Skip to main content
Log in

Efficiently simulating the work distribution of multiple identical bosons with boson sampling

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

Boson sampling has been theoretically proposed and experimentally demonstrated to show quantum computational advantages. However, it still lacks the deep understanding of the practical applications of boson sampling. Here we propose that boson sampling can be used to efficiently simulate the work distribution of multiple identical bosons. We link the work distribution to boson sampling and numerically calculate the transition amplitude matrix between the single-boson eigenstates in a one-dimensional quantum piston system, and then map the matrix to a linear optical network of boson sampling. The work distribution can be efficiently simulated by the output probabilities of boson sampling using the method of the grouped probability estimation. The scheme requires at most a polynomial number of the samples and the optical elements. Our work opens up a new path towards the calculation of complex quantum work distribution using only photons and linear optics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Jarzynski, Nonequilibrium equality for free energy differences, Phys. Rev. Lett. 78(14), 2690 (1997)

    Article  ADS  Google Scholar 

  2. G. E. Crooks, Entropy production fluctuation theorem and the nonequilibrium work relation for free energy differences, Phys. Rev. E 60(3), 2721 (1999)

    Article  ADS  Google Scholar 

  3. T. Hatano and S. I. Sasa, Steady-state thermodynamics of Langevin systems, Phys. Rev. Lett. 86(16), 3463 (2001)

    Article  ADS  Google Scholar 

  4. D. Kafri and S. Deffner, Holevo’s bound from a general quantum fluctuation theorem, Phys. Rev. A 66(4), 044302 (2012)

    Article  ADS  Google Scholar 

  5. S. Deffner and E. Lutz, Nonequilibrium work distribution of a quantum harmonic oscillator, Phys. Rev. E 77(2), 021128 (2008)

    Article  ADS  Google Scholar 

  6. H. T. Quan and C. Jarzynski, Validity of nonequilibrium work relations for the rapidly expanding quantum piston, Phys. Rev. E 85(3), 031102 (2012)

    Article  ADS  Google Scholar 

  7. C Jarzynski, H. T. Quan, and S. Rahav, Quantum-classical correspondence principle for work distributions, Phys. Rev. X 5(3), 031038 (2015)

    Google Scholar 

  8. L. Zhu, Z. Gong, B. Wu, and H. T. Quan, Quantum-classical correspondence principle for work distributions in a chaotic system, Phys. Rev. E 93(6), 062108 (2016)

    Article  ADS  Google Scholar 

  9. M. Łobejko, J. Luczka, and P. Talkner, Work distributions for random sudden quantum quenches, Phys. Rev. E 95(5), 052137 (2017)

    Article  ADS  Google Scholar 

  10. T. B. Batalhão, A. M. Souza, L. Mazzola, R. Auccaise, R. S. Sarthour, I. S. Oliveira, J. Goold, G. De Chiara, M. Paternostro, and R. M. Serra, Experimental reconstruction of work distribution and study of fluctuation relations in a closed quantum system, Phys. Rev. Lett. 113(14), 140601 (2014)

    Article  ADS  Google Scholar 

  11. S. An, J. N. Zhang, M. Um, D. Lv, Y. Lu, J. Zhang, Z. Q. Yin, H. T. Quan, and K. Kim, Experimental test of the quantum Jarzynski equality with a trapped-ion system, Nat. Phys. 11(2), 193 (2015)

    Article  Google Scholar 

  12. D. J. Sivananda, N. Roy, P. C. Mahato, and S. S. Banerjee, Exploring the non-equilibrium fluctuation relation for quantum mechanical tunneling of electrons across a modulating barrier, Phys. Rev. Res. 2(4), 043237 (2020)

    Article  Google Scholar 

  13. Z. Gong, S. Deffner, and H. T. Quan, Interference of identical particles and the quantum work distribution, Phys. Rev. E 90(6), 062121 (2014)

    Article  ADS  Google Scholar 

  14. Q. Wang and H. T. Quan, Understanding quantum work in a quantum many-body system, Phys. Rev. E 95(3), 032113 (2017)

    Article  ADS  Google Scholar 

  15. B. Wang, J. Zhang, and H. T. Quan, Work distributions of one-dimensional fermions and bosons with dual contact interactions, Phys. Rev. E 97(5), 052136 (2018)

