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ABSTRACT

The  study  of  macro  continuous  flow  has  a  long  history.  Simultaneously,
the exploration of heat and mass transfer in small systems with a particle
number  of  several  hundred  or  less  has  gained  significant  interest  in  the
fields of statistical physics and nonlinear science. However, due to absence
of  suitable  methods,  the  understanding  of  mesoscale  behavior  situated
between the aforementioned two scenarios, which challenges the physical
function of traditional continuous fluid theory and exceeds the simulation
capability of  microscopic molecular dynamics method,  remains consider-
ably deficient.  This greatly restricts  the evaluation of effects of  mesoscale
behavior and impedes the development of corresponding regulation tech-
niques. To access the mesoscale behaviors, there are two ways: from large
to small and from small to large. Given the necessity to interface with the
prevailing  macroscopic  continuous  modeling  currently  used  in  the
mechanical  engineering  community,  our  study  of  mesoscale  behavior
begins  from  the  side  closer  to  the  macroscopic  continuum,  that  is  from
large to small.  Focusing on some fundamental challenges encountered in
modeling  and  analysis  of  near-continuous  flows,  we  review  the  research
progress of discrete Boltzmann method (DBM). The ideas and schemes of
DBM in coarse-grained modeling and complex physical field analysis are
introduced. The relationships, particularly the differences, between DBM
and  traditional  fluid  modeling  as  well  as  other  kinetic  methods  are
discussed.  After  verification  and  validation  of  the  method,  some  applied
researches including the development of various physical functions associ-
ated  with  discrete  and  non-equilibrium  effects  are  illustrated.  Future
directions of DBM related studies are indicated.
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 1   Introduction

Fluid  is  a  general  term  encompassing  both  gases  and

liquids. The two fluids we are most familiar with are the
atmosphere  and  water:  the  atmosphere  surrounds  the
entire Earth, and 70% of the Earth’s surface is covered
by water. Since ancient times, water and air, on the one
hand,  have  nurtured  life.  On  the  other  hand,  it  also
brings  natural  disasters  such  as  typhoons,  floods  and
droughts  to  human  beings  from  time  to  time.  Human
daily life, production and other activities are inseparable
from  fluid.  In  the  struggle  with  nature  and  through
production practice, human beings gradually accumulate
experience and enhance understanding of fluid behavior.
The  continuous  summarization  and  enhancement  of
these  understandings  gradually  formed  the  discipline  of
fluid  mechanics.  The  air  and  water  we  perceive  in  our
daily lives appear to be continuous, and this perception
is  based  on  a  macroscopic  understanding  of  continuous
flow. However,  with the emergence of  molecular  kinetic
theory, people gradually realized that the sense of conti-
nuity  is  because  the  distances  between  molecules  are
exceedingly  small  compared  to  the  scales  we  typically
perceive in our daily lives.

In addition to the seemingly continuous flow of water
and air,  there exist  various flows in our daily lives and
industrial production that exhibit distinct discrete char-
acteristics.  Examples  include  dust  explosions,  particle
flow,  traffic  flow,  and  the  movement  of  crowds.  For  a
uniform  description,  we  treat  people  and  cars  as  parti-
cles.  These  flows  are  perceived  as  discrete  because  the
distance between particles is no longer negligible relative
to the scale of our everyday perception. However, when
observed  on  a  significantly  larger  scale  (for  example,
exceeding  1000  times  the  distance  between  particles),
these flows can also be considered continuous. It can be
seen  that  the  fluid  system  itself  is  objective,  but  the
description  of  continuous  and  discrete  is  dependent  on
the  scale  of  the  behavior  we are  concerned with.  Hsue-
shen  Tsien,  a  famous  Chinese  scientist,  first  suggested
that  according  to  the  Knudsen  (Kn)  number,  the  fluid
behavior could be divided into continuous flow, slip flow,
transition flow and free  molecular  flow [1].  In  addition,
it  should  be  noted  that  unlike  microscopic  molecular
collisions,  collisions  between  particles  composed  of  a
large number of molecules are dissipative.

The development of scientific theories typically follows
a progression from simplicity to complexity. The theory
of fluid mechanics begins with a macroscopic continuous
flow  such  as  air  and  water  in  which  collisions  between
microscopic  particles  do  not  dissipate.  Considering  the
stage of the study and space limitation of current review,
the  continuous  and  discrete  flows  discussed  in  the
following  parts  are  “simple” cases  in  which  there  is  no
dissipation  in  the  collisions  of  microscopic  particles
which  constitute  the  fundamental  units.  Interestingly,
and  somewhat,  the  study  of  heat  and  mass  transfer  in
these “simple” cases has been, and is still going through
a long process.
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To show that the study of these simple scenarios also
contains a wealth of yet unexplored complex behaviors,
we begin with an everyday phenomenon: the fluid (inter-
face) instability. Fluid (interface) instability refers to the
phenomenon  that  after  the  fluid  interface  is  disturbed,
the interface cannot automatically return to its original
state under the action of the system’s own force, and the
disturbance  amplitude  increases  with  time.  Two
common  types  of  fluid  instabilities  are  the  Kelvin–
Helmholtz  instability  (KHI)  [2, 3]  and  Rayleigh–Taylor
instability(RTI) [4, 5]. KHI occurs when there is a difference
in  tangential  velocity  on  both  sides  of  the  interface,
leading  to  phenomena  like  rolling  sea  waves  and  cirrus
clouds. RT instability refers to the phenomenon of inter-
face  instability  that  can  be  caused  by  any  disturbance
when acceleration is  directed from a medium with high
density to one with low density. Due to the relativity of
motion,  another  equivalent  image  of  RT  instability  is
the  phenomenon  of  interface  instability  caused  by  the
acceleration of a denser medium by a less dense medium.
Common  examples  of  RT  instability,  such  as  interface
instability  when  milk  is  poured  into  a  glass  of  water,
volcanic  eruptions,  and  mushroom  clouds. Figure  1
shows  the  mechanical  causes  of  the  formation  of  KHI
and RTI. In addition, there is a class of fluid (interface)
instability  known  as  Richtmyer–Meshkov  instability
(RMI) [6, 7]. It refers to the phenomenon that the interface
disturbance cannot naturally recover by the system itself
under  the  action  of  shock  wave,  and  the  disturbance
amplitude  increases  gradually  with  time.  In  fact,  RMI
can be regarded as a special case of RTI when the accel-
eration  takes  the  form  of  a  pulse.  At  the  same  time,
during  the  evolution  of  RTI  and  RMI,  a  tangential
velocity  difference  on  both  sides  of  the  interface  will
inevitably induce the KHI.

The  three  kinds  of  fluid  instabilities,  RTI,  RMI,  and
KHI, have been the focus of high energy density physics
laboratories and inertial  confinement fusion (ICF) labo-
ratories around the world [8–13]. In fact, fluid instability
phenomenon  widely  exists  in  nature  and  engineering
technology  fields,  such  as  astrophysics,  energy  and
power,  aerospace,  chemical  engineering  and  materials
science  [14–24].  As  a  physical  phenomenon  that  must

occur  when  certain  conditions  are  met,  fluid  instability
is also a double-edged sword. On one hand, it can accelerate
the  mixing  of  substances,  which  is  conducive  to  the
mixing  and  combustion  of  liquid  fuels  in  internal
combustion engines, aeroengines and supersonic ramjets.
It  also  plays  a  critical  role  in  initiating  explosives.  On
the  other  hand,  it  is  also  a  key  factor  that  seriously
affects  the success  of  ICF ignition and some equipment
performance. It poses a potential threat to the safety of
explosives. The guiding principle here is straightforward:
if  it  is  beneficial,  strengthen  it;  if  it  is  harmful,  try  to
suppress  it.  The  basis  of  effective  utilization  and
suppression is to have a clear understanding of the char-
acteristics,  mechanisms  and  laws  in  the  process  of  its
occurrence  and  development.  These  systems  often  have
the following characteristics: (i) Despite their macroscopic
scale,  they  encompass  a  large  number  of  intermediate-
scale spatial structures and kinetic patterns. The existence
and  evolution  of  these  structures  and  models  greatly
affect  the  physical  properties  and  functions  of  the
system. (ii)  Such systems often have numerous internal
interfaces,  including  material  interface  and  mechanical
interface  (shock  wave,  rarefaction  wave,  detonation
wave,  etc.).  (iii)  The  internal  force  and  response
processes  within  the  system  are  exceedingly  complex.
Furthermore,  the  study  of  these  systems  is  faced  with
the following problems: The large-scale slow behavior of
these  systems  can  be  reasonably  described  by  the
Navier–Stokes (NS) equations. However, in the description
of flow behavior in some low-pressure rarefaction regions,
the  description  of  internal  structure  of  shock  wave  or
detonation wave, and the description of non-equilibrium
behavior  caused  by  fast  changing  flow  or  reaction,  NS
equations  are  insufficient  in  physical  function.  At  the
same time, for the flow behavior of interest, microscopic
Molecular Dynamics (MD) simulations are often powerless
due  to  the  limitations  of  applicable  (spatiotemporal)
scales.  As  shown  in Fig.  2,  for  the  mesoscale  dilemma
where the macroscopic continuous NS models suffer from
inadequate physical capabilities, while micro MD simula-
tions are unable to reached the scale, the corresponding
research  is  extremely  weak  due  to  the  lack  of  suitable
models  and  methods.  Compared  with  the  macroscopic
continuous case,  the typical characteristics of mesoscale
behavior are as follows: the discrete effect is more signif-
icant, and the non-equilibrium effect is more significant.

 
Fig. 1  (a) Sketch  of  the  formation  mechanism  of  KHI.
(b) Sketch of the formation mechanism of RTI.

 
Fig. 2  The  mesoscale  dilemma  between  macroscopic
continuous and microscopic particle descriptions.
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Currently,  mesoscale  kinetic  modes  related  to  discrete
and non-equilibrium phenomena are far from being fully
understood,  which  significantly  hinders  the  assessment
of various effects in mesoscale behavior and the develop-
ment of corresponding control techniques.

Similar problems are faced in the following situations:
In the field of aerospace, spacecraft traverse the rarefied
atmosphere  during  its  launch  and  reentry.  With  the
increase  of  the  height  in  the  rarefied  region,  the  fluid
behavior  predicted  by  NS  deviates  increasingly  from
experimental  observations.  Even  at  the  same  altitude,
the reasonability of NS describing practical flow behaviors
in  different  parts  of  the  same  spacecraft  may  also  be
different [1, 25, 26]. In the field of micro-porous flow and
microfluidics,  behaviors  such  as  heat  transfer,  mass
transfer,  and  phase  changes  within  microchannels  often
show  significant  deviations  from  macroscopic  NS
descriptions  [27–30].  Descriptions  of  complex  flow
processes, such as jet atomization, bubble collapse under
shock,  and  droplet  fragmentation  under  laser  ablation,
challenge  the  rationality  of  the  NS  model  [31–36].  In
combustion  environments,  the  phase  transition  and
mixing of liquid and gas [37, 38], as well as complex flow
processes  like  droplet  vaporization  under  laser  ablation
and  laser  ablation  propulsion,  pose  challenges  to  the
rationality  and  physical  capabilities  of  NS  modeling  [9,
39, 40].  The  internal  non-equilibrium  phenomena  of
plasma system are very rich and complex, and hydrody-
namic  description  is  an  important  means  to  study  the
behavior  of  plasma.  However,  the  in-depth  study  of  a
series of strong non-equilibrium behaviors poses a challenge
to  the  rationality  and  capabilities  of  NS  modeling
[40–45].  It  has  been  pointed  out  that  in  ICF,  the  non-
continuous and highly non-equilibrium kinetic behaviors
may  significantly  affect  the  success  of  ignition  [40, 44,
45].

