Skip to main content
Log in

Preparation of maximally-entangled states with multiple cat-state qutrits in circuit QED

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

In recent years, cat-state encoding and high-dimensional entanglement have attracted much attention. However, previous works are limited to generation of entangled states of cat-state qubits (two-dimensional entanglement with cat-state encoding), while how to prepare entangled states of cat-state qutrits or qudits (high-dimensional entanglement with cat-state encoding) has not been investigated. We here propose to generate a maximally-entangled state of multiple cat-state qutrits (three-dimensional entanglement by cat-state encoding) in circuit QED. The entangled state is prepared with multiple microwave cavities coupled to a superconducting flux ququart (a four-level quantum system). This proposal operates essentially by the cavity-qutrit dispersive interaction. The circuit hardware resource is minimized because only a coupler ququart is employed. The higher intermediate level of the ququart is occupied only for a short time, thereby decoherence from this level is greatly suppressed during the state preparation. Remarkably, the state preparation time does not depend on the number of the qutrits, thus it does not increase with the number of the qutrits. As an example, our numerical simulations demonstrate that, with the present circuit QED technology, the high-fidelity preparation is feasible for a maximally-entangled state of two cat-state qutrits. Furthermore, we numerically analyze the effect of the inter-cavity crosstalk on the scalability of this proposal. This proposal is universal and can be extended to accomplish the same task with multiple microwave or optical cavities coupled to a natural or artificial four-level atom.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. W. Show, in: S. Goldwasser (Ed.), Proceedings of the 35th Annual Symposium on FOCS, IEEE Comput. Soc. Press, Los Alamitos, 1994, p. 124

  2. L. K. Grover, Quantum mechanics helps in searching for a needle in a haystack, Phys. Rev. Lett. 79(2), 325 (1997)

    Article  ADS  Google Scholar 

  3. A. Steane, Quantum computing, Rep. Prog. Phys. 61(2), 117 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  4. N. J. Cerf, M. Bourennane, A. Karlsson, and N. Gisin, Security of quantum key distribution using D-level systems, Phys. Rev. Lett. 88(12), 127902 (2002)

    Article  ADS  Google Scholar 

  5. B. P. Lanyon, M. Barbieri, M. P. Almeida, T. Jennewein, T. C. Ralph, K. J. Resch, G. J. Pryde, J. L. O’Brien, A. Gilchrist, and A. G. White, Simphfying quantum logic using higher dimensional Hilbert spaces, Nat. Phys. 5(2), 134 (2009)

    Article  Google Scholar 

  6. F. Xu, J. H. Shapiro, and F. N. C. Wong, Experimental fast quantum random number generation using high dimensional entanglement with entropy monitoring, Optica 3(11), 1266 (2016)

    Article  ADS  Google Scholar 

  7. X. M. Hu, J. S. Chen, B. H. Liu, Y. Guo, Y. F. Huang, Z. Q. Zhou, Y. J. Han, C. F. Li, and G. C. Guo, Experimental test of compatibility-loophole-free contextuality with spatially separated entangled qutrits, Phys. Rev. Lett. 117(17), 170403 (2016)

    Article  ADS  Google Scholar 

  8. A. C. Dada, J. Leach, G. S. Buller, M. J. Padgett, and E. Andersson, Experimental high-dimensional two-photon entanglement and violations of generalized Bell inequalities, Nat. Phys. 7(9), 677 (2011)

    Article  Google Scholar 

  9. M. Krenn, M. Huber, R. Fickler, R. Lapkiewicz, S. Ramelow, and A. Zeilinger, Generation and confirmation of a (100×100)-dimensional entangled quantum system, Proc. Natl. Acad. Sci. USA 111(17), 6243 (2014)

    Article  ADS  Google Scholar 

  10. Y. Zhang, F. S. Roux, T. Konrad, M. Agnew, J. Leach, and A. Forbes, Engineering two-photon high-dimensional states through quantum interference, Sci. Adv. 2(2), e1501165 (2016)

    Article  ADS  Google Scholar 

  11. H. de Riedmatten, I. Marcikic, H. Zbinden, and N. Gisin, Creating high-dimensional time-bin entanglement using mode locked lasers, Quantum Inf. Comput. 2(6), 425 (2002)

    Google Scholar 

  12. T. Ikuta and H. Takesue, Enhanced violation of the Collins-Gisin-Linden-Massar-Popescu inequality with optimized time-bin-entangled ququarts, Phys. Rev. A 93(2), 022307 (2016)

    Article  ADS  Google Scholar 

  13. Z. Xie, T. Zhong, S. Shrestha, X. Xu, J. Liang, Y. X. Gong, J. C. Bienfang, A. Restelli, J. H. Shapiro, F. N. C. Wong, and C. W. Wong, Harnessing high-dimensional hyper-entanglement through a biphoton frequency comb, Nat. Photonics 9(8), 536 (2015)

    Article  ADS  Google Scholar 

  14. M. Kues, C. Reimer, P. Roztocki, L. R. Cort’es, S. Sciara, B. Wetzel, Y. Zhang, A. Cino, S. T. Chu, B. E. Little, D. J. Moss, L. Caspani, J. Azaña, and R. Morandotti, On-chip generation of high-dimensional entangled quantum states and their coherent control, Nature 546(7660), 622 (2017)

    Article  ADS  Google Scholar 

  15. P. Imany, J. A. Jaramillo-Villegas, O. D. Odele, K. Han, D. E. Leaird, J. M. Lukens, P. Lougovski, M. Qi, and A. M. Weiner, 50-GHz-spaced comb of high-dimensional frequency-bin entangled photons from an on-chip silicon nitride microresonator, Opt. Express 26(2), 1825 (2018)

    Article  ADS  Google Scholar 

  16. C. Schaeff, R. Polster, R. Lapkiewicz, R. Fickler, S. Ramelow, and A. Zeilinger, Scalable fiber integrated source for higher dimensional path-entangled photonic quNits, Opt. Express 20(15), 16145 (2012)

    Article  ADS  Google Scholar 

  17. C. Schaeff, R. Polster, M. Huber, S. Ramelow, and A. Zeilinger, Experimental access to higher-dimensional entangled quantum systems using integrated optics, Optica 2(6), 523 (2015)

    Article  ADS  Google Scholar 

  18. N. Ofek, A. Petrenko, R. Heeres, P. Reinhold, Z. Leghtas, B. Vlastakis, Y. Liu, L. Frunzio, S. M. Girvin, L. Jiang, M. Mirrahimi, M. H. Devoret, and R. J. Schoelkopf, Extending the lifetime of a quantum bit with error correction in superconducting circuits, Nature 536(7617), 441 (2016)

    Article  ADS  Google Scholar 

  19. J. Q. Liao, J. F. Huang, and L. Tian, Generation of macroscopic Schrödinger-cat states in qubit-oscillator systems, Phys. Rev. A 93(3), 033853 (2016)

    Article  ADS  Google Scholar 

  20. T. Hatomura, Shortcuts to adiabatic cat-state generation in bosonic Josephson junctions, New J. Phys. 20(1), 015010 (2018)

    Article  ADS  Google Scholar 

  21. Y. H. Chen, W. Qin, X. Wang, A. Miranowicz, and F. Nori, Shortcuts to adiabaticity for the quantum Rabi model: Efficient generation of giant entangled cat states via parametric amplification, Phys. Rev. Lett. 126(2), 023602 (2021)

    Article  ADS  Google Scholar 

  22. S. Liu, Y. H. Chen, Y. Wang, Y. H. Kang, Z. C. Shi, J. Song, and Y. Xia, Generation of cat states by a weak parametric drive and a transitionless tracking algorithm, Phys. Rev. A 106(4), 042430 (2022)

    Article  ADS  Google Scholar 

  23. C. P. Yang and Z. F. Zheng, Deterministic generation of Greenberger-Horne-Zeilinger entangled states of catstate qubits in circuit QED, Opt. Lett. 43(20), 5126 (2018)

    Article  ADS  Google Scholar 

  24. Y. Zhang, T. Liu, Y. Yu, and C. P. Yang, Preparation of entangled W states with cat-state qubits in circuit QED, Quantum Inform. Process. 19(8), 218 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  25. Y.-H. Chen, W. Qin, X. Wang, A. Miranowicz, and F. Nori, Shortcuts to adiabaticity for the quantum Rabi model: Efficient generation of giant entangled cat states via parametric amplification, Phys. Rev. Lett. 126, 023602 (2021)

    Article  ADS  Google Scholar 

  26. Y.-H. Chen, R. Stassi, W. Qin, A. Miranowicz, and F. Nori, Fault-tolerant multiqubit geometric entangling gates using photonic cat-state qubits, Phys. Rev. Applied 18, 024076 (2022)

    Article  ADS  Google Scholar 

  27. M. Mirrahimi, Z. Leghtas, V. V. Albert, S. Touzard, R. J. Schoelkopf, L. Jiang, and M. H. Devoret, Dynamically protected cat-qubits: A new paradigm for universal quantum compuation, New J. Phys. 16(4), 045014 (2014)

    Article  ADS  Google Scholar 

  28. S. E. Nigg, Deterministic Hadamard gate for microwave cat-state qubits in circuit QED, Phys. Rev. A 89(2), 022340 (2014)

    Article  ADS  Google Scholar 

  29. Y. H. Kang, Y. H. Chen, X. Wang, J. Song, Y. Xia, A. Miranowicz, S. B. Zheng, and F. Nori, Nonadiabatic geometric quantum computation with cat-state qubits via invariant-based reverse engineering, Phys. Rev. Res. 4(1), 013233 (2022)

    Article  Google Scholar 

  30. C. P. Yang, Q. P. Su, S. B. Zheng, F. Nori, and S. Han, Entangling two oscillators with arbitrary asymmetric initial states, Phys. Rev. A 95(5), 052341 (2017)

    Article  ADS  Google Scholar 

  31. Y. Zhang, X. Zhao, Z. F. Zheng, L. Yu, Q. P. Su, and C. P. Yang, Universal controlled-phase gate with cat-state qubits in circuit QED, Phys. Rev. A 96(5), 052317 (2017)

    Article  ADS  Google Scholar 

  32. Y. J. Fan, Z. F. Zheng, Y. Zhang, D. M. Lu, and C. P. Yang, One step implementation of a multi-target-qubit controlled phase gate with cat-state qubits in circuit QED, Front. Phys. 14(1), 21602 (2019)

    Article  ADS  Google Scholar 

  33. R. W. Heeres, P. Reinhold, N. Ofek, L. Frunzio, L. Jiang, M. H. Devoret, and R. J. Schoelkopf, Implementing a universal gate set on a logical qubit encoded in an oscillator, Nat. Commun. 8(1), 94 (2017)

    Article  ADS  Google Scholar 

  34. A. Grimm, N. E. Frattini, S. Puri, S. O. Mundhada, S. Touzard, M. Mirrahimi, S. M. Girvin, S. Shankar, and M. H. Devoret, Stabilization and operation of a Kerrcat qubit, Nature 584(7820), 205 (2020)

    Article  ADS  Google Scholar 

  35. C. Wang, Y. Y. Gao, P. Reinhold, R. W. Heeres, N. Ofek, K. Chou, C. Axline, M. Reagor, J. Blumoff, K. M. Sliwa, L. Frunzio, S. M. Girvin, L. Jiang, M. Mirrahimi, M. H. Devoret, and R. J. Schoelkopf, A Schrodinger cat living in two boxes, Science 352(6289), 1087 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  36. Z. Wang, Z. Bao, Y. Wu, Y. Li, W. Cai, W. Wang, Y. Ma, T. Cai, X. Han, J. Wang, Y. Song, L. Sun, H. Zhang, and L. Duan, A flying Schrödinger’s cat in multipartite entangled states, Sci. Adv. 8, eabn1778 (2022)

    Article  Google Scholar 

  37. C. P. Yang, S. I. Chu, and S. Han, Possible realization of entanglement, logical gates, and quantum information transfer with superconducting-quantum-interference-device qubits in cavity QED, Phys. Rev. A 67(4), 042311 (2003)

    Article  ADS  Google Scholar 

  38. J. Q. You and F. Nori, Quantum information processing with superconducting qubits in a microwave field, Phys. Rev. B 68(6), 064509 (2003)

    Article  ADS  Google Scholar 

  39. A. Blais, R. S. Huang, A. Wallraff, S. M. Girvin, and R. J. Schoelkopf, Cavity quantum electro-dynamics for superconducting electrical circuits: An architecture for quantum computation, Phys. Rev. A 69(6), 062320 (2004)

    Article  ADS  Google Scholar 

  40. J. Q. You and F. Nori, Atomic physics and quantum optics using superconducting circuits, Nature 474(7353), 589 (2011)

    Article  ADS  Google Scholar 

  41. I. Buluta, S. Ashhab, and F. Nori, Natural and artificial atoms for quantum computation, Rep. Prog. Phys. 74(10), 104401 (1011)

    Article  ADS  Google Scholar 

  42. Z. L. Xiang, S. Ashhab, J. Q. You, and F. Nori, Hybrid quantum circuits: Superconducting circuits interacting with other quantum systems, Rev. Mod. Phys. 85(2), 623 (2013)

    Article  ADS  Google Scholar 

  43. X. Gu, A. F. Kockum, A. Miranowicz, Y. X. Liu, and F. Nori, Microwave photonics with superconducting quantum circuits, Phys. Rep. 718–719, 1 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  44. A. P. M. Place, L. V. H. Rodgers, P. Mundada, B. M. Smitham, M. Fitzpatrick, Z. Leng, A. Premkumar, J. Bryon, A. Vrajitoarea, S. Sussman, G. Cheng, T. Madhavan, H. K. Babla, X. H. Le, Y. Gang, B. Jäck, A. Gyenis, N. Yao, R. J. Cava, N. P. de Leon, and A. A. Houck, New material platform for superconducting transmon qubits with coherence times exceeding 0.3 milliseconds, Nat. Commun. 12(1), 1779 (2021)

    Article  ADS  Google Scholar 

  45. S. Kono, J. Pan, M. Chegnizadeh, X. Wang, A. Youssefifi, M. Scigliuzzo, and T. J. Kippenberg, Mechanically induced correlated errors on superconducting qubits with relaxation times exceeding 0.4 milliseconds, arXiv: 1305.01591 (1013)

  46. C. Wang, X. Li, H. Xu, Z. Li, J. Wang, Z. Yang, Z. Mi, X. Liang, T. Su, C. Yang, et al., Towards practical quantum computers transmon qubit with a lifetime approaching 0.5 milliseconds, npj Quantum Inf. 8, 3 (2022)

    Article  ADS  Google Scholar 

  47. F. Yan, S. Gustavsson, A. Kamal, J. Birenbaum, A. P. Sears, D. Hover, T. J. Gudmundsen, D. Rosenberg, G. Samach, S. Weber, J. L. Yoder, T. P. Orlando, J. Clarke, A. J. Kerman, and W. D. Oliver, The flux qubit revisited to enhance coherence and reproducibility, Nat. Commun. 7(1), 12964 (2016)

    Article  ADS  Google Scholar 

  48. A. Somoroff, Q. Ficheux, R. A. Mencia, H. N. Xiong, R. Kuzmin, and V. E. Manucharyan, Millisecond coherence in a superconducting qubit, Phys. Rev. Lett. 130, 264001 (2023)

    Article  Google Scholar 

  49. M. Hofheinz, H. Wang, M. Ansmann, R. C. Bialczak, E. Lucero, M. Neeley, A. D. O’Connell, D. Sank, J. Wenner, J. M. Martinis, and A. N. Cleland, Synthesizing arbitrary quantum states in a superconducting resonator, Nature 459(7246), 546 (2009)

    Article  ADS  Google Scholar 

  50. H. Wang, M. Hofheinz, J. Wenner, M. Ansmann, R. C. Bialczak, M. Lenander, E. Lucero, M. Neeley, A. D. O’Connell, D. Sank, M. Weides, A. N. Cleland, and J. M. Martinis, Improving the coherence time of superconducting coplanar resonators, Appl. Phys. Lett. 95(23), 233508 (2009)

    Article  ADS  Google Scholar 

  51. M. H. Devoret and R. J. Schoelkopf, Superconducting circuits for quantum information: An outlook, Science 339(6124), 1169 (2013)

    Article  ADS  Google Scholar 

  52. P. J. Leek, S. Filipp, P. Maurer, M. Baur, R. Bianchetti, J. M. Fink, M. Goppl, L. Steffen, and A. Wallraff, Using sideband transitions for two-qubit operations in superconducting circuits, Phys. Rev. B 79(18), 180511 (2009)

    Article  ADS  Google Scholar 

  53. M. Neeley, M. Ansmann, R. C. Bialczak, M. Hofheinz, N. Katz, E. Lucero, A. O’Connell, H. Wang, A. N. Cleland, and J. M. Martinis, Process tomography of quantum memory in a Josephson-phase qubit coupled to a two-level state, Nat. Phys. 4(7), 523 (2008)

    Article  Google Scholar 

  54. S. B. Zheng and G. C. Guo, Efficient scheme for twoatom entanglement and quantum information processing in cavity QED, Phys. Rev. Lett. 85(11), 2392 (2000)

    Article  ADS  Google Scholar 

  55. A. Sørensen and K. Mølmer, Quantum computation with ions in thermal motion, Phys. Rev. Lett. 82(9), 1971 (1999)

    Article  ADS  Google Scholar 

  56. D. F. V. James and J. Jerke, Effective Hamiltonian theory and its applications in quantum information, Can. J. Phys. 85(6), 625 (2007)

    Article  ADS  Google Scholar 

  57. G. Kirchmair, B. Vlastakis, Z. Leghtas, S. E. Nigg, H. Paik, E. Ginossar, M. Mirrahimi, L. Frunzio, S. M. Girvin, and R. J. Schoelkopf, Observation of quantum state collapse and revival due to the single-photon Kerr effect, Nature 495(7440), 205 (2013)

    Article  ADS  Google Scholar 

  58. B. Vlastakis, G. Kirchmair, Z. Leghtas, S. E. Nigg, L. Frunzio, S. M. Girvin, M. Mirrahimi, M. H. Devoret, and R. J. Schoelkopf, Deterministically encoding quantum information using 100-photon Schrödinger cat states, Science 342(6158), 607 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  59. L. Sun, A. Petrenko, Z. Leghtas, B. Vlastakis, G. Kirchmair, K. M. Sliwa, A. Narla, M. Hatridge, S. Shankar, J. Blumoff, L. Frunzio, M. Mirrahimi, M. H. Devoret, and R. J. Schoelkopf, Tracking photon jumps with repeated quantum non demolition parity measurements, Nature 511(7510), 444 (2014)

    Article  ADS  Google Scholar 

  60. B. Vlastakis, A. Petrenko, N. Ofek, L. Sun, Z. Leghtas, K. Sliwa, Y. Liu, M. Hatridge, J. Blumoff, L. Frunzio, M. Mirrahimi, L. Jiang, M. H. Devoret, and R. J. Schoelkopf, Characterizing entanglement of an artificial atom and a cavity cat state with Bell’s inequality, Nat. Commun. 6(1), 8970 (2015)

    Article  ADS  Google Scholar 

  61. O. Milul, B. Guttel, U. Goldblatt, S. Hazanov, L. M. Joshi, D. Chausovsky, N. Kahn, E. Çiftyürek, F. Lafont, and S. Rosenblum, A superconducting quantum memory with tens of milliseconds coherence time, arXiv: 2302.06442 (2023)

  62. M. Sandberg, C. M. Wilson, F. Persson, T. Bauch, G. Johansson, V. Shumeiko, T. Duty, and P. Delsing, Tuning the field in a microwave resonator faster than the photon lifetime, Appl. Phys. Lett. 92(20), 203501 (2008)

    Article  ADS  Google Scholar 

  63. Z. L. Wang, Y. P. Zhong, L. J. He, H. Wang, J. M. Martinis, A. N. Cleland, and Q. W. Xie, Quantum state characterization of a fast tunable superconducting resonator, Appl. Phys. Lett. 102(16), 163503 (2013)

    Article  ADS  Google Scholar 

  64. E. Jeffrey, D. Sank, J. Y. Mutus, T. C. White, J. Kelly, R. Barends, Y. Chen, Z. Chen, B. Chiaro, A. Dunsworth, A. Megrant, P. J. J. O’Malley, C. Neill, P. Roushan, A. Vainsencher, J. Wenner, A. N. Cleland, and J. M. Martinis, Fast accurate state measurement with superconducting qubits, Phys. Rev. Lett. 112(19), 190504 (2014)

    Article  ADS  Google Scholar 

  65. J. Heinsoo, C. K. Andersen, A. Remm, S. Krinner, T. Walter, Y. Salathé, S. Gasparinetti, J. C. Besse, A. Potöcnik, A. Wallraff, and C. Eichler, Rapid high-fidelity multiplexed readout of superconducting qubits, Phys. Rev. Appl. 10(3), 034040 (2018)

    Article  ADS  Google Scholar 

  66. J. R. Johansson, P. D. Nation, and F. Nori, QuTiP: An open-source Python framework for the dynamics of open quantum systems, Comput. Phys. Commun. 183(8), 1760 (2012)

    Article  ADS  Google Scholar 

  67. J. R. Johansson, P. D. Nation, and F. Nori, QuTiP2: A Python framework for the dynamics of open quantum systems, Comput. Phys. Commun. 184(4), 1234 (2013)

    Article  ADS  Google Scholar 

  68. Y. X. Liu, J. Q. You, L. F. Wei, C. P. Sun, and F. Nori, Optical selection rules and phase dependent adiabatic state control in a superconducting quantum circuit, Phys. Rev. Lett. 95(8), 087001 (2005)

    Article  ADS  Google Scholar 

  69. Y. X. Liu, C. X. Yang, H. C. Sun, and X. B. Wang, Coexistence of single- and multi-photon processes due to longitudinal couplings between superconducting flux qubits and external fields, New J. Phys. 16(1), 015031 (2014)

    Article  ADS  Google Scholar 

  70. T. Niemczyk, F. Deppe, H. Huebl, E. P. Menzel, F. Hocke, M. J. Schwarz, J. J. Garcia-Ripoll, D. Zueco, T. Hümmer, E. Solano, A. Marx, and R. Gross, Circuit quantum electrodynamics in the ultrastrong coupling regime, Nat. Phys. 6(10), 772 (2010)

    Article  Google Scholar 

  71. F. Yoshihara, T. Fuse, S. Ashhab, K. Kakuyanagi, S. Saito, and K. Semba, Superconducting qubit-oscillator circuit beyond the ultrastrong-coupling regime, Nat. Phys. 13(1), 44 (2017)

    Article  Google Scholar 

  72. F. Yoshihara, T. Fuse, Z. Ao, S. Ashhab, K. Kakuyanagi, S. Saito, T. Aoki, K. Koshino, and K. Semba, Inversion of qubit energy levels in qubit-oscillator circuits in the deep-strong-coupling regime, Phys. Rev. Lett. 120(18), 183601 (2018)

    Article  ADS  Google Scholar 

  73. J. Q. You, X. Hu, S. Ashhab, and F. Nori, Low-decoherence flux qubit, Phys. Rev. B 75, 140515(R) (2007)

    Article  ADS  Google Scholar 

  74. L. V. Abdurakhimov, I. Mahboob, H. Toida, K. Kakuyanagi, and S. Saito, A long-lived capacitively shunted flux qubit embedded in a 3D cavity, Appl. Phys. Lett. 115(26), 262601 (2019)

    Article  ADS  Google Scholar 

  75. C. P. Yang, Q. P. Su, and S. Han, Generation of Greenberger Horne-Zeilinger entangled states of photons in multiple cavities via a superconducting qutrit or an atom through resonant interaction, Phys. Rev. A 86(2), 022329 (2012)

    Article  ADS  Google Scholar 

  76. M. Baur, S. Filipp, R. Bianchetti, J. M. Fink, M. Göppl, L. Steffen, P. J. Leek, A. Blais, and A. Wallraff, Measurement of Autler-Townes and mollow transitions in a strongly driven superconducting qubit, Phys. Rev. Lett. 102(24), 243602 (2009)

    Article  ADS  Google Scholar 

  77. W. Woods, G. Calusine, A. Melville, A. Sevi, E. Golden, D. K. Kim, D. Rosenberg, J. L. Yoder, and W. D. Oliver, Determining interface dielectric losses in superconducting coplanar-waveguide resonators, Phys. Rev. Appl. 12(1), 014012 (2019)

    Article  ADS  Google Scholar 

  78. A. Melville, G. Calusine, W. Woods, K. Serniak, E. Golden, B. M. Niedzielski, D. K. Kim, A. Sevi, J. L. Yoder, E. A. Dauler, and W. D. Oliver, Comparison of dielectric loss in titanium nitride and aluminum superconducting resonators, Appl. Phys. Lett. 117(12), 124004 (2020)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was partly supported by the National Natural Science Foundation of China (NSFC) (Grant Nos. 11074062, 11374083, 11774076, and U21A20436), the Key-Area Research and Development Program of Guangdong Province (No. 2018B030326001), the Jiangsu Funding Program for Excellent Postdoctoral Talent, and the Innovation Program for Quantum Science and Technology (No. 2021ZD0301705).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi-Ping Su.

Ethics declarations

Declarations The authors declare that they have no competing interests and there are no conflicts.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, CP., Ni, JH., Bin, L. et al. Preparation of maximally-entangled states with multiple cat-state qutrits in circuit QED. Front. Phys. 19, 31201 (2024). https://doi.org/10.1007/s11467-023-1357-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-023-1357-4

Keywords

Navigation