    Article  ADS  Google Scholar 

  16. J. Goold, F. Plastina, A. Gambassi, and A. Silva, The role of quantum work statistics in many-body physics, in: Thermodynamics in the Quantum Regime, Springer, 2018, pp 317–336

  17. M. C. Tichy, M. Tiersch, F. Mintert, and A. Buchleitner, Many-particle interference beyond many-boson and many-fermion statistics, New J. Phys. 14(9), 093015 (2012)

    Article  ADS  Google Scholar 

  18. M. C. Tichy, Interference of identical particles from entanglement to boson-sampling, J. Phys. At. Mol. Opt. Phys. 47(10), 103001 (2014)

    Article  ADS  Google Scholar 

  19. J. D. Urbina, J. Kuipers, S. Matsumoto, Q. Hummel, and K. Richter, Multiparticle correlations in mesoscopic scattering: Boson sampling, birthday paradox, and Hong–Ou–Mandel profiles, Phys. Rev. Lett. 166(10), 100401 (2016)

    Article  Google Scholar 

  20. L. G. Valiant, The complexity of computing the permanent, Theor. Comput. Sci. 8(2), 189 (1979)

    Article  MathSciNet  Google Scholar 

  21. S. Aaronson, A linear-optical proof that the permanent is #P-hard, Proc. R. Soc. A 467(2136), 3393 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  22. A. P. Lund, M. J. Bremner, and T. C. Ralph, Quantum sampling problems, boson-sampling and quantum supremacy, npj Quantum Inf. 3, 15 (2017)

    Article  ADS  Google Scholar 

  23. S. Aaronson, and A. Arkhipov, The computational complexity of linear optics, in: Proceedings of the forty-third annual ACM symposium on Theory of computing, 2011, pp 333–342

  24. X. Gu, M. Erhard, A. Zeilinger, and M. Krenn, Quantum experiments and graphs (II): Quantum interference, computation, and state generation, Proc. Natl. Acad. Sci. USA 116(10), 4147 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  25. J. M. Arrazola, V. Bergholm, K. Brádler, T. R. Bromley, M. J. Collins, I. Dhand, A. Fumagalli, T. Gerrits, A. Goussev, L. G. Helt, J. Hundal, T. Isacsson, R. B. Israel, J. Izaac, S. Jahangiri, R. Janik, N. Killoran, S. P. Kumar, J. Lavoie, A. E. Lita, D. H. Mahler, M. Menotti, B. Morrison, S. W. Nam, L. Neuhaus, H. Y. Qi, N. Quesada, A. Repingon, K. K. Sabapathy, M. Schuld, N. Su, J. Swinarton, A. Száva, K. Tan, P. Tan, V. D. Vaidya, Z. Vernon, Z. Zabaneh, and Y. Zhang, Quantum circuits with many photons on a programmable nanophotonic chip, Nature 591(7848), 54 (2021)

    Article  ADS  Google Scholar 

  26. J. Bao, Z. Fu, T. Pramanik, J. Mao, Y. Chi, Y. Cao, C. Zhai, Y. Mao, T. Dai, X. Chen, X. Jia, L. Zhao, Y. Zheng, B. Tang, Z. Li, J. Luo, W. Wang, Y. Yang, Y. Peng, D. Liu, D. Dai, Q. He, A. L. Muthali, L. K. Oxenlowe, C. Vigliar, S. Paesani, H. Hou, R. Santagati, J. W. Silverstone, A. Laing, M. G. Thompson, J. L. O’Brien, Y. Ding, Q. Gong, and J. Wang, Very-large scale integrated quantum graph photonics, Nat. Photonics 17(7), 573 (2023)

    Article  ADS  Google Scholar 

  27. G. M. Nikolopoulos and T. Brougham, Decision and function problems based on boson sampling, Phys. Rev. A 94(1), 012315 (2016)

    Article  ADS  Google Scholar 

  28. G. M. Nikolopoulos, Cryptographic one-way function based on boson sampling, Quantum Inform. Process. 18(8), 259 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  29. J. Huh, G. G. Guerreschi, B. Peropadre, J. R. McClean, and A. Aspuru-Guzik, Boson sampling for molecular vibronic spectra, Nat. Photonics 9(9), 615 (2015)

