-36].

silver
| I—

|
dielectric

e

Fig. 1 Numerical simulation system, where yellow one denotes
silver, while blue one is dielectric, R is radius (R; and R; are
inner and outer radius) and gap denotes separation gap, K is
incident wave propagate direction. a, b, ¢ and d denote a solid
silver sphere, a dielectric core-silver shell, a silver core-dielectric
shell and two interacted silver nano-shell spheres respectively.

Firstly, to get resonance behaviors, the influences of
the mediums surrounding to the extinction efficiency
of a solid silver sphere are studied with radius 25 nm
(see Fig. 1 case of a, R = 25 nm) as a function of
the incident wavelength by plane wave. Spectroscopes
are given with infinite homogeneous medium in vac-
uum (n = 1.00), water (n = 1.33) and SiO, (n = 1.50)
respectively. We can see an increase intensity which
is materialized by a peak in its variation with the
incident wavelength at about A = 370 nm in vacuum,
A = 400 nm in water and A = 410 nm in SiO,. The peak
in SiO, is shifted to higher wavelength and broader
width compared with silver sphere in vacuum and wa-
ter, which can be seen in Fig. 2. The peak correspond-
ing to the localized plasmon resonance depended on
the refractive index of the surround medium [8]. The
influences of the surround mediums are agree with
DDA (Discrete-dipole Approximation) simulation by
Pileni [37], who gave an interesting equation to cal-
culate the new position of plasmon resonance for the
particle in new medium, it is:

Ay = A+ (A1 — Ao) (2 — ny) (7)

Where 2 is the common point of all the spectra calcu-
lated, i.e. the minimum corresponds to the wavelength
at which the dielectric constant of silver, both the real
and imaginary parts almost vanish. A, is the wavelength
position of a resonance peak for the particle embedded
in a medium with refractive index n; , and A, the new
position of plasmon resonance for the particle in a new
medium 7n,. We can use this formulation to calculate
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Fig. 2 The influences of surrounding mediums to a solid silver

sphere spectroscope studied in vacuum (n = 1.00), water (n =
1.33) and SiO; (n = 1.50) respectively by plane wave
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the corresponding peak’s position in new medium. It
is worth noticing that Eq. 7 is only valid for the usual
solvent media and not suitable for absorbing one where
charge transfer should be taken into account in the
plasmon bands shift. Considering the cures of Fig. 2, we
can observe that all the efficiencies have a local min-
imum at about 315 nm; moreover, its spectral feature
is inherent to the silver materials, independent to the
particle geometries [8, 17, 18].

Secondly, in a system that consist of a dielectric core-
silver shell nanoparticle is considered with inner and
outer radius 15 nm and 25 nm respectively (see Fig. 1
case of b, R; =15 nm and R, =25 nm). We compare the
extinction efficiency of a solid silver sphere (see Fig. 1
case of a) with the different dielectric cores-silver shell
(see Fig. 1 case of b), a core filled with the refractive
index n = 1.00, 1.33, 1.50 and 1.75 respectively, which
are illuminated by plane wave. It shows that increasing
the value of refraction cores results in a longer red-
shifted and narrower width of peak, which are good
agreement with experiments [38-40]. Figure 3 shows
that the peak’s position shifts from 370 nm for a solid
sphere to 440 nm for dielectric core with n = 1.75. It
is interesting to find out that there is only one single
peak for both a solid silver sphere and dielectric core
with n = 1.00; while a second or more smaller peak
for dielectric core with n>1 modes. This is due to the
symmetries of the charge distributions for dielectric
core-silver shell nanoparticles [36, 41, 42]. The dipole
and quadrupolar (or higher-order) resonance of the
nanoshell particles could be used to explain the phe-
nomenon of this system. The dipole moments of the

solid sphere
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Wavelength (nm)
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Fig. 3 The extinction efficiency of dielectric core-silver shell with
different dielectric constant
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inner and outer surfaces are arranged. A stronger cou-
pling effect could be gotten when dielectric core-silver
shell is much smaller compared with the nanoparticle
radius, it will lead to a new scheme of polarization and
result in a thin metallic layer, which could be described
as symmetric and asymmetric modes. For case with
n = 1.00, the mode is air-silver-air, which is very sym-
metric, while for another three modes n > 1, the geom-
etry for silver film is asymmetric, i.e. dielectric-silver-
air, there will be two independent single-interface
modes and not any mode-splitting phenomenon. The
nanoshell structure is reconciled with the plasmon hy-
bridization model, which was developed by Halas [19]
for explaining of the physical origin of the tunable
plasmon resonance in metal nanoshells. The nanoshell
is a two-surface system, which gets two distinct plasmon
modes: an inner shell-surface and an outer shell-surface
mode, which couple or hybridize with each other, result
in splitting into more new modes. In addition, there are
two quadrupolar modes, one is at about 340 nm and
does not change with dielectric constants of dielectric-
core; the other is at about 450 nm with n» = 1.33, which
seems to liner red-shift with increasing the constants of
dielectric core.