The physical reason for the above dilemma is that the
traditional  NS  model  is  based  on  the  assumption  of
continuous  media  and  near  equilibrium  approximation.
However, near sharp interfaces such as shock waves and
boundary  layers,  the  average  molecular  spacing  is  no
longer a negligible small quantity relative to the scale of
the  structure  we  are  concerned  about.  In  terms  of
describing  fast  changing  modes,  the  thermodynamic
relaxation  time  is  no  longer  a  negligible  small  quantity
compared to the time scale of the flow (or reaction) we
are concerned with. During the process of flow (or reac-
tion), the system no longer has enough time to return to
near thermodynamic equilibrium. In addition, traditional
fluid  modeling  only  focuses  on/describes  the  spatiotem-
poral  evolution of  the conserved moments of  the distri-
bution  function  (density,  momentum,  and  energy).
Subsequently, we will further discuss that this approach
is  inadequate  for  describing  micro–mesoscale  structures
and  fast-changing  modes,  and  its  shortcomings  become
more pronounced as the degree of discreteness and non-
equilibrium increases.

There are only two ways to advance to the mesoscale
science:  from  macro  to  meso  and  from  micro  to  meso.
The former involves scaling down from larger to smaller,
while  the  latter  involves  scaling  up  from  smaller  to
larger.  Given that  the fluid models  predominantly  used
in  engineering  applications  such  as  aerospace,  ICF  and
some other equipment are mainly macroscopic continuous
NS models, the issue we are facing is: how to seamlessly
connect mesoscale modeling with macroscopic continuous
modeling? Therefore, in the discussions within this arti-
cle,  we  adopt  a  scheme  that  gradually  increases  the
degree  of  discreteness  and  non-equilibrium  from  macro
to meso, with a primary focus on behaviors closer to the
macroscopic side within the mesoscale range.

 2   State of art for complex flow

 2.1   Problems and challenges

The  discontinuity  (or  discreteness)  of  a  fluid  system  is
closely  related  to  the  degree  of  Thermodynamic  Non-
Equilibrium (TNE).  Knudsen (Kn) number,  on the one
hand,  can  be  regarded  as  a  rescaled  average  molecular
distance, describing the discontinuity (or discreteness) of
the system. On the other hand, it can also be regarded
as a rescaled thermodynamic relaxation time to describe
the degree of TNE of the system. The concepts of non-
equilibrium  flow  and  discontinuous  flow  (discrete  flow)
overlap  from  some  sense  in  physical  connotation.  The
study of  non-equilibrium complex flows has made great
progress, but still faces some fundamental scientific chal-
lenges, such as:

(i)  Cross-scale  modeling  and  simulation  has  been  a
research  hotspot  for  about  15–20  years.  During  this
period,  it  has  experienced  fluctuations  in  popularity.
The  main  methodology  is  to  modify  the  macroscopic
fluid/solid  equations  based  on  (quasi)  continuity  and
(near) equilibrium assumption [46]. That is, the physical
quantities used to describe the system’s state and behavior
are  still  based  on  those  used  in  traditional  fluid/solid
mechanics equations. A very natural fundamental scientific
question  arises:  As  the  degree  of  discreteness/non-equi-
librium increases, is it really no problem to focus only on
the few physical variables used in a continuous and near-
equilibrium model (e.g., NS)?

(ii) It is a typical feature that complex structures and
behaviors  generally  take  on  different  characteristics
when  viewed  from  different  angles.  “How  to  extract
more  valuable  information” combined  with  “how  to
analyze  it” determines  our  research  capabilities  and
depth. Among them, the technical key is as below: when
dealing  with  systems  that  are  becoming  increasingly
complex,  how  to  achieve  an  intuitive  geometric  corre-
spondence  for  describing  complex  system  states  and
behaviors?

(iii)  Turbulence  research  remains  an  enduring  and
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important research focus due to its significance. Turbulent
mixing is an important aspect of hydrodynamic instability
research. It can be thought that as the vortex and other
structures  concerned  become  smaller  and  smaller,  the
average  molecular  distance  is  no  longer  a  negligible
small  quantity  relative  to  the  scale  of  the  structure  or
behavior  concerned,  that  is,  the  discreteness  becomes
more  pronounced,  and  discrete  effects  become  more
significant.  However,  the  early  concepts  and theoretical
framework of turbulence are established on the continuum
theory [47]. So, the third fundamental scientific question
is  as  follows:  Is  the  turbulence  concept  derived  from
pure  mathematical  deductions  based  on  a  macroscopic
continuous image entirely consistent with that in pursuit
of physical origin?

(iv) At present, the studies on non-linear systems [48,
49]  and  heat  and  mass  transfer  in  small  systems  have
made  rich  progress  [50–58].  Heat  and  mass  transfer  in
small systems exhibit some behaviors that seem “anoma-
lous” (different  from the  macroscopic  continuous  cases)
and have  attracted significant  attention in  the  fields  of
statistical physics and nonlinear science [59]. However, it
is worth noting that the small systems extensively studied
in  the  literature  of  statistical  physics  and  nonlinear
science are often much smaller than the mesoscale non-
equilibrium situations of interest in the mechanical engi-
neering  field.  The  situation  we  face  is  that  engineering
applications  largely  rely  on  macroscopic  continuous
modeling,  but  also  encounter  unsatisfactory  or  even
unsolvable  problems.  The  question  we  face  is  how  to
seamlessly connect mesoscale modeling with macroscopic
continuous modeling?

(v)  In  the  past  years,  the  main  idea  of  cross-scale
modeling and simulation is based on reductionism. As a
scientific method, reductionism is significant in uncovering
the  internal  mechanisms  of  complex  systems  and
phenomena,  determining  causality  between  the  whole
and its parts, and achieving precise modeling of complex
systems.  However,  a  typical  characteristic  of  complex
systems is that as complexity increases, the system may
exhibit  emergent  novel  behavioral  features  that  cannot
be  derived  from  any  constituent  or  coexistence  rules
from  simpler  or  simplest  cases.  (Emergence,  the  idea
that the whole is greater than the sum of its parts, is a
central theme in complexity science.) So, the fifth funda-
mental scientific question that DBM needs to face is: Is
the reductionist approach alone sufficient for cross-scale
modeling and simulation?

(vi)  The  sixth  basic  science  problem  relates  to  the
most  basic  parameter  of  non-equilibrium  flow  descrip-
tion/cognition,  that  is  the  non-equilibrium  strength.
Given  the  complexity  of  non-equilibrium  behavior,  any
definition  of  non-equilibrium  strength  depends  on  the
research  perspective.  In  other  words,  there  may  be  the
following  situations:  the  non-equilibrium  strength  is
increasing from a certain perspective, while from another

perspective,  it  appears  to  be  decreasing.  How  to  desc-
ribe the non-equilibrium strength of complex flows accu-
rately?

 2.2   Ideas and schemes

The  problems  discussed  above  are  all  problems  where
the  complexity  of  the  problem  challenges  the  physical
function of the model. The problem of physical function
cannot  be  solved  by  improving  algorithm  accuracy.
Multi-scale/cross-scale  modeling  and  simulation  are
efforts to address these and similar problems.

As shown in Fig. 3, simulation study of complex flow
includes  three  major  steps,  (i)  physical  modeling,
(ii)  discrete  format  selection/design,  (iii)  numerical
experiment and complex physical field analysis. As users
of  discrete  formats,  the  focus  of  the  physical  research
groups  generally  lies  in  the  two  ends  of  (i)  and  (iii),
leaving the design of the optimal discrete format in step
(ii)  to  more  specialized  computational  mathematicians.
The  core  tasks  of  the  physical  research  group  are  as
follows:  (i)  Ensure  the  validity  of  the  physical  model
(theoretical  model)  for  the  problem under  investigation
while  maintaining  simplicity,  and  (ii)  try  to  extract
more  valuable  physical  information  for  the  complex
physical field from the massive data.

People’s understanding of fluids begins with continuous
and (near) equilibrium flow. As the degree of discreteness
and nonequilibrium increases,  the  complexity  of  system
behavior  sharply  increases,  which  poses  challenges  for
the description and control of corresponding flow behav-
ior.  Our  understanding  of  fluid  behavior  has  two
progression  modes:  one  is  the  macroscopic  cognitive
progression mode centered on conserved quantities,  and
the other is  the microscopic cognitive progression mode
centered on molecular dynamics. People’s understanding

 
Fig. 3  The  three  main  steps  of  complex  flow  simulation
research.
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of  fluid  behavior  begins  with  macroscopic  continuous
images. The order of scientific research is generally from
conserved quantities, to spatiotemporally slow variables,
followed  by  gradually  increasing  fast  variables.  Early
research  on  conserved  quantities  and  slow  variables
prepares cognitive and technical foundations for gradually
increasing fast variable research in the later stages. The
space  slowly  changes,  corresponding  to  the  large  struc-
ture, and the relative average molecular spacing is small
enough to be negligible. At this point, the assumption of
continuity is reasonable. A slow change in time indicates
that the system has enough time to recover to the ther-
modynamic  equilibrium  state,  and  the  thermodynamic
(near) equilibrium assumption is reasonable at this time.
Traditional fluid modeling is based on and describes the
three conservation laws of mass, momentum, and energy.
However, as the rate of spatial change increases, that is,
with a decrease in the focus structure, the relative average
molecular spacing gradually becomes less negligible, and
the  discrete  effect  becomes  more  significant.  Alterna-
tively, as the rate of change over time increases, during
the  flow  or  reaction  process,  the  system  may  not  have
enough  time  to  return  to  thermodynamic  equilibrium,
resulting in a higher degree of thermodynamic non-equi-
librium.  At  this  point,  the  rationality  of  the  two  basic
assumptions of traditional fluid modeling is increasingly
challenged.  How  to  model  and  analyze  has  become  a
problem to be solved. The path from large to small scale
has encountered a theoretical rationality bottleneck.

Molecular  dynamics  is  theoretically  complete,  but  it
requires extremely high computational  resources,  so the
applicable  spatiotemporal  scale  is  very  small.  The
behaviors  we  focus  on  often  occur  at  spatiotemporal
scales that are beyond the reach of molecular dynamics.
So, on the path from small to large scale, we encountered
a bottleneck in scale.

Statistical physics is a bridge that connects microscopic
and  macroscopic  aspects.  It  utilizes  a  probabilistic
approach based on the understanding of the microstructure
of matter and interactions between microscopic particles
to  provide  a  microscopic  explanation  for  the  physical
properties and macroscopic laws of objects composed of
a large number of particles. It is also known as statistical
mechanics. Statistical physics is both a theory of physics
and a methodology. The microscopic particles described
in its framework can be molecules in gas, atoms in crys-
tals,  photons  in  laser  beams  and  other  conventional
microscopic particles, as well as stars in the Milky Way
galaxy,  cars  on  highways,  sheep  in  flocks,  people  in
social groups, and so on. The kinetic theory in non-equi-
librium statistical physics is the foundation of macroscopic
fluid mechanics theory. The kinetic theory based on the
Boltzmann equation is a relatively complete part of non-
equilibrium  statistical  physics  [60].  In  response  to  the
“mesoscale” dilemma of insufficient physical functionality
of  macro  models  and  limited  applicability  of  micro

models,  as  shown  in Fig.  2,  developing  kinetic  models
based  on  the  Boltzmann  equation  has  become  the
primary approach.

 2.3   Statistical physics: Coarse-grained modeling and
phase space description

The fundamental equation of non-equilibrium statistical
physics is the Liouville equation: 

∂F

∂t
+

N∑
i=1

(
q̇i ·

∂

∂qi
+ ṗi ·

∂

∂pi

)
F = 0. (1)

N F =

F
(
q1, q2, · · · , qN ,p1,p2, · · · ,pN , t

)
(qi,pi)

N

1023

It  uses  the -body  distribution  function 
 and its evolution equation

to describe the state and behavior of the system, where
 are  the  generalized  coordinate  and  generalized

momentum  of  the ith  particle.  The  Bogoliubov–Born–
Green–Kirkwood–Yvon  (BBGKY)  hierarchy  chain  is
equivalent  to  Liouville  equation.  Equivalent  to  the
description of molecular dynamics without any simplifi-
cation, it can be regarded as the holographic description
based on the molecular level, which is the starting point
of theoretical thinking [60]. For a macroscopic system, 
is the order of magnitude of the Avogadro constant, i.e.

. In general, the Liouville equation (1) is fundamentally
unsolvable and cannot be directly applied. So we have to
simplify it. It is impossible and, in most cases, unnecessary
to capture all the details of a system’s state and behavior
simultaneously.  We need  to  break  down complex  prob-
lems, according to the research needs, to grasp the main
contradiction.  The  direction  of  simplification  involves
making the governing equation depend on a distribution
function with fewer bodies. What about discarded infor-
mation? According to the mean-field approach, a correction
term  is  added  to  the  simplified  governing  equation  to
compensate  for  the  lost  information,  ensuring  that  the
kinetic properties to be studied remain unchanged.

N

N

Specifically,  since  the -body  distribution  function
evolution  equation  (1)  cannot  be  processed,  we  first
thought of simplifying it to the ( –1)-body distribution
function evolution equation: 

∂fN−1

∂t
+

N−1∑
i=1

(
q̇i ·

∂

∂qi
+ ṗi ·

∂

∂pi

)
fN−1 = CN−1,

(2)

CN−1

N

N

N

where  is a correction term describing the contribution
of the -body distribution function, whose function is to
recover some of the information lost due to the simplifi-
cation  of  the  model,  so  as  to  ensure  that  the  kinetic
properties we want to study will not change due to the
simplification of the model. Since the evolution equation
of  the  ( –1)-body  distribution  function  is  still  unman-
ageable,  we  simplify  it  to  the  ( –2)-body  distribution
function  evolution  equation.  Finally,  the  following  2-
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body  distribution  function  evolution  equation  is
obtained: 

∂f2
∂t

+
2∑

i=1

(
q̇i ·

∂

∂qi
+ ṗi ·

∂

∂pi

)
f2 = C2, (3)

C2

F3

F3

where the modified term  describes the contribution of
the  3-body  distribution  function .  It  is  important  to
note the fact that the probability of 3 particles colliding
together is much less than the probability of 2 particles
colliding together  at  the same time.  Thus,  the  effect  of
the 3-body interaction is much smaller than the effect of
the  2-body interaction,  we  can  approximate  as  zero.
Equation (3) simplifies to 

∂f2
∂t

+
2∑

i=1

(
q̇i ·

∂

∂qi
+ ṗi ·

∂

∂pi

)
f2 = 0. (4)

Let us make two further assumptions: (i) The interaction
between particles depends only on the distance between
them, not on the direction: 

U12 (q1, q2) = U12 (|q1 − q2|) . (5)

(ii)  The  2-body  distribution  function  can  be  written  in
the  form  of  the  product  of  two  monomer  distribution
functions, i.e, 

F2(q1,p1; q2,p2; t) = F1(q1,p1; t)F1(q2,p2; t). (6)

F1 ≡ f

Then,  we  finally  obtain  the  evolution  equation  of  the
monomer distribution function . That is the Boltz-
mann equation: 

∂f

∂t
+ v · ∂f

∂r
+ a · ∂f

∂v
= Q (f, f) , (7)

where 

Q (f, f) =

+∞∫
−∞

4π∫
0

(f
′
f

′

1 − ff1)gσdΩdu1 (8)

describes the rate of change of the distribution function
caused by molecular collisions.

N

N

From  Liouville  equation  to  Boltzmann  equation,  the
coarse-grained  physical  modeling  has  been  experienced
( –1) times. It can be seen that compared with Liouville
equation, Boltzmann equation is already a highly coarse-
grained  physical  model.  As  the  foundation  of  non-equi-
librium  statistical  physics,  the  Liouville  equation  is  in
principle equivalent to molecular dynamics without any
simplification,  and  is  a  “holographic” description  of -
body systems, applicable to both solid and fluid systems.
The  Boltzmann  equation,  however,  is  limited  to  fluid
systems.

µ Γ

N

N

µ µ

Γ

N

N

Γ

N

In  statistical  physics,  there  are  two  commonly  used
phase  spaces:  space  and  space.  For  a  system
composed  of  identical  particles  without  internal
degrees  of  freedom,  if  a  6-dimensional  phase  space  is
formed based on generalized coordinates and generalized
momenta  (or  velocities)  describing  the  microscopic
states of particles, then a state of the system is a distribution
of  points in the space. Figure 4 shows the schematic
of three common phase spaces, where position or velocity
space shown in Fig. 4(a) can be regarded as a sub-space
of  space  shown  in Fig.  4(b),  and  space  shown  in
Fig.  4(b)  can  be  regarded  as  a  sub-space  of  space
shown in Fig. 4(c). Figure 4(b) shows two states of the

 particle  system.  If  the  generalized  coordinates  and
generalized momenta of these  particles are used as the
basis to open phase space, i.e., the  space, then a state
of  the  system  appears  as  a  single  point  in  the  space.
Figure  4(c)  shows  two  states  of  the  particle  system.
Obviously, the usual coordinate space and velocity space
are subspaces of two kinds of phase spaces. In coordinate
(velocity)  space,  it  is  impossible  to  know  the  velocity
(coordinate)  information  of  a  particle  by  a  distribution
alone, as shown in Fig. 4(a). In the coordinate space, the
particle  velocity  information  needs  to  be  roughly
obtained  by  comparing  the  position  information  of  the
two  moments  before  and  after.  In  velocity  space,  the
position  information  of  a  particle  needs  the  position
information of adjacent two moments and the time step
to be roughly known.

The process from Boltzmann equation to hydrodynamic
equations  is  also  a  physical  coarse-graining  modeling

 
Fig. 4  Schematic of phase space description method.
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ρ T

u p

process that grasps the main contradiction according to
the research demand.  In macroscopic  fluid theory,  fluid
states  are  described  using  density ,  temperature ,
velocity ,  and  pressure .  The  fundamental  governing
equations are the Navier–Stokes equations:  

∂ρ

∂t
+∇ · (ρu) = 0,

∂(ρu)

∂t
+∇ · (ρuu + pI) = −∇ ·Π,

∂E

∂t
+∇ · [(E + p)u] = −∇ · (q +Π · u),

(9)

I

f(x,v, t)

f

ρ ρu E

Π

q

f

where  is the unit tensor. In kinetic theory, the state of
a  system  is  described  using  the  distribution  function

 and  its  kinetic  moments.  Among  them,  the
three conserved moments of the distribution function ,
(density ,  momentum ,  and  energy )  and  the  two
non-conserved moments (viscous stress  and heat flux
)  are  described into  traditional  fluid  theory.  The rela-

tionship  between  these  moments  and  the  distribution
function  is as follows: 

W =

∫
f Ψ dv, (10)

vwhere  is the molecular velocity, and 

W = [ρ, ρu, E = (D + n)ρT/2 + ρu · u/2]T , (11)
 

Ψ = [1,v,v · v/2]T , (12)
 

Π =

∫
(f − feq) (v − u) (v − u) dv, (13)

 

q =

∫
(f − feq)

1

2
(v − u) (v − u) · (v − u) dv, (14)

feq

D n

f

f

where  is  the  corresponding  equilibrium  distribution
function. Here,  is the spatial dimension and  represents
the  extra  degree  of  freedom.  The  higher  order  non-
conserved  moments  of  the  distribution  function  are
not included in the description of traditional fluid theory,
which  is  naturally  a  double-edged  sword:  on  the  one
hand, it brings the simplicity of traditional fluid theory,
but  at  the  same  time,  it  also  brings  constraints  to
describe the more discrete and non-equilibrium cases. In
a more reasonable  kinetic  description,  the emergence of
more high-order moments of  is an inevitable requirement
driven  by  the  requirement/original  intention  of  “the
complexity of system behavior increases dramatically +
the  physical  description/control  ability  does  not
decrease”. With the increase of the degree of discreteness
and  the  degree  of  thermodynamic  non-equilibrium,  the
complexity of the system behavior increases sharply, and
more physical quantities are needed to describe the state
and  behavior. A  lot  of  research  can  be  done  without
increasing  the  number  of  physical  quantities,  but  the

obvious  consequence  is  a  sharp  decline  in  the  actual
control  of  system  behavior  [61].  This  point  seems  to
have not received sufficient attention!

It  should  be  noted  here  that,  like  NS,  Burnett  and
other hydrodynamic equations, DBM describes a physical
image,  providing  a  series  of  physical  constraints  on the
model  for  studying  physical  problems,  naturally
expressed  by  equations  and  relations,  but  without
specific discrete formats.

To establish  the  connection  between the  macroscopic
and microscopic scales, we must try to cross the threshold
of mesoscale. The complexity of “mesoscale” behavior is
far  greater  than  expected  by  reductionist  approach.
When dealing with a complex system, the general cogni-
tive  process  is  to  start  with  a  general  overview  of  its
macroscopic (system) scale behavior, and then gradually
explore  the  mechanism  of  its  microscopic  (unit)  scale,
and gradually establish the relationship between system
scale behavior and unit scale behavior. However, directly
establishing  such  a  connection  is  often  extremely  chal-
lenging. The research shows that there may be a general
dominant  principle  in  the  mesoscale  between  the  unit
scale  and  the  system scale,  that  is,  the  coordination  of
different  control  mechanisms  in  competition.  This  is
highly consistent with the idea that in addition to reduc-
tionism paradigm, emergentism paradigm is also needed
in  physics.  Under  the  initiative  of  scientists  like
Academician  Jinghai  Li  and  many  others,  the  field  of
meso  science,  which  focuses  on  multi-scale  and  cross-
scale research, is attracting more interest with time [62,
63].

 3   Discrete Boltzmann method

The nature of an entity comprises both specific individual
characteristic and commonality. As the individual char-
acteristic  gradually  diminishes,  what  remains  is  more
common. The further one moves away from the original
specific  system,  the  stronger  the  universality  becomes.
For  a  model  to  fully  recover  all  the  properties  of  the
system,  it  must  be  as  complex  as  the  actual  system.
Perfect  in  theory,  but  too  complicated  to  handle,  it
becomes  impractical.  Therefore,  it  is  necessary  to
“choose something to do and ignore others” and simplify
the model to the point where it can be handled. When it
comes  to  mechanistic  research,  further  simplification  is
required  to  the  extent  that  the  mechanism  can  be
analyzed clearly, which is exactly what some mechanism
studies  do  at  the  beginning.  Research  based  on  simple
models  provides  cognitive  basis  and  technical  basis  for
subsequent research on more complex or realistic  situa-
tions.  Knowledge  from  practice  ultimately  returns  to
practice. The research of complex systems requires multi-
level and multi-perspective methods and cognition.

Statistical  physics  is  a  bridge  between  micro  and
macro scales, and the kinetic theory is a bridge between
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micro  and  macro  descriptions  of  fluid  systems.  Coarse-
grained  modeling  is  a  basic  means  to  grasp  the  main
contradiction  according  to  the  research  needs  of  non-
equilibrium  statistical  physics.  The  related  study  on
Boltzmann  equation  is  a  relatively  mature  part  in  the
theory  of  kinetics.  In  the  context  of  fluid  dynamics,
“cross-scale” typically  refers  to  scaling  across  Knudsen
numbers.

Complex flows are typically associated with unsteady
behavior,  but the study of  steady-state behavior is  also
an  important  aspect.  From  a  descriptive  perspective,
steady-state  conditions  can  be  achieved  by  setting  the
time derivative terms to zero in the governing equations.
In  contrast,  the  usual  DBM  is  designed  for  unsteady
flow [61], but steady-state DBM and its application are
also important contents of DBM research.

For  the  sake  of  clarity,  we  refer  to  DBM  with  a
nonzero  time  span  as  time-dependent  DBM  and  DBM
that only focuses on the behavior at a single moment as
time-independent DBM. The simplest case of time-inde-
pendent DBM is steady-state DBM [64]. In this review,
we will first introduce time-dependent DBM designed for
typical  unsteady  situations  and  then  provide  a  brief
overview  of  steady-state  DBM.  The  physical  behavior
description functions of the two are complementary. But
the  design  of  the  latter  is  significantly  different  from
that of the former.

 3.1   Brief review of non-steady DBM

The Discrete Boltzmann Method (DBM) is proposed to
(partially) solve a series of fundamental problems, espe-
cially those presented in Section 2. It is a kind of (coarse-
grained)  physical  model  construction  method  and
complex physical field analysis method developed based
on the discrete Boltzmann equation, 

∂fi
∂t

+ vi ·
∂fi
∂x

+ (force term)i = (collision term)i, (15)

f

vi

where the subscript “i” of the distribution function  is
the  index  of  the  discrete  velocity,  corresponding  to  the
discrete  velocity .  Obviously,  the  discrete  velocity
selection  rule  is  the  key  technology  in  DBM modeling.
Figure 5 shows the schematic of several commonly used
discrete velocity sets in current literature.1)

In  terms  of  physical  model  construction,  DBM
includes  two  steps  of  coarse-grained  physical  modeling:
modification  and  simplification  of  Boltzmann  equation
and  discretization  of  particle  velocity  space.  The  basic
principle of coarse-grained physical modeling is that the
behaviors of the system to be studied cannot be changed
due to the simplification of the model. In kinetic theory,
in  addition  to  the  distribution  function  itself,  system

properties  are  described  by  the  kinetic  moments  of  the
distribution function. So, both before and after simplifying
the  collision  term  and  discretizing  the  particle  velocity
space,  the  control  equation  should  provide  the  same
moments of the distribution function that correspond to
the desired kinetic properties. This is represented mathe-
matically as  ∫

f Φ (v) dv =
∑
i

fiΦ (vi) . (16)

f

f = feq

Due  to  the  lack  of  analytical  solutions  for  the  kinetic
moments  of  the  distribution  function ,  except  for  the
three conserved moments, it is not convenient to obtain
the  physical  constraints  required  for  discrete  velocity
selection  using  Eq.  (16).  So,  we  turned  to  examine  all
the  kinetic  moments  of  the  equilibrium  distribution
function  involved  in  the  calculation  of  the  left
side  of  Eq.  (16).  Furthermore,  it  is  required  that  the
results of these kinetic moments remain unchanged when
converted to summation for calculation. Mathematically,
this can be expressed as  ∫

f (0)Ψ (v) dv =
∑
i

f
(0)
i Ψ (vi) . (17)

Φ Ψ

Φ

Ψ Ψ

Please  note  that  moving  from  Eq.  (16)  to  Eq.  (17)
provides  sufficient  conditions  for  the  required  physical
constraints.  Both  and  are  column  vectors,  whose
elements correspond to the kinetic moments that should
keep  values.  The  elements  of  the  former  are  partial
elements of the latter . The latter  contain elements

 
Fig. 5  Schematic of several commonly used two-dimensional
discrete velocity sets.

1) Please note that this is by no means a standard or optimal choice that can be applied to every situation. The selection of the optimal discrete
velocities depends not only on the discrete formats of time integral and spatial derivative, but also on the specific fluid behavior. This is still
an open topic in computational mathematics and is beyond the scope of this article.
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Ψ

with higher powers of particle velocity. As the degree of
discreteness/non-equilibrium  of  the  system  increases,
elements with higher particle velocity powers are gradually
added to .

There  are  a  few  points  to  highlight  here.  (i)  Many
behaviors of complex flows exceed the descriptive power
of  the  original  Boltzmann  equation.  The  Boltzmann
equation  in  DBM  is  actually  a  modified  Boltzmann
equation  based  on  specific  situations  combined  with
mean field  theory,  and  its  applicability  may,  in  certain
aspects, exceed that of the original Boltzmann equation,
as shown in Fig. 6 [61, 65]. So, DBM is actually a coarse-
grained  modeling  and  analysis  method  that  combines
kinetic theory with mean field theory2). (ii) When dealing
with the external force term of the Boltzmann equation,
in order to avoid the difficulty of making differentiation
to the discrete velocity, the DBM modeling approach is
to  first  approximate  the  external  force  term,  use  the
property  that  the  equilibrium  distribution  function  is
derivable to the particle velocity. Once the differentiation
of  particle  velocities  is  accomplished,  the  expression  is
then  rewritten  in  terms  of  discrete  velocities.  (iii)  The
model  equations  of  DBM  include  the  system  behavior
evolution  equation(s)  and  discrete  velocity  constraint
equations, where the evolution equations, in addition to
discrete  Boltzmann  equation,  depending  on  the  specific
situation,  may  also  include  phase  field  evolution  equa-
tion, chemical reaction evolution equation, electromagnetic
field  evolution  equation,  etc.  (iv)  DBM  only  gives  the
physical  constraints  that  need  to  be  followed  when
choosing  discrete  velocities,  but  does  not  contain  the
specific  discretization  format.  In  order  to  reduce  the
influence  of  the  dramatic  change  of  flow  field  on  the
discrete velocity distribution function, the discrete velocity

ci = vi − u

constraint  equations  can  be  written  in  the  form  of
central moments and used to select the discrete velocities
on the fluid element, i.e., the discrete peculiar velocities

.
In  terms  of  complex  physical  field  analysis  method,

DBM is  a  specific  application  and  further  development
of  statistical  physics  coarse-grained description  method,
non-equilibrium behavior description method, and phase
space  description  method  within  the  framework  of
discrete Boltzmann equation. From a historical perspec-
tive,  DBM  has  evolved  from  the  physical  modeling
branch  of  the  Lattice  Boltzmann  Method  (LBM),  with
some abandoning and new addition. It preserves the use
of  discrete  velocity,  but  is  no  longer  limited  to  specific
discrete  format.  It  provides  only  the  most  necessary
physical  constraints  for  the  discrete  format.  It  is  no
longer  based  on  the  continuity  assumption  and  near
equilibrium approximation of traditional fluid modeling,
and no  longer  uses  the  “lattice  gas” image  of  standard
LBM.  It  adds  new  detection,  presentation,  description,
and  analysis  schemes  for  non-equilibrium  states  and
resulting  effects  based  on  phase  space,  and  introduces
more  information  extraction  techniques  and  complex
physical  field  analysis  techniques  over  time. Figure  7
depicts  the  expansion  from  the  phase-space  description
of the non-conserved kinetic moments 

∆∗
n = M∗

n

(
f − f (0)

)
=

∫
dv

(
f − f (0)

)
(v − u)(v − u) · · · (v − u)︸ ︷︷ ︸

n-th order tensor

=
∑
i

(
fi − f

(0)
i

)
(vi − u)(vi − u) · · · (vi − u)︸ ︷︷ ︸

n-th order tensor

(18)

to  phase  space  description  method  based  on  any  set  of
behavioral features, 

X = {X1, X2, X3, · · ·} . (19)

u

D

d

In  Eq.  (18),  is  the  local  flow  velocity.  In  the  phase
space or its subspace, we can define the non-equilibrium
strength  (or  the  strength  of  corresponding  behavioral
features)  of  the  corresponding  perspective  by  the
distance  from  the  state  point  to  the  coordinate  origin,
such  as  in Fig.  7.  Using  the  concept  of  distance
between  two  points  to  describe  the  differences  between
two non-equilibrium states (or corresponding behavioral
features),  such  as  in Fig.  7.  Therefore,  a  more
complete  name  for  DBM  is  the  Discrete  Boltzmann
modeling  and  analysis method  [61].  The  use  of  non-

 
Fig. 6  Schematic diagram of the application scopes of the
Boltzmann equation, the original BGK model, and the BGK-
like model in kinetic methods.

2) Physics study has two research paradigms, reductionism and emergentism. The latter is used to describe the part that cannot be included in
the former. Statistical physics is a one of the disciplines that do not rely on reductionism. However, in the study of fluid physics, it is often
necessary to use kinetic theory to investigate the mesoscopic kinetic behavior ignored by the traditional macroscopic modeling, so the role of
kinetic theory here is similar to that of reductionism. DBM modeling is originated from a reasonable combination of kinetic theory and mean
field theory, where the latter is used to describe the part that the former cannot describe and consequently its role here is similar to that of
emergentism.
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f − f (0)conserved  kinetic  moments  of  to  detect  and
describe  the  specific  way  in  which  a  system  deviates
from its thermodynamic equilibrium state and the various
effects  caused  by  this  are  key  techniques  for  DBM  in
complex physical field analysis.

The  behavior  of  actual  systems  is  often  complex.
Coarse-grained  modeling  is  a  process  of  losing  informa-
tion, but this losing information has a bottom line. The
bottom  line  is  that  the  properties  under  investigation
cannot be changed due to the simplification of the model.
DBM,  based  on  the  research  needs  of  the  problem,
selects a perspective to study a set of kinetic properties
of the system, and requires the kinetic moments describing
these  properties  to  be  preserved  during  the  model
simplification process. As the degree of discreteness and
non-equilibrium  increases,  the  complexity  of  system
behavior  increases  sharply.  Then  incorporating  some
higher-order  kinetic  moments  into  the  descriptive
perspective  becomes  an  inevitable  outcome  to  ensure
that  the  control  ability  does  not  decrease.  Therefore,
using  more  physical  quantities  to  describe  the  system
state and behavior is a typical feature that distinguishes
DBM from traditional fluid modeling and other current
kinetic methods. From the perspective of Kinetic Macro
Modeling  (KMM),3) this  is  a  requirement  for  obtaining
more  accurate  constitutive  relationships.  From  the
perspective  of  the  kinetic  theory,  this  is  a  requirement

ffor  obtaining  more  accurate  distribution  function 
under  given  conditions.  Different  perspectives  lead  to
the same goal.

The  starting  point  of  DBM lies  within  the  mesoscale
range,  approaching  the  macroscopic  side.  Due  to  the
stage  nature  of  development,  the  primary  situations
currently considered by DBM still  fall  within the realm
where  the  Chapman–Enskog  (CE)  multiscale  analysis
theory  is  valid.  Therefore,  the  CE  multi-scale  analysis
theory  is  a  mathematical  guarantee  for  the  reasonable
and effective DBM approach [61].

 3.2   Rules for selecting discrete velocities

By simultaneously taking the density moment, momentum
moment, and energy moment on both sides of the Boltz-
mann equation, a set of fluid dynamic equations that are
consistent with the NS form can be obtained,  

∂ρ

∂t
+∇ · (ρu) = 0,

∂(ρu)

∂t
+∇ · (ρuu + pI) = −∇ ·∆∗

2,

∂E

∂t
+∇ · [(E + p)u] = −∇ · (∆∗

3,1 +∆∗
2 · u).

(20)

For convenience of  description,  here  we refer  to  this  as

 
f − f (0)Fig. 7  Phase space description methods: from non-conserved moments of  to any set of system characteristics.

3) Corresponding to the physical function of DBM is the Extended Hydrodynamic Equations (EHE), which include not only the conservation
moment evolution equations corresponding to the three conservation laws of mass, momentum, and energy, but also some of the most closely
related non-conservation moment evolution equations. For convenience of description, we refer to the modeling method of deriving EHE based
on kinetic equations as Kinetic Macro Modeling (KMM).
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the  generalized  NS.  The  advantage  of  this  generalized
NS is that there is no approximation. Its viscous stress 

∆∗
2 = M∗

2

(
f − f (0)

)
= M∗

2

(
f (1) + f (2) + f (3) + · · ·

)
= ∆

∗(1)
2 +∆

∗(2)
2 +∆

∗(3)
2 + · · ·

(21)

and heat flux 

∆∗
3,1 = M∗

3,1

(
f − f (0)

)
= M∗

3,1

(
f (1) + f (2) + f (3) + · · ·

)
= ∆

∗(1)
3,1 +∆

∗(2)
3,1 +∆

∗(3)
3,1 + · · ·

(22)

f (j) j = 1, 2, 3, · · ·

f

Kn = 0

include contributions from various orders of non-equilib-
rium  distribution  functions ,  where ,
corresponding  to  the  discrete/non-equilibrium  order
described by the power of Kn number. The subscript “3,
1” signifies  that  a  3rd-order  tensor  has  undergone  1
contraction  operation  to  become  a  1st-order  tensor,
which  is  a  vector.  The  meanings  of  other  subscripts
below are similar, and so on. However, the limitation of
this approach is that it cannot provide specific expressions
for  stress  and  heat  flux  directly.  To  derive  analytical
expressions for constitutive relationships,  Chapman and
Enskog  developed  the  CE  multi-scale  analysis  method
later named after them. CE multiscale analysis is actually
a generalized Taylor expansion and analysis method: the
independent  variable  here  is  the  Kn  number.  Not  only
the  distribution  function ,  but  also  the  temporal  and
spatial  derivatives  are  Taylor  expanded  at  the  point,

 (i.e.,  continuity,  thermodynamic  equilibrium).
More  physical  image  explanations  for  CE  multiscale
analysis  can  be  found  in  Ref.  [61].  The  CE  multi-scale
analysis informs us the following:

f (1)

Π q

f (2)

f (j)(j > 2)

(i) The Boltzmann equation, under the quasi-continuous
and  near-equilibrium  conditions,  corresponds  to  the
system  of  fluid  dynamics  equations  that  are  the  NS
equations.  The  viscous  stress  and  heat  flux  considering
only  the  first  order  non-equilibrium  are  the  NS
stress  and  NS  heat  flux  in  Eqs.  (13)  and  (14),
respectively. As the degree of discretization/non-equilib-
rium  increases,  the  contribution  of  second-order  or
even  higher-order  non-equilibrium  should  be
considered in viscous stress and heat flow.

f

(ii) Among all the kinetic moments of the distribution
function ,  only the three  conserved moments  (density,
momentum,  and  energy)  and  two  non-conserved
moments  (viscous  stress  and  heat  flux)  enter  the  NS
description. The remaining non-conserved moments have
not  entered  the  NS  theory,  which  is  a  double-edged
sword:  on  the  one  hand,  they  bring  the  simplicity  of
traditional fluid mechanics theory; however, on the other
hand,  it  creates  obstacles  for  NS  to  describe  situations
with  higher  degrees  of  discreteness/non-equilibrium,
which  is  the  physical  reason  why  NS  cannot  describe

well  situations  with  higher  degrees  of  discreteness/non-
equilibrium.

(iii)  The  ability  to  recover  corresponding  levels  of
macroscopic  hydrodynamic  equations  (such  as  NS  and
Burnett equations) is only part of the physical function
of  DBM;  Corresponding  to  the  physical  functions  of
DBM is the Extended Hydrodynamic Equations (EHE),
which include not only the three common hydrodynamic
equations but also some of the most closely related non-
conservative moment evolution equations. The extended
part  (i.e.,  the  evolution  equations  for  relevant  non-
conserved  moments)  becomes  increasingly  necessary  as
the degree of discreteness/non-equilibrium increases.

(iv)  As  the  degree  of  discreteness/non-equilibrium
characterized by Kn number increases, the complexity of
DBM  simulation  increases  more  slowly  compared  to
KMM simulation (i.e.,  deriving and solving EHE), thus
allowing it to go further. If the order of the Kn number
to  be  considered  increases  by  1,  then  the  number  of
kinetic  moments  in  DBM  that  need  to  be  preserved
increases  by  2,  while  the  complexity  of  deriving  EHE
from KMM sharply  increases.  Furthermore,  in  the  case
of  multiple  media,  due  to  the  existence  of  different
media flow velocities and average flow velocity, and the
definition of temperature depends on the referenced flow
velocity, the form of EHE is not unique. These different
forms of  EHE correspond to  descriptions  from different
perspectives of complex flow dynamics in multiple media.
It  can  be  seen  that  in  the  case  of  multiple  media,  the
correspondence between DBM and physically equivalent
EHE is one-to-several.

f
(0)
i

DBM simulation does not require knowing the specific
form  of  extremely  complex  EHE  with  physical  equiva-
lence,  but  we  can  borrow  KMM’s  ideas  and  physical
images  to  quickly  screen  out  the  kinetic  moments
involved in the more accurate stress and heat flux calcu-
lations (without strictly deriving equations, only checking
the  order  of  the  kinetic  moments).  This  part  of  the
kinetic moments are converted from integral to summation
for  calculation,  and  the  results  need  to  remain
unchanged.  At  this  point,  we  have  obtained  the  most
necessary physical constraints to follow for the selection
of discrete velocity: the linear equations of  represented
by Eq. (17).

 3.3   Description of non-equilibrium behavior and effect

f − f (0)

Non-equilibrium strength/degree/extent/intensity is one
of  the  most  fundamental  parameters  for  describing  and
recognizing  non-equilibrium  flows.  In  addition  to
commonly used Kn numbers, spatial gradients of macro-
scopic physical quantities such as density, flow velocity,
temperature, and pressure, DBM uses physical quantities
based  on  non-conserved  kinetic  moments  of  to
describe  the  way  and  magnitude  of  system  deviation
from equilibrium. Furthermore, DBM uses the (indepen-
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f − f (0)

{∆∗
n, n = 2, (3, 1), 3, (4, 2), (5, 3), · · ·}

f − f (0)

dent components  of)  non-conserved moments  of 
[e.g., ]  as  the  bases  to
open  phase  space,  providing  an  intuitive  geometric
correspondence for complex system states and behavioral
characteristics, as shown in Fig. 7. It is easy to understand
that each non-conserved moment itself and any indepen-
dent component of  describe the way and magnitude
of  the  system  deviating  from  equilibrium  from  its  own
perspective, thus offering a unique view of non-equilibrium
features. These non-equilibrium strengths from different
perspectives  are  interrelated,  complementary,  and
cannot be replaced by each other. Together, they form a
more complete description. It should be emphasized that
as  a  later  and  more  fundamental  description  method,
DBM  naturally  inherits  all  traditional  methods  of
describing non-equilibrium behavior.

f − f (0)

τ

The  definition  of  any  non-equilibrium  strength
depends on the research perspective. The non-equilibrium
strength  may  be  increasing  from  a  certain  perspective;
while  from  another  perspective,  it  may  be  decreasing.
This  is  one  of  the  concrete  manifestations  of  the
complexity  of  non-equilibrium  behavior.  Studying  non-
equilibrium strength and effects from only one perspective
is  often  one-sided  or  even  incorrect.  Being  incorrect
refers  to  the  misconception  that  the  conclusions
obtained are independent of the research perspective and
are universal. In view of this, DBM introduces a multi-
perspective non-equilibrium description scheme based on
non-conserved  moments  of ,  gradients  of  macro-
scopic quantities, thermodynamic relaxation time , Kn
number,  morphological  description,  etc.,  to  provide  a
cross-positioning of non-equilibrium intensity of complex
flows from multiple perspectives. For the convenience of
description,  the  concept  of  non-equilibrium  strength
vector  is  further  introduced,  where  each  component  of
the vector represents a non-equilibrium intensity from a
different perspective. For example, the composition of a
non-equilibrium strength vector may be 

S = {D2, D3, |∇ρ|, |∇T |, τ,Kn, · · ·} , (23)

where 

D2 =
√
∆∗2

2,xx +∆∗2
2,xy +∆∗2

2,yy (24)

∆∗
2

∆∗
2 T

D2

is  the  distance  in  the  sub-space  of  non-conservative
moment  phase  space,  and  is  the  non-equilibrium
strength  from  the  perspective  of .  is  the  local
temperature. In some cases,  is defined as 

D2 =
√
∆∗2

2,xx +∆∗2
2,xy +∆∗2

2,yx +∆∗2
2,yy. (25)

D3

Similar but different options exist for defining non-equi-
librium  strengths  such  as .  These  different  choices
correspond to different research perspectives.

Just as the description of phase space does not require
its coordinates with the same unit, the various components

of the non-equilibrium intensity vector also do not need
to  have  the  same  unit.  The  non-equilibrium  strength
from different perspectives, as a set of behavioral charac-
teristics,  can  also  be  described  using  the  phase  space
method, providing an intuitive geometric correspondence
for  the  non-equilibrium strength  of  complex  flows  from
different  perspectives.  Of  course,  as  a  coarse-grained
modeling and description method, the physical accuracy
of DBM, including the precision of describing behavioral
characteristics  such  as  non-equilibrium  intensities,
should be adjusted based on specific research requirements
[61].

 3.4   Additional remarks on DBM

At a report on the 2nd U.S.-Japan Joint Seminar,  held
at  Santa  Barbara,  California,  from  7–10  August,  1996,
the  late  eminent  scholar,  Mr.  Chang-Lin  Tien,  et  al.
commented  the  LBM  as  follows:  “Many  physical
phenomena  and  engineering  problems  may  have  their
origins at molecular scales, although they need to interface
with  the  macroscopic  or  ‘human  scales’.  The  difficulty
arises in bridging the results of these models across the
span  of  length  and  time  scales.  The  lattice  Boltzmann
method  attempts  to  bridge  this  gap”.  More  details  are
referred  to  Ref.  [66].  Many  people’s  understanding  on
LBM is directly or indirectly affected by this or similar
comments.

In  fact,  starting  from  its  predecessor,  the  lattice  gas
(cellular  automata)  method,  there  are  two  types  of
LBMs  in  the  literature:  coarse-grained  physical  model
construction  method  [67–69]  and  numerical  solving
method for certain control equations [70–72]. The latter
accounts  for  the  vast  majority  of  existing  literature,  to
the extent that LBM has almost become the abbreviation
or  synonym  for  the  latter.  However,  the  LBM  method
mentioned by Mr.  Chang-Lin Tien in  the  above review
was  clearly  a  cross  scale  physical  model  construction
method,  which  falls  into  the  former  category.  Coarse-
grained  physical  modeling  is  a  fundamental  means  for
non-equilibrium  statistical  physics  to  address  the  main
contradiction based on research needs. Cross scale, here
referred  to  as  cross  Kn  number,  is  a  physical  function
inherited  from  the  Boltzmann  equation  description.
These two different types of LBM work on complementary
dimensions,  with  different  goals  and  construction  rules,
each of which is reasonable.

DBM is  often  referred  to  as  the  Discrete  Boltzmann
Method,  Discrete  Boltzmann  Modeling,  and  Discrete
Boltzmann  Model  without  causing  ambiguity.  As
mentioned  earlier,  the  more  complete  term  for  the
Discrete  Boltzmann  Method  is  Discrete  Boltzmann
modeling  and  analysis  Method.  When  compared  with
other  methods,  DBM’s  identity  is  “physical  model
construction  method  +  complex  physical  field  analysis
method”,  or  rather  a  physical  model  construction
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method  with  built-in  complex  physical  field  analysis
function.  When  compared  with  other  physical  models,
DBM is a physical model with built-in complex physical
field  analysis  capabilities.  Because  the  commonly  used
physical models currently do not provide complex physical
field analysis capabilities for simulated data, when referring
to  the  term  “discrete  Boltzmann  model  or  modeling”,
people often do not realize that it also includes complex
physical field analysis function. This is why our research
group has to refer to it as the “physical model construction
and  complex  physical  field  analysis  method” in  some
situations.

The  physical  model  construction  part  of  DBM
includes  determining  specific  control  equations  and
providing the most necessary physical  constraints to be
followed for selecting discrete velocities. Just like in NS
simulation, in DBM simulation, the specific discretization
formats for spatial derivatives, time integrals, and particle
velocities  should  be  chosen  reasonably  based  on  the
specific operating conditions and flow patterns.

∆∗
n+1

∆∗
n

ρ

u

f − f (0)

∆∗
2 ∆∗

3,1

According to Eq. (18), from a dimensional perspective
and physical image, the physical meaning of non-equilib-
rium feature quantities  is the non-organized flux of

. It should be noted that in macroscopic description,
a  physical  quantity  (such  as  density )  multiplied  by
flow velocity ,  its  physical  meaning is  the  flux of  this
physical  quantity,  which  is  an  organized  flux.  The
combination  of  organized  flux  and  non-organized  flux
constitutes a more comprehensive description of complex
flow  kinetic  behavior.  Among  all  the  non-organized
fluxes  composed  of  non-conserved  central  moments  of

,  only  Non-Organized  Momentum Flux  (NOMF)
 and Non-Organized Energy Flux (NOEF)  have

counterparts  in  the  NS  description,  corresponding  to
viscous stress and heat flux, respectively. The remaining
non-conserved central moments are not directly included
in  NS,  but  as  mentioned  earlier,  their  physical  images
are clear. The absence of these physical quantities in the
NS  description  is  precisely  the  physical  reason  of  NS’s
inability  to  describe  well  situations  with  higher  degrees
of  discreteness/non-equilibrium.  As  the  degree  of
discreteness/non-equilibrium  increases,  these  non-orga-
nized fluxes should receive more attention.

Since  the  traditional  fluid  mechanics  theory  is  based
on  NS,  we  are  most  familiar  with  the  NS  equation.
Comparing with NS is an important way to understand
new  models.  Therefore,  it  is  necessary  to  clarify  the
connection and difference between DBM and NS again:
NS is  just  a physical  model,  and it  does not inherently
possess  complex  physical  field  analysis  capabilities  for
data,  it  only  considers  first-order  (in  terms  of  the  Kn
number  perspective)  discrete/non-equilibrium  effects,
which  is  only  applicable  to  quasi-continuous  and  near-
equilibrium situations. In terms of numerical simulation
research,  NS  is  only  responsible  for  pre-simulation  and
not  for  post-simulation.  In  contrast,  DBM  not  only

provides  modeling  capabilities  equivalent  to  the  corre-
sponding  level  of  EHE  but  also  provides  a  set  of
complex  physical  field  analysis  methods  for  data.  In
terms of numerical simulation research, DBM is not only
responsible  for  pre-simulation,  but  also  for  post-simula-
tion.

DBM is beyond traditional fluid modeling in both its
applicable range and physical capabilities, focusing more
on the “mesoscale” dilemma where macroscopic continuous
models  lack  physical  functionality  and  microscopic
molecular  dynamics  simulations  are  powerless  due  to
limited  scale  applicability,  as  shown  in Fig.  8.  In  the
schematic, RANS is the abbreviation for Reynolds Average
Navier Stokes, which is a further coarse-grained physical
modeling based on NS and describes large-scale behavior
within the NS range. The “NS–RANS” in the schematic
represents  the portion that RANS fails  to well  describe
within the scope of NS application, where “–” is a minus
sign, indicating subtraction from the scope of application.
The  “DBM–NS” indicates  the  part  within  the  scope  of
DBM that  is  not  well  described  by  NS  and  is  the  key
focus of DBM.

The greater challenge in the study of mesoscale behavior
lies  in  the  modeling,  simulation,  and  analysis  of  higher
degrees of discreteness/non-equilibrium. The necessity of
the  most  closely  related  non-conserved  moments
increases  as  the  degree  of  discreteness/non-equilibrium
increases. Although the goal is for situations with higher
degrees of discreteness/non-equilibrium, almost everyone
has to go through quasi continuous and near equilibrium
situations because he or she requires cognitive and technical
foundations.  This  is  why  progress  in  the  field  of
mesoscale behavior research can be relatively slow, espe-
cially for those just entering the field.

Compared  with  macroscopic  behavior,  the  typical
characteristics  of  “mesoscale” behavior  are  significant
discrete effects and significant thermodynamic non-equi-
librium  effects.  The  description  of  mesoscale  behavior
requires more physical quantities. The “mesoscale” char-
acteristics of DBM include: (i) in terms of scale, between
micro  and  macro,  connecting  micro  and  macro;  (ii)  in
terms  of  functionality,  surpassing  NS  in  describing
discrete/non-equilibrium  effects,  but  weaker  than  MD.
In  DBM,  the  corresponding  solutions  to  the  six  basic
scientific problems proposed in Section 2 are as follows:

 
Fig. 8  Schematic for application ranges of several physical
models.
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f − f (0)

For  problem  (i),  add  physical  quantities  based  on  the
definition  of  non-conserved  kinetic  moments  according
to  the  degree  of  discreteness/non-equilibrium.  In
response to problem (ii), phase space description methods
based on non-conserved moments of , morphological
and  other  behavioral  feature  quantities  are  introduced.
In  response  to  problem (iii),  the  model  construction  no
longer relies on continuity and near equilibrium assump-
tions.  To  address  problem  (iv),  develop  a  description
method that starts from macro continuous near equilibrium
and  gradually  increases  the  degree  of  discreteness  and
non-equilibrium.  For  problem  (v),  develop  mesoscale
modeling based on the combination of kinetic theory and
mean  field  theory.  For  problem  (vi),  introduce  the
concept  of  non-equilibrium  strength  vector,  where  each
component represents a non-equilibrium intensity,  for a
cross  localization  description. Table  1 summarizes  the
developmental milestones in the evolution of DBM.

 3.5   Modeling examples and flowchart

f

f (0)

f − f (0)

f − f (0)

According to the fundamental theory of non-equilibrium
statistical  physics,  there  are  infinite  ways  in  which  the
distribution  function  deviates  from  the  equilibrium
distribution function . There are infinitely many non-
conserved  moments  of ,  and  there  are  infinite
possibilities  for  which  moments  have  larger  amplitudes
(or intensities) and which moments have smaller ampli-
tudes.  The  approach  of  DBM  involves  breaking  down
complex problems, selecting a perspective, studying a set
of  kinetic  properties  of  the  system,  and  requiring  the
non-conserved moments that describe these properties to
remain  invariant  during  model  simplification.  Based  on
the  independent  components  of  the  set  of  kinetic
moments of ,  construct a phase space and use it
and its subspaces to describe the discrete and non-equi-
librium  behavior  characteristics  of  the  system.  The
research  perspective  and  modeling  accuracy  adjust  as
the  research  progresses.  Therefore,  in  principle,  DBM
modeling  itself  can  be  independent  of  CE  multiscale
analysis. As long as it is possible to obtain which kinetic

f (0)moments  of  are  necessary  for  grasping  system
behavior  in  a  certain  way,  it  is  only  required  that  the
corresponding kinetic moments remain unchanged when
converted into summation for calculation.

f (0)

v

Given the staged nature of the research, we will only
provide  the  discussion  on  DBM modeling  based  on  CE
multi-scale  analysis  theory.  By  utilizing  CE  multi-scale
analysis  and  preserving  the  TNE  effect  of  different
orders,  the  Boltzmann  equation  can  recover,  which  is
actually  reduced  to,  the  corresponding  order  of  fluid
dynamic equations. In principle, it is not necessary, but
most of the published DBM modeling is still within the
framework of CE multi-scale analysis theory. Unlike the
LBM  numerical  solving  scheme  for  some  given  control
equations, in the DBM modeling process, the role of CE
multiscale analysis is not to help derive the corresponding
EHE functions, but only to quickly identify and confirm
the  kinetic  moments  of  that  need  to  be  preserved
based on the tensor order of particle velocity . Whether
the specific form of the corresponding EHE is known or
not does not affect DBM modeling and simulation. The
CE  multi-scale  analysis  theory  serves  as  a  reasonable
theoretical basis for such kinetic models.

In  fact,  even  in  the  case  of  a  simple  single-medium
system, the theoretical derivation of 2nd-order or higher
discrete  and  non-equilibrium  effects  in  the  KMM  or
EHE is  already  quite  complex,  let  alone  in  the  case  of
multi-medium scenarios. Even if EHE, which is functionally
equivalent to DBM, is ultimately derived, the feasibility
of  numerical  simulation  remains  a  huge  challenge.
Because  it  involves  stronger  nonlinearity  and  higher-
order spatiotemporal partial derivatives, and its number
of terms increases sharply with the increase of discreteness
and non-equilibrium degree, these pose substantial chal-
lenges  to  practical  numerical  simulation.  Therefore,  as
the  degree  of  discreteness  or  non-equilibrium  increases,
the  KMM  modeling  and  simulation  approach  quickly
becomes infeasible.

Unlike  KMM,  DBM  belongs  to  the  kinetic  direct
modeling  method.  Except  for  explaining  and  verifying
the functions of the model, functionally equivalent EHE

Table  1  Milestones in the development of DBM.

Year Schemes for detecting and describing discrete/TNE behavior and effects
Before 2012 There was no significant difference in physical function between the two types of LBMs.

2012 f − f (0)Proposed to use non-conserved moments of  to detect and describe discrete/TNE states and effects, which is the
starting point of current DBM method [73].

2015 f − f (0)Proposed to use the non-conserved moments of  as bases to open phase space, and use the distance from a state
point to the origin to define the TNE strength of one perspective. This is the starting point of the phase space
description method in DBM [74].

2018 Proposed to use the distance between two points in the phase space to describe the difference between two
discrete/TNE states, and use the mean distance between two points in a given time interval to describe the difference of
two kinetic processes [75].

2021 Extended the phase space method to describe any set of system features [76].
2022 Proposed the concept of non-equilibrium strength vector, each of whose components is one TNE strength of a

perspective, to multi-perspective cross-locate the non-equilibrium strength of complex flow [61, 77].
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is  not  required  in  actual  DBM  simulations.  As  the
degree  of  discreteness  or  non-equilibrium  increases,  the
complexity  of  DBM modeling  and  simulation  approach
also increases, but it is relatively slow, making it possible
to go further.

Below, we illustrate the process of DBM modeling for
an ideal monatomic gas in a single medium, showing the
process of DBM modeling with different discrete or non-
equilibrium degrees. The general form of CE multi-scale
expansion is 

f = f (0) + Kn f (1) + Kn2f (2) + · · · (a),
∂

∂t
= Kn

∂

∂t1
+ Kn2

∂

∂t2
+ · · · (b),

∂

∂r
= Kn

∂

∂r1
+ · · · (c). (26)

Knj(j = 1, 2, 3, . . . )

f (j) ∂/∂tj
∂/∂rj

To  facilitate  the  interpretation  of  the  compositions  of
distribution  function,  temporal  rate  of  change,  and
spatial  rate  of  change,  we  absorb  the  coefficients

 into the corresponding non-equilibrium
distribution function , temporal rate of change 
and  spatial  rate  of  change .  Thus,  the  CE  multi-
scale expansion becomes 

f = f (0) + f (1) + f (2) + · · · (a),
∂

∂t
=

∂

∂t1
+

∂

∂t2
+ · · · (b),

∂

∂r
=

∂

∂r1
+ · · · (c). (27)

f (j+1)

(j + 1)

j

f = f (0)+f (1) + f (2) + · · ·+ f (j)

∂/∂tj+1

∂t = ∂t1+

∂t2 + · · ·+ ∂tj tj
tj+1

∂/∂rj+1 (j + 1)

j

∂r = ∂r1 + ∂r2 + · · ·+ ∂rj
rj r(j+1)

f (0) t0
r0 t0

t0
∂t0 = 0

r0

r0

In  this  way,  the  meaning  of  is  the  newly  added
th order more detailed description on basis of the

previous th  order  level  coarse-grained  description,
.  For  the  description  of

temporal  change  rate,  the  meaning  of  is,  based
on  the  previous  coarse-grained  description 

, as the temporal scale decreases from  to
,  the  higher-frequency  component  that  we  observe.

For the description of  spatial  change rate,  the meaning
of  is the th order smaller structure that we
newly  observe  on  the  basis  of  the  previous th  order
coarse-grained  description, ,
when  the  spatial  scale  decreases  from  to .  It
should  be  noted  that  in  the  existing  CE  theory  in  the
literature,  the  spatial  change  rate  only  retains  the  first
order.  As  mentioned  earlier,  the  corresponding  scenario
of  is continuous and equilibrium. So, what do  and

 correspond to? Reference [61] points out that  corre-
sponds  to  the  total  time  span  of  the  system  behavior
that we aim to investigate. When we use the time scale

 to examine the rate of change of system behavior over
time,  we cannot see the change,  that is .  This  is
the reason why this term does not appear in CE expan-
sion. Similarly,  corresponds to the total space span of
the  system  behavior  that  we  aim  to  investigate.  When
we use the space scale  to examine the rate of change

∂r0 = 0

∂r

r1

of system behavior over space, we cannot see the change,
that  is .  This  is  the  reason  why  this  term  does
not appear in CE expansion. In the following discussions
on CE multiscale analysis, the spatial change rate  is
only discussed at one spatial scale .

Substituting  CE expansion  (27)  into  the  BGK-Boltz-
mann equation, 

∂f

∂t
+ v · ∂f

∂r
= − 1

τ

(
f − f (0)

)
, (28)

gives  (
∂

∂t1
+

∂

∂t2
+ · · ·

)
(f (0) + f (1) + f (2)+ · · · )

+ v · ∂

∂r1
(f (0) + f (1) + f (2)+ · · · )

= −1

τ
(f (1) + f (2)+ · · · ), (29)

τwhere  is the relaxation time. By equating the coefficients
of the terms with the same order of Kn number on both
sides of Eq. (29), we can obtain 

f (1) = τ

[
−∂f (0)

∂t1
− ∂

∂r1
(f (0)v)

]
= τ

[
−∂f (0)

∂t1
−∇1 · (f (0)v)

]
, (30)

 

f (2) = −τ

[
∂f (0)

∂t2
+

∂f (1)

∂t1
+∇1 · (f (1)v)

]
, (31)

 

f (3) = · · · . (32)

Assume we want to propose a DBM that only includes
first-order discrete and non-equilibrium effects. It is easy
to find 

∆
∗(1)
2 = ∆

(1)
2 = M2(f

(1))

= τM2

(
−∂f (0)

∂t1
−∇1 · (f (0)v)

)
⇒M2

(
f (0)

)
,M3

(
f (0)

)
, (33)

 

∆
(1)
3,1 = M3,1(f

(1))

= τM3,1

(
−∂f (0)

∂t1
−∇1 · (f (0)v)

)
⇒M3,1

(
f (0)

)
,M4,2

(
f (0)

)
, (34)

 

∆
*(1)
3,1 = ∆

(1)
3,1 − u ·∆∗(1)

2

= · · ·
⇒M3,1

(
f (0)

)
,M4,2

(
f (0)

)
. (35)

⇒Among them, the meaning of the symbol “ ” is “involv-
ing”.  Therefore,  the  set  of  kinetic  moments  involved  in
the viscous stress and heat flux calculation formulas are
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{M0,M1,M2,0,

M2,M3,1,M3,M4,2}
the  following  seven  kinetic  moments, 

.  Consequently,  DBM  requires  that
these seven kinetic moments be strictly preserved during
the process of converting from integrals to summations: 

M0 =
N∑
i=1

feq
i = ρ, (36)

 

M1 =
N∑
i=1

feq
i vi = ρu, (37)

 

M2,0 =
N∑
i=1

1

2
feq
i (v2i + η2i ) =

1

2
ρ[(D + n)T + u2], (38)

 

M2 =
N∑
i=1

feq
i vivi = ρ(TI + uu), (39)

 

M3,1 =
N∑
i=1

1

2
feq
i (v2i +η2i )vi =

1

2
ρu[(D + n+ 2)T + u2],

(40)
 

M3 =
N∑
i=1

feq
i vivivi = ρ(TΘ+ uuu), (41)

 

M4,2 =
N∑
i=1

feq
i

v2i + η2i
2

vivi = ρ

[(
D + n+ 2

2
T +

u2

2

)
TI

+

(
D + n+ 4

2
T +

u2

2

)
uu

]
,

(42)

Θ=(uαδβγ+uβδαγ+uγδαβ)êαêβ êγ (êα, êβ , êγ)

α β γ

feq = f (0)

with ,  denote
unit vectors along the , , and  axes of a fixed coordinate
system.  In  Eqs.  (36)–(42),  the  left  side  represents  the
analytical solution for the kinetic moment of the equilib-
rium  distribution  function .  These
Eqs. (36)–(42) can be written in matrix form as 

f̂eq
k = mkif

eq
i , (43)

or 

f̂eq = m · feq. (44)

Equations (36)–(42), or the matrix equation (43) or (44)
represent the physical constraint that need to be satisfied
for the discrete velocity selection in the DBM evolution
equation.

f (0)

If  we  want  to  achieve  a  DBM  that  includes  second-
order  discrete/non-equilibrium  effects,  we  only  need  to
consider:  which  additional  kinetic  moments  of 
should  be  preserved  after  adding  the  second-order  non-
equilibrium contributions to viscous stress and heat flux?
Because 

∆(2) = M2(f
(2)) ⇒ M2(f

(1)),M3(f
(1)),

whereM3(f
(1)) ⇒ M4(f

(0)), (45)
 

M3,1(f
(2)) ⇒ M3,1(f

(1)),M4,2(f
(1)),

whereM4,2(f
(1)) ⇒ M5,3(f

(0)). (46)

∆4 ∆5,3

{M0,M1,M2,0,

M2,M3,1,M3,M4,2,M4,M5,3}

It can be seen that there are two more kinetic moments,
 and , that need to be conserved. It is clear that,

in  a  DBM  containing  only  up  to  the  second-order
discrete/non-equilibrium  effects,  the  set  of  kinetic
moments  that  need  to  be  preserved  are 

.

j

3 + 2(j + 1)

Figure  9 shows  the  kinetic  moments  that  need  to  be
preserved  in  the  step-by-step  DBM construction  as  the
degree  of  discreteness/non-equilibrium  represented  by
the  Kn number  increases  and the  corresponding  hydro-
dynamic equations. It is easy to find that when consider-
ing  up  to  the -th  order  discreteness/non-equilibrium,
the  number  of  kinetic  moments  that  need  to  be
preserved is . For more details, please refer to
references  [65, 77–79].  It  is  emphasized  again  that  the
ability  to  recover  the  corresponding  level  of  hydrody-
namic equations is only a part of the physical functionality
of DBM. Roughly equivalent to the physical functions of
DBM  is  the  extended  hydrodynamic  equation  systems,
which  should  include  some  of  the  most  closely  related
non-conserved  moment  evolution  equations  in  addition
to  the  usual  density,  momentum,  and  energy  evolution
equations. Among them, the extended part is referred to
the  set  of  evolution  equations  of  corresponding  non-
conserved moments, and its necessity increases with the
increase  of  system  discreteness/non-equilibrium  degree.
We  provide  a  DBM  simulation  flowchart  in Fig.  10
corresponding to the work positioning shown in Fig. 3.

 
Fig. 9  Kinetic moments that should keep value in various
levels of DBM.
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 3.6   Brief review of steady DBM

When  conducting  research  on  complex  flow  behaviors,
the research perspective includes at least two dimensions
of span, as shown in Fig. 11: the span of characteristics
that make up this set of behaviors and the time span of
these behaviors. Among them, the span of kinetic behavior
often correlates with the discrete/non-equilibrium degree
of the system being described. In addition to the kinetic
characteristics  that  evolve  over  time,  people  often  need

to  conduct  detailed  research  on  some  steady-state
behavior of the system. The steady DBM is designed for
this requirement.

Formally,  in  the  discrete  Boltzmann  equation  (15),
setting  the  time  derivative  term  to  zero  yields  the
control equation for steady-state DBM, 

vi ·
∂fi
∂x

+ (force term)i = (collision term)i. (47)

fi
vi

However,  the  selection  rules  for  discrete  velocities  here
are completely different from the case of unsteady DBM,
and  the  physical  meaning  of  the  discrete  distribution
function  is  the  actual  distribution  function  of  corre-
sponding discrete velocity .

f

|v − u|

u

u

u

Considering  that  the  distribution  function  has  a
small  amplitude  when  is  large,  the  simplest  way
in  steady  DBM  is  to  uniformly  discretize  the  particle
velocity  space  in  a  finite  region  centered  on  the  local
flow  velocity .  In  the  case  of  low  particle  number
density,  a  more  reasonable  approach  is  to  use  non-
uniform  grids  with  local  refinement  around  the  local
velocity  field  [80].  In  Ref.  [64],  the  discretization  of
particle velocity space introduces a Lagrangian grid that
moves with local flow velocity . In this way, as shown
in Fig.  12,  in  the  three-dimensional  case,  the  direct
uniform discretization of particle velocity can be written
as 

vix =

(
i− Nvx + 1

2

)/(
Nvx − 1

2

)
vx,max,

vjy =

(
j − Nvy + 1

2

)/(
Nvy − 1

2

)
vy,max,

vkz =

(
k − Nvz + 1

2

)/(
Nvz − 1

2

)
vy,max, (48)

(Nvx, Nvy, Nyz)where  are the total numbers of grid in the
particle  velocity  space  at  three  degrees  of  freedom,

 
Fig. 10  Flowchart for DBM simulation.

 
Fig. 11  Two dimensions of the perspective of complex flow
behavior research.

 

x

Fig. 12  Schematic  of  discretization  of  particle  velocity
space.  The  velocity  discretization  in  direction  is  taken  as
example.
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(vx,max, vy,max, vz,max)

vx,max = vy,max = vz,max = vmax

vy

vjy wj

 are  the  maximum  values  of  particle
velocity in the three dimensions. Because it is a uniform
grid,  the  weight  coefficients  of  each  grid  point  are  the
same.  In  many  cases,  it  is  reasonable  to  take

.  But  in  the  case  of  local
refinement, the weight coefficients of grid points are no
longer  the  same.  Taking direction of  as  an example,
we  provide  an  example  of  using  a  set  of  non-uniform
grid  and weight coefficient : 

vjy =

(
j − Nvy + 1

2

)λ /(
Nvy − 1

2

)λ

vy,max,

wj = λ

(
j − Nvy + 1

2

)λ−1 /(
Nvy − 1

2

)λ

vy,max.

(49)

The  discretization  of  particle  velocity  space  in  steady
DBM given here is  only an example,  The purpose is  to
highlight  the  differences  from  non-steady-state  DBM.
For more details, please refer to more professional litera-
ture.

A brief methodological review on the capabilities and
characteristics of the two types of DBMs, time-dependent
DBM and steady-state DBM, is provided as follows:

f

f

(i)  Due  to  limitations  in  simulation  capabilities,  we
often  need  to  compromise  and  trade-offs  between  the
two spans, time span and behavior span, of the descriptive
perspective. The kinetic behavior span is closely related
to  the  degree  of  discreteness/non-equilibrium.  If  we
compress the time span of our attention, it is possible to
exchange  it  for  broadening  the  behavioral  span  of  our
attention. If the time span of the focus is compressed to
a single point, the span of the behavior of the focus can
be expanded to all the kinetic moments of the distribution
function ,  i.e.,  all  the  kinetic  features  of  the  complete
and real .  This  is  the  limit  extension  of  the  degree  of
discreteness/non-equilibrium  that  can  be  described
under  the  effective  within  the  framework  of  BGK-like
model  and  Chapman–Enskog  multi-scale  expansion
theory.

fi
vi

vi

f (0)

(ii) At this limit, the number of kinetic moments to be
preserved becomes infinite. In the ideal case,  becomes
the  real  distribution  function  corresponding  to ,  and
particle velocity  becomes the real particle velocity. At
this limit, the linear equations about  that were origi-
nally designed to preserve only a finite number of kinetic
moments,  such  as  Eq.  (43),  become  infinitely  high-
dimensional.  Therefore,  the original  method of selecting
discrete  velocities  is  no  longer  applicable.  When
complexity  and  difficulty  reach  a  certain  level,  they
often  turn  around  and  become  simpler.  At  this  point,
the discretization of particle velocity space can return to
a  direct  discretization  scheme  similar  to  spatial  and
temporal discretization.

f

(iii) In time-dependent DBM, only a finite number of
kinetic  moments  of  are  preserved,  and  what  has  a

fi
fi

clear physical  meaning is  the kinetic moment of ,  but
 itself  does  not  have  a  clear  physical  meaning.  The

recovered  distribution  function  is  only  approximately
accurate, and is only accurate in terms of the features of
interest. When it comes to the steady DBM, the focus is
on  the  actual  distribution  function,  which  means  that
essentially  all  kinetic  moments need to be preserved.  It
is not just the kinetic moments of that have clear physical
interpretations,  but also the distribution function itself,
which  represents  the  real  distribution  function  at  that
particular particle velocity.

(iv) Both time-dependent DBM and time-independent
DBM  can  be  used  together,  achieving  the  ultimate  or
maximum  descriptive  power  in  two  dimensions:  the
maximum  in  terms  of  time  span  (sacrificing  behavior
span or degree of discreteness/non-equilibrium, etc.) and
the  maximum  in  terms  of  degree  of  discreteness/non-
equilibrium  (sacrificing  time  span,  etc.).  The  time-
dependent  DBM and  steady-state  DBM,  similar  to  the
time-dependent  Schrödinger  equation  and  the  steady-
state  Schrödinger  equation,  also  show significant  differ-
ences in numerical simulation methods. Of course, it also
contains the same or similar parts.  It  is  noted that the
Schrödinger  equation  has  a  clear  physical  image  corre-
spondence and is a physical model description equation.
It does not contain numerical schemes for simulation.

f

(v)  Compared  to  steady-state  DBM,  time-dependent
DBM compresses the system’s behavior description ability
from all  (infinite)  kinetic  moments  of  to  a  finite  set.
The gain in the system’s  behavior  description ability  is
that the time span of the behavior is amplified infinitely
from  0.  However,  there  is  a  trade-off  involved  in  this.
The  gain  is  “mesoscopic” and  the  cost  is  also  “meso-
scopic”. Both types of DBMs are typical representatives
of “choosing something to do” or “doing something and
abandoning the others”.

v

u

(vi)  The  transformation  of  coordinate  systems  from
Eulerian  to  Lagrangian  during  the  construction  process
of  steady-state  DBM  in  Ref.  [64]  has  not  yet  involved
discrete formats and belongs to the theoretical modeling
part. Please note that MD simulation is Lagrangian, and
the  coordinate  system follows  the  molecule.  The reason
why  the  coordinate  system  can  run  with  molecule  is
because  in  MD,  the  position  of  molecule  at  the  next
moment is deterministic! In kinetic theory, the direction
and speed  of molecule at the next moment are uncertain
and are probability events. So, in Lagrangian DBM, the
coordinate  system  cannot  follow  the  (uncertain  and
probabilistic)  molecule,  but  can and should  follow fluid
element with a macroscopic flow the velocity . This is
the  technical  key  in  the  construction  of  Lagrangian
DBM.

 4   Verification and validation

In this section we illustrate some verification and validation
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of  the  method. Figures  13–29 are  for  unsteady  DBM,
and Fig. 30 is for steady DBM. It should be mentioned
that the model verification and validation are based on
known  results,  aims  to  verify  and  validate  the  chosen
discrete  format,  program  implementation,  parameter
settings,  etc.  This  is  a  basic  process  but  does  not  have
any contribution to the new physics cognition.

 4.1   Combustion, detonation and shock wave

The DBM study of complex flows started from combustion
and  detonation.  The  first  work  was  completed  by  Bo
Yan  [81],  a  postdoctoral  fellow  of  the  first  author’s
research  group,  and  then  Chuandong  Lin  [82–89],
Yudong  Zhang  [90],  Yiming  Shan  [91],  and  some  other
graduate  students  of  the research group participated in
this direction. Currently, there is a relatively substantial
body of  literature on this  subject from various research
groups.

Detonation  wave  can  be  regarded  as  shock  wave
sustained  by  chemical  reaction.  The  DBM in  published
literature  is  only  concerned  with  the  non-equilibrium
induced by the small structure and/or fast flow behavior,
so the description of chemical reaction uses the traditional
phenomenological  model.  From  the  perspective  of
constructing new model, what needs to be verified is the
capability  to  describe  the  structure  and  behavior  of
shock  waves. Figure  13 shows  the  comparison  of  the
shock wave structures obtained by DBM and DSMC. It
should be pointed out that for the simulations of steady-
state structures such as shock waves, the use of steady-
state DBM is more effective.

 4.2   Microscale flow

Micro-nano  flow  is  a  common  phenomenon  in  micro-
nano  electromechanical  systems.  It  is  well-known  that

mass and heat transfer in micro-nano flows exhibit many
unique  behaviors,  such  as  the  appearance  of  Knudsen
layer  near  the  wall.  Non-linear  mass  transport  such  as
velocity  slip,  and  non-Fourier  heat  transfer  behavior
such  as  temperature  jump  would  come  out  within  the
Knudsen  layer  (as  shown  in Fig.  14).  There  are  two
main reasons for these phenomena: (i) With the decrease
in the transverse size of the channel, the average molecular
distance is no longer negligible compared to the transverse
characteristic  scale  of  the  flow  behavior.  (ii)  The  non-
equilibrium driving mechanism in the fluid  close  to  the
wall  is  very  different  from  that  in  internal  fluid  away
from  the  wall,  because  the  former  carries  the  energy
exchange (if  no material  exchange)  between the system
and the outside world. Therefore, in addition to considering
the order of  Kn numbers to be retained in the internal
flow  description,  it  is  also  necessary  to  consider  the
design  of  suitable  kinetic  boundary  conditions  [61,
92–94].

y uL = −v

uR = v x

T0

Couette  flow,  Poiseuille  flow,  and  so  on  are  classic
problems  in  the  study  of  slip  phenomenon.  For  the
convenience  of  discussion,  the  velocity  Knudsen  layer
shown in Figs. 14(a) and (b) and the temperature Knudsen
layer  shown  in Figs.  14(c)  and  (d)  are  discussed  sepa-
rately. The schematic diagram for the velocity Knudsen
layer is shown in Fig. 14(a). It depicts a scenario where
two  long  parallel  plates  are  filled  with  gas.  The  two
plates  move  in  the  direction  with  velocities 
and , respectively, while velocities in the  direction
are  zero.  The temperature  of  the  two plates  is  fixed at

. The following two cases would make the Kn number
increase and the velocity slip phenomenon becomes more
significant: (i) the distance between the plates decreases,
(ii)  the  gas  density  between  the  two  plates  decreases.

 
Fig. 13  Comparison of DBM simulation and DSMC simu-
lation of a shock structure. Reproduced with permission from
Ref. [77].

 
Fig. 14  Schematic  of  velocity  slip  and  temperature  jump
in Knudsen layer.
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After  entering  the  steady  state,  although  nonlinear
velocity  distribution  [BD segment  in Fig.  14(b)]  and
velocity  slip  appear  in  the  Knudsen  layer,  the  velocity
distribution  in  the  region  away  from  the  wall  still
changes linearly [AB segment in Fig. 14(b)]. Extend the
line segment AB to the wall, the intersection point is C,
and the corresponding flow rate is .  At this  time, the
difference between the plate speed  and  is 

vslip = vw − vc, (50)

x ∆u(x)

vslip
∆u(x)

vslip = ksλ
√
π/2 · dv/dx ks

α

λ

λBGK = µ/p
√
8RT/π

λHS = 4/5λBGK
dv/dx

α

∆u(x) M

∆u(x) ∆u(x) = Y0(η)
√
2Kn · duy/dx Y0

η = (1− x)/(
√
2Kn)

which is defined as slip velocity. The distribution along
 direction  of  velocity  difference  between  the

curve BD and BC is  called  velocity  Knudsen  profile,
which is an important parameter to describe the velocity
Knudsen  layer.  The  analytical  solutions  of  and

 can  be  found  in  Refs.  [95, 96].  Considering  the
Maxwell-type boundary condition, the expression of slip
velocity is , where  is a coefficient
related  to  the  tangential  momentum  accommodation
coefficients  (TMAC, ,  which  is  used  to  measure  the
proportion of complete diffuse reflection) [96].  represents
the mean free path of molecules. In BGK collision model,

,  and  in  hard  sphere  collision  model,
. Figure 15(a) shows the comparison of slip

velocity normalized by  between DBM results and
two  types  of  analytical  solutions  at  different  Kn
numbers [92]. In Fig. 15(b), DBM simulation results for
various  TMAC  ( )  are  compared  with  analytical  solu-
tions. Figure  16 shows  the  curves  of  velocity  difference
profile  for  different Kn numbers,  where  is  the
number of discrete velocity directions [94]. The analytical
solution of  is , where 
is  the  velocity  Knudsen-layer  function  [95]  and

. The DBM results are in good agreement
with  the  analytical  solutions,  and  it  can  be  seen  that
DBM  can  accurately  capture  the  velocity  slip  and  the
flow velocity behavior in the Knudsen layer.

The schematic  diagram for  the  temperature  Knudsen
layer  is  depicted  in Fig.  14(c).  Similar  to  that  of  plate
shear flow, it involves two long parallel plates filled with
gas, with zero velocity between