    Article  ADS  Google Scholar 

  30. J. Huh and M. H. Yung, Vibronic boson sampling: Generalized Gaussian boson sampling for molecular vibronic spectra at finite temperature, Sci. Rep. 7(1), 7462 (2017)

    Article  ADS  Google Scholar 

  31. Y. Shen, Y. Lu, K. Zhang, J. Zhang, S. Zhang, J. Huh, and K. Kim, Quantum optical emulation of molecular vibronic spectroscopy using a trapped-ion device, Chem. Sci. (Camb.) 9(4), 836 (2018)

    Article  Google Scholar 

  32. C. S. Wang, J. C. Curtis, B. J. Lester, Y. Zhang, Y. Y. Gao, J. Freeze, V. S. Batista, P. H. Vaccaro, I. L. Chuang, L. Frunzio, L. Jiang, S. M. Girvin, and R. J. Schoelkopf, Efficient multiphoton sampling of molecular vibronic spectra on a superconducting bosonic processor, Phys. Rev. X 10(2), 021060 (2020)

    Google Scholar 

  33. L. Banchi, M. Fingerhuth, T. Babej, C. Ing, and J. M. Arrazola, Molecular docking with Gaussian boson sampling, Sci. Adv. 6(23), eaax1950 (2020)

    Article  ADS  Google Scholar 

  34. J. Shi, T. Zhao, Y. Wang, C. Yu, Y. Lu, R. Shi, S. Zhang, and J. Wu, An unbiased quantum random number generator based on boson sampling, arXiv: 2206.02292 (2022)

  35. J. Shi, T. Zhao, Y. Wang, Y. Feng, and J. Wu, Chaotic image encryption based on boson sampling, Adv. Quantum Technol. 6(2), 2200104 (2023)

    Article  Google Scholar 

  36. M. A. Broome, A. Fedrizzi, S. Rahimi-Keshari, J. Dove, S. Aaronson, T. C. Ralph, and A. G. White, Photonic boson sampling in a tunable circuit, Science 339(6121), 794 (2013)

    Article  ADS  Google Scholar 

  37. J. B. Spring, B. J. Metcalf, P. C. Humphreys, W. S. Kolthammer, X. M. Jin, M. Barbieri, A. Datta, N. Thomas-Peter, N. K. Langford, D. Kundys, J. C. Gates, B. J. Smith, P. G. R. Smith, and I. A. Walmsley, Boson sampling on a photonic chip, Science 339(6121), 798 (2013)

    Article  ADS  Google Scholar 

  38. M. Tillmann, B. Dakić, R. Heilmann, S. Nolte, A. Szameit, and P. Walther, Experimental boson sampling, Nat. Photonics 7(7), 540 (2013)

    Article  ADS  Google Scholar 

  39. A. Crespi, R. Osellame, R. Ramponi, D. J. Brod, E. F. Galvao, N. Spagnolo, C. Vitelli, E. Maiorino, P. Mataloni, and F. Sciarrino, Integrated multimode interferometers with arbitrary designs for photonic boson sampling, Nat. Photonics 7(7), 545 (2013)

    Article  ADS  Google Scholar 

  40. H. Wang, Y. He, Y. H. Li, Z. E. Su, B. Li, H. L. Huang, X. Ding, M. C. Chen, C. Liu, J. Qin, J. P. Li, Y. M. He, C. Schneider, M. Kamp, C. Z. Peng, S. Höfling, C. Y. Lu, and J. W. Pan, High-efficiency multiphoton boson sampling, Nat. Photonics 11(6), 361 (2017)

    Article  ADS  Google Scholar 

  41. H. Wang, W. Li, X. Jiang, Y. M. He, Y. H. Li, X. Ding, M. C. Chen, J. Qin, C. Z. Peng, C. Schneider, M. Kamp, W. J. Zhang, H. Li, L. X. You, Z. Wang, J. P. Dowling, S. Höfling, C. Y. Lu, and J. W. Pan, Toward scalable boson sampling with photon loss, Phys. Rev. Lett. 120(23), 230502 (2018)

    Article  ADS  Google Scholar 

  42. H. Wang, J. Qin, X. Ding, M. C. Chen, S. Chen, X. You, Y. M. He, X. Jiang, L. You, Z. Wang, C. Schneider, J. J. Renema, S. Höfling, C. Y. Lu, and J. W. Pan, Boson sampling with 20 input photons and a 60-mode interferometer in a 1014-dimensional Hilbert space, Phys. Rev. Lett. 123(25), 250503 (2019)

    Article  ADS  Google Scholar 

  43. H. S. Zhong, H. Wang, Y. H. Deng, M. C. Chen, L. C. Peng, Y. H. Luo, J. Qin, D. Wu, X. Ding, Y. Hu, P. Hu, X. Y. Yang, W. J. Zhang, H. Li, Y. Li, X. Jiang, L. Gan, G. Yang, L. You, Z. Wang, L. Li, N. L. Liu, C. Y. Lu, and J. W. Pan, Quantum computational advantage using photons, Science 370(6523), 1460 (2020)

    Article  ADS  Google Scholar 

  44. H. S. Zhong, Y. H. Deng, J. Qin, H. Wang, M. C. Chen, L. C. Peng, Y. H. Luo, D. Wu, S. Q. Gong, H. Su, Y. Hu, P. Hu, X. Y. Yang, W. J. Zhang, H. Li, Y. Li, X. Jiang, L. Gan, G. Yang, L. You, Z. Wang, L. Li, N. L. Liu, J. J. Renema, C. Y. Lu, and J. W. Pan, Phase programmable Gaussian boson sampling using stimulated squeezed light, Phys. Rev. Lett. 127(18), 180502 (2021)

    Article  ADS  Google Scholar 

  45. H. K. Lau and D. F. V. James, Proposal for a scalable universal bosonic simulator using individually trapped ions, Phys. Rev. A 85(6), 062329 (2012)

    Article  ADS  Google Scholar 

  46. C. Shen, Z. Zhang, and L. M. Duan, Scalable implementation of boson sampling with trapped ions, Phys. Rev. Lett. 112(5), 050504 (2014)

    Article  ADS  Google Scholar 

  47. C. Oh, Y. Lim, Y. Wong, B. Fefferman, and L. Jiang, Quantum-inspired classical algorithm for molecular vibronic spectra, arXiv: 2202.01861 (2022)

  48. H. Tasaki, Jarzynski relations for quantum systems and some applications, arXiv: cond-mat/0009244 (2000)

  49. P. Talkner, E. Lutz, and P. Hänggi, Fluctuation theorems: Work is not an observable, Phys. Rev. E 75, 050102(R) (2007)

    Article  ADS  Google Scholar 

  50. S. W. Doescher and M. H. Rice, Infinite square-well potential with a moving wall, Am. J. Phys. 37(12), 1246 (1969)

    Article  ADS  Google Scholar 

  51. A. Gilchrist, N. K. Langford, and M. A. Nielsen, Distance measures to compare real and ideal quantum processes, Phys. Rev. A 71(6), 062310 (2005)

    Article  ADS  Google Scholar 

  52. A. Björklund, B. Gupt, and N. Quesada, A faster Hafnian formula for complex matrices and its bench-marking on the Titan supercomputer, J. Exp. Algor. 24, 11 (2019)

    Google Scholar 

  53. M. Reck, A. Zeilinger, H. J. Bernstein, and P. Bertani, Experimental realization of any discrete unitary operator, Phys. Rev. Lett. 73(1), 58 (1994)

    Article  ADS  Google Scholar 

  54. W. R. Clements, P. C. Humphreys, B. J. Metcalf, W. S. Kolthammer, and I. A. Walsmley, Optimal design for universal multiport interferometers, Optica 3(12), 1460 (2016)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank valuable discussions with Zhaohui Wei, Haitao Quan, Xianmin Jin, and Yuanhao Wang. This work was supported by the National Natural Science Foundation of China under Grant No. 61771278 and the Beijing Institute of Technology Research Fund Program for Young Scholars.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhang-qi Yin.

Ethics declarations

Declarations The authors declare that they have no competing interests and there are no conflicts.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, WQ., Yin, Zq. Efficiently simulating the work distribution of multiple identical bosons with boson sampling. Front. Phys. 19, 32203 (2024). https://doi.org/10.1007/s11467-023-1366-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-023-1366-3

Keywords

Navigation