On the other hand, the outer shell coated by
different dielectric value with silver core (see Fig. 1
case of c) is also considered, and the corresponding
parameters are the same as the above mode, i.e. the
inner and outer radius are 15 nm and 25 nm respec-
tively. We can see that increasing the value of dielectric
shell results in a higher red-shifted in Fig. 4, which is
similar to the case of dielectric core-silver shell. And a
trend to the broader width of peak with increasing the
dielectric constant in shell [39, 40], which is contrary to
the above dielectric core-silver shell mode. There are
two smaller peaks due to quadrupolar contributions at
about 360 nm and 455 nm with n = 1.33, which are seem
to liner red-shift with increasing the value of dielectric
constant for silver core-dielectric shell compared with
dielectric core-silver shell at about 340 nm and 450 nm.
In summary, the plasmon resonance peak’s position
could be tuned over an extended wavelength by varying
the value of dielectric- core and shell.

In order to gain a deeper insight into the opti-
cal properties of silver nanoshell, we set the silver
nanoshell with the refractive index n = 1.50, and its
outer radius 25 nm, while varying the inner silver core
radius from 9 nm to 21 nm. The results are given in
Fig. 5. It can be seen that the peak’s position is red-
shifted with increasing the inner silver core radius from
9 nm to 18 nm, and the intensity enhance firstly and
then attenuate. There are more peaks when the inner
radius reaches 15 nm or more larger, these are due
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Fig. 4 The extinction efficiency of silver core-dielectric shell with
different dielectric constant

to quadrupolar contributions. And the peak’s position
is blue-shifted when the inner radius reach to 21 nm
or more larger, these optical properties were found in
some experiments [43-45]. It is easy to imagine that
when the inner radius reaches 25 nm, thus the silver
core-dielectric shell is equal to a solid silver sphere
whose peak position is at about 370 nm. Silver-core
SiO2-shell nanoparticles have been used for probing
spatial distribution of electrical field enhancement via
surface-enhanced Raman scattering [46]. In addition,
the SiO, core-silver shell with different inner radius are
also reported with the outer radius 25 nm, seen in Fig. 6.

o solid sphere
4r S -==a9 nm |]
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= = c=15nm
d=18 nm
3t e=21nm [
-
3
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N
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» 2
()

800 350 400 450 500 550
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Fig. 5 The extinction efficiency of silver core-SiO, shell for
different inner radius values from 9 nm to 21 nm with outer radius
25 nm

It shows that the peak’s position is blue-shifted with
increasing inner radius, and there is a second smaller
peak when radius is smaller, while only one single peak
for bigger radius and the intensity seems to enhance
straightly. It is worth noting that the plasmon resonance
is quiet sensitive to the thickness of silver shell and
dielectric core. It means that the plasmon resonance
peak’s position also could be tuned over an extended
wavelength by varying the ratio of the inner and outer
radius. In fact, the dipole resonance condition for a
core-shell structure in the quasi-static limit is defined
by [28]

es(1— ) +en2+
“es(14+2f) +2e,(1 — f)

®)

& = —2¢

Where s, & and ¢, are the dielectric constants of
the core, shell, and medium, respectively, and f is the
fraction of the volume of the core in the composite
structure. It is interesting to note that f is essentially
(#R + 1)73, where t is the nanoshell thickness and R
is the core radius. In other words, a larger core has
a larger polarizability and a thin shell gets stronger
near-field coupling, thus leading to a larger fractional
plasmon shift. This analogy serves to qualitatively ex-
plain the similarity of the distance dependence and
scaling behavior of plasmon coupling in the nanoshell
structure to that in the particle-pair structure. The cores
in the nanoparticles can be considered as truncated
waveguide; the core or cavity between the nanoshell
is open to the free space and forms a low-Q-cavity
resonator [36, 41].

Qext (a.u.)
2

300 350 400 450 500
Wavelength (nm)

Fig. 6 The extinction efficiency of SiO, core-silver shell for

different inner radius values from 9 nm to 21 nm with outer radius
25 nm
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Thirdly, the coupling silver nanoshell spheres are
also studied. A solid silver sphere has only one plasmon
resonance due to its symmetry, but new resonances may
appear when they are collected in assemblies, which
are depend on the symmetry of its assemblies. Figure 7
shows the extinction efficiency for SiO, core-silver shell
spheres collected by small coupling spheres with two,
three, and four nanoparticles in vacuum (rn = 1.00) il-
luminated by plane wave with polarization parallel to
the inter-spheres. The parameters of silver nanoshell
sphere are the same as the above mode, with a SiO,
core of inner radius Ry = 15 nm and an outer radius
R, = 25 nm, thus a silver shell of thickness 10 nm. Two,
three and four silver nanoshell spheres are touched
but not interpenetrated, seen in the top of Fig. 7. It
can be observed that there are new resonance modes
and are red-shifted with increasing the number of sil-
ver nanoshell spheres from 2 to 4 compared with one
single solid silver sphere. And the position of plasmon
resonance peak are new red-shifted bands and there are
more small peaks due to adding more sharp corners or
singularities for touching interfaces with more spheres,
which play an important role to scattering intensity [33].

Fourtly, the influences of polarization modes (see
Fig. 1 case of d) to the plasmon resonance are also
investigated. We give the extinction efficiency of four
linear chains of SiO, core-silver shell particles illu-
minated by two polarization modes, one parallel to
intersphere axis direction i.e. the chain’s parallel axis
of Ex, and the other perpendicularly to intersphere axis
direction Ez. Figure 8 shows that there is only a very
weak blue-shift with polarization perpendicularly to in-
tersphere axis direction, whose spectra is similar to one

Qext (a.u.)

O L L L
300 350 400 450 500
Wavelength (nm)

Fig. 7 The extinction efficiency of SiO; core-silver shell with
one, two, three, and four nano-shell silver spheres
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Fig. 8 The extinction efficiency of four line chains of SiO; core-
silver shell with different polarization directions Ex and Ez

single SiO, core-silver shell particle, while the intensity
may be influenced by its numbers, the more nanoparti-
cles, the less intensity. We also find out that the peak
position of plasmon resonance is independent to the
numbers of nanoshell spheres in the array and also with
different gaps distances, the peak’s position is almost
the same as the single particle case. Conversely, the
peak’s position is strongly red-shifted with the polar-
ization direction along intersphere axis. It denotes that
touching silver spheres could get “hot spots” only when
the wave polarization direction is parallel to the in-
tersphere axis compared with other polarization direc-
tions. The numerical simulations are agree well with EI-
Sayed groups in experiments, DDA (Discrete-dipole
Approximation) and FEM (Finite Element Method)
simulations [42, 47, 48]. The optical properties were
previously found in experiment by Nakano [49]. These
phenomenons could be explained as, due to the proper-
ties of the boundary conditions of Maxwell’s equations
[31, 50], the discontinuity of the electric field com-
ponent at normal to the surface are proportional for
surface’s polarized charge densities, only Ex-polarized
light can excite plasmon resonances between the gap
of silver nanoshell particles. Taking account of the Ez-
polarized light, the boundary conditions are continuous
for polarization parallel to the z-axis. These near-field
optical signals of silver nanospheres corresponded to
the nonlinear near-field optical properties. The pres-
ence of parallel mode instead of perpendicular one
could be due to the presence of the dielectric spacer be-
tween the silver shells. This could explain why the sec-
ond is present only when the array is perpendicular to
the direction of incident wave. The plasmon resonance
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shift results from the electromagnetic coupling of the
single particle plasmon, the polarization dependence
of which is based on the single dipole-dipole coupling
model. Parallel polarization is a attractive the dipole-
dipole interaction, which results in lower-energy or re-
duction of plasmon frequency (red-shift of the plasmon
band), while it is repulsive with the perpendicularly
polarization, resulting in higher-energy or increasing
in the plasmon frequency (blue-shift of the plasmon
band). The interactions are stronger for parallel polar-
ization, as seen from the larger wavelength shifts com-
pared with perpendicular one. Therefore, the interpar-
ticle spacing cause the red-shifted band, and represent a
collective plasmon mode [36, 47, 51] which is similar to
those observed in a great number of assembled silver
nanoparticles. The red-shifted plasmon excitation has
been enhanced by the dielectric core or silver core
nanoshell through a “waveguide effect”. And then, the
role plays of the separation distances between silver
nanoshell and nanoshell sphere pairs are also studied.
Figure 9 shows the spectra of extinction efficiency for
a single silver nanoshell sphere and nanoshell sphere
pairs with radius 50 nm of different gap distances from 0
to 20 nm as a function of wavelengths with polarization
parallel to intersphere. It shows that when the gap
distance g increases, the peak’s position of extinction
efficiency shows red-shifted for very smaller g firstly,
while blue-shifted for larger g in visible light region,
and the intensity enhanced firstly and then decreases as
the gap distance larger [33, 51]. In addition, the silver
nanoshell spheres with the ration of different distance
gap and radius are considered (the radius/gap ratio

T T T
one nano-shell
g=0 nm E

= == g=6 nm
g=12 nm
g=20 nm

Qext (a.u.)

O L L L
300 350 400 450 500
Wavelength (nm)

Fig. 9 The extinction efficiency of line chains of two SiO, core-
silver shell with different separation gaps from g =0 nm to g =
21 nm

remains constant), silver nanoshell sphere pairs radius
varied from 20 to 50 nm as a function of wavelengths. It
shows that the peak’s position of extinction efficiency
shows red-shifted with distance gap and radius increas-
ing in visible light region (the result is not given here).
The new plasmon modes are likely due to oscillations
along the intersphere axis or interface plane. It is also
found that the peak’s position is red-shifted with in-
creasing the numbers of silver nanoshell spheres in a
linear chains of two, three, four and more SiO, core-
silver shell particles [42].

At last, in order to study the properties of the silver
nanoshell, the distribution of total electrical field inten-
sity inside two touched SiO, core-silver shell nanopar-
ticles (see Fig. 1 case of d, R; = 15 nm and R; = 25 nm,
g = 0) with polarization mode (A = 430 nm) parallel
to intersphere axis direction is presented in Fig. 10. It
is clear to find that the highest symmetry of electrical
field intensity and the electrical field in the central gap
differs clearly from those in other gaps; it also shows
that there is a highest electrical field enhancement or
called “hot spot” within the central gap region, which
could be seen in Fig. 10. The enhanced intensity in the
central gap between two SiO; core-silver shell nanopar-
ticles are due to the surface plasmon resonance and
the concentration of energy flow [42, 51]. It is worth
noting that the electrical field intensity of local field
in the gaps between silver shell nanoparticles is quite
sensitive to the separation distance, the intensities of
electrical field reduce monotonically as the separation
distance becomes larger, becoming extremely small at
large interparticle distances. More detailed discussions

12000

4000 8000

Fig. 10 The distribution of total electrical field intensity in-
side two touched SiO; core-silver shell with polarization mode
parallel to intersphere axis direction, white K is incident wave
direction
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on the distributions of electrical field intensity will be
studied in the future.

Conclusions

In this paper, the optical properties of silver nanoshell
particles have been studied. The results exhibit tunable
plasmon resonances red- and blue-shifted by varying
the dielectric environments, the constants of dielec-
tric core, the separation distances and the ratio be-
tween the outer and inner radius respectively, which
are accessible to various sensing and spectroscopy ap-
plications at the nanometer scale. It is also found out
that a strongly red-shift of the plasmon peak position
could be gotten only with the polarized light parallel
to its interspheres, but much weaker blue-shift with
polarized light perpendicularity to its interspheres. As
obtained from the above numerical simulations, the
main features can be qualitatively understood from
a simple silver nanoshell to its assembly model. The
unique properties of this nanostructure are highly at-
tractive for serving as resonant nanocavities to hold and
probe smaller nanostructures, such as quantum dots.
Due to their strong and tunable plasmon resonance,
nanoshells may be useful applications in nano-optical
devices, surface-enhanced Raman spectroscopy, chem-
ical and biological sensors. Furthermore, the strong
frequency sensitivity of these coupled resonances could
be used to produce frequency-selective devices in the
future.

Acknowledgements We thank the financial support from the
Scientific Research Fund of Anhui Provincial Education De-
partment under Grant Nos. (2005KJ232, KJ2008B83ZC and
KJ2011Z234) and the Young Fund of Anqing Teachers College
(KJ201008).

Open Access This article is distributed under the terms of the
Creative Commons Attribution Noncommercial License which
permits any noncommercial use, distribution, and reproduction
in any medium, provided the original author(s) and source are
credited.

References

1. Nie S, Enmory SR (1997) Probing single molecules and
single nanoparticles by surface-enhanced Raman scattering.
Science 275:1102

2. Barnes WL, Dereux A, Bobesen TW (2003) Surface plasmon
subwavelength optics. Nature 424:824

3. Schatz GC (1984) Theoretical studies of surface enhanced
Raman scattering. Acc Chem Res 17:271

4. Moskovits M (1985) Surface-enhanced spectroscopy. Rev
Mod Phys 57:783

@ Springer

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

. Murray WA, Barnes WL (2007) Plasmonic materials. Adv

Mater 19:3771

. Shuford KL, Ratner MA, Schatz GC (2005) Multipolar exci-

tation in triangular nanoprisms. J Chem Phys 123:114713

. Su K H, Wei QH, Zhang X (2006) Tunable and augmented

plasmon resonances of Au/SiO2 /Au nanodisks. Appl Phys
Lett 88:063118

. Kelly KL, Coronado E, Zhao LL, Schatz GC (2003) The

optical properties of metal nanoparticles: the influence of
size, shape, and dielectric environment. J Phys Chem B 107:
668

. Zhang Q, Tan YN, Xie J, Lee JY (2009) Colloidal synthesis

of plasmonic metallic nanoparticles. Plasmonics 4:9

Sun Y, Xia Y (2002) Shape-controlled synthesis of gold and
silver nanoparticles. Science 298:2176

Nehl CL, Liao H, Hafner JH (2006) Optical properties of
star-shaped gold nanoparticles. Nano Lett 6:683

Talley CE, Jackson JB, Oubre C, Grady NK, Hollars CW,
Lane SM, Huser TR, Nordlander P, Halas NJ (2005) Surface-
enhanced Raman scattering from individual Au nanoparti-
cles and nanoparticle dimer substrates. Nano Lett 5:1569
Zhang ZY, Zhao YP (2007) Optical properties of helical Ag
nanostructures calculated by discrete dipole approximation
method. Appl Phys Lett 90:221501

Wu DJ, Xu XD, Liu XJ (2008) Tunable near-infrared optical
properties of three-layered metal nanoshells. J Chem Phys
129:074711

Hoflich K, Gosele U, Christiansen S (2009) Near-field in-
vestigations of nanoshell cylinder dimmers. J Chem Phys
131:164704

Kottmann JP, Martin OJF (2000) Field polarization and po-
larization charge distributions in plasmon resonant nanopar-
ticles. New J Phys 2:271

Maier SA (2007) Plasmonics: fundamentals and application.
Springer

Novotny L, Hecht B (2006) Principles of nano-optics.
Cambridge University Press, Cambridge

Prodan E, Radloff C, Halas NJ, Nordlander P (2003) A
hybridization model for the plasmon response of complex
nanostructures. Science 302:419

Haes AJ, Zou S, Schatz GC, Van Duyne RP (2004)
Nanoscale optical biosensor: short range distance depen-
dence of the localized surface plasmon resonance of noble
metal nanoparticles. J Phys Chem B 108:6961

Taflove A (2000) Computational electrodynamics: the
finite difference time domain method. MA: Artech House,
Norwood

Jin JM (2002) The finite element method in electromagnetics,
2nd edn. Wiley, New York

Draine BT, Flatau PJ (1994) Discrete-dipole approximation
for scattering calculations. J Opt Soc Am A 11:1491

Martin OJF, Girard C, Dereux A (1998) Electromagnetic
scattering in polarizable backgrounds. Phys Rev E 58:
3909

Piller NB, Martin OJF (1998) Increasing the performance
of the coupled-dipole approximation: a spectral approach.
IEEE Trans Antennas Propag 46:1126

Yaghjian AD (1980) Electric dyadic Green’s functions in the
source region. Proc IEEE 68:248

Girard C, Weeber JC, Dereux A (1997) Optical magnetic
near-field intensities around nanometer-scale surface struc-
tures. Phys Rev B 55:16487

Bohren CF, Huffman DR (1983) Absorption and scattering
of light by small particles. Wiley-Interscience, New York
Petravic M, Petravic GK (1979) An ILUCG Algorithm which
minimizes in the Euclidean norm. J Comp Phys 32:263



Plasmonics (2011) 6:705-713

713

30.

31.

32.

33.

34.

3s.

36.

37

38.

39.

40.

41.

Press WH (1986) Numerical recipes. Cambridge University
Press, Cambridge

Ma YW, Zhang Y, Wu ZW, Zhang J, Jian GS, Wu SF (2009)
Theoretical studies of the optical properties of plasmon reso-
nance on silver nanoparticles in the near-field optics. J Appl
Phys 105:103101

Johnson PB, Christy RW (1972) Optical constants of the no-
ble metals. Phys Rev B 12:4370

Lassiter JB, Aizpurua J, Hernandez LI, Brandlet DW,
Romero I, Surbhi L, Hafner JH, Nordlander P, Halas NJ
(2008) Close encounters between two nanoshells. Nano Lett
8:1212

Jain PK, El-Sayed MA (2007) Universal scaling of plasmon
coupling in metal nanostructures: extension from particle
pairs to nanoshells. Nano Lett 7:2854

Jackson JB, Westcott SL, Hirsch LR, West JL, Halas NJ
(2003) Controlling the surface enhanced Raman effect via the
nanoshell geometry. Appl Phys Lett 82:257

Ruan Z, Qiu M (2006) Enhanced transmission through pe-
riodic arrays of subwavelength holes: the role of localized
waveguide resonances. Phys Rev Lett 96:233901

. Brioude A, Pileni MP (2005) Silver nanodisks: optical prop-

erties study using the discrete dipole approximation method.
J Phys Chem B 109:23371

Kalele S, Gosavi SW, Urban J, Kulkarni SK (2006) Nanoshell
particles: synthesis, properties and applications. Current Sci-
ence 91:1038

Baida H, Billaud P, Marhaba S, Christofilos D (2009) Quan-
titative determination of the size dependence of surface plas-
mon resonance damping in single Ag@SiO2 nanoparticles.
Nano lett 9:3463

Maceira V, Caruso F, Luis M (2003) Coated colloids with
tailored optical properties. J Phys Chem B 107:10990
Amendola V, Bakr OM, Stellacci F (2010) A study of the sur-
face plasmon resonance of silver nanoparticles by the discrete

42.

43.

44,

45.

46.

47.

48.

49.

50.

51,

dipole approximation method: effect of shape, size, structure,
and assembly. Plasmonics 5:85

Chen MW, Chau YF, Tsai DP (2008) Three-dimensional
analysis of scattering field interactions and surface plas-
mon resonance in coupled silver nanospheres. Plasmonics
3:157

Xu K, Wang JX, Kang XL, Chen JF (2009) Fabrication of an-
tibacterial monodispersed Ag-SiO2 core-shell nanoparticles
with high concentration. Mat Lett 63:31

Aslan K, Wu M, Lakowicz JR, Geddes CD (2007) Flu-
orescent core-shell Ag@SiO2 nanocomposites for metal-
enhanced fluorescence and single nanoparticle sensing
platforms. J Am Chem Soc 129:1524

Xu HX, Aizpurua J, Mikael K, Pell P (2000) Electromag-
netic contributions to single-molecule sensitivity in surface-
enhanced Raman scattering. Phy Rev E 62:4318

Wang W, Li ZP ,Gu BH, Zhang ZY, Xu HX (2009) Ag@SiO2
core-shell nanoparticles for probing spatial distribution of
electromagnetic field enhancement via surface-enhanced
Raman scattering. ACS Nano 3:3493

Jain PK, Huang W, El-Sayed MA (2007) On the universal
scaling behavior of the distance decay of plasmon coupling
in metal nanoparticle pairs: a plasmon ruler equation. Nano
Lett 7:2080

Huang W, Qian W, Jain PK, El-Sayed MA (2007) The effect
of plasmon field on the coherent lattice phonon oscillation in
electron-beam fabricated gold nanoparticle pairs. Nano Lett
7:3227

Nakano T, Schmidt B, Plessen G (2007) Radiation damping
in metal nanoparticle pairs. Nano Lett 7:318

Jackson JD (1998) Classical electrodynamics, 3rd edn. Wiley,
Hoboked

Chau YF (2009) Surface plasmon effects excited by the di-
electric hole in a silver-shell nanospherical pair. Plasmonics
4:253

@ Springer



	Theoretical Analysis the Optical Properties of Multi-coupled Silver Nanoshell Particles
	Abstract
	Introduction
	Theoretical Background and Numerical Method
	Numerical Simulation: Results and Analysis
	Conclusions
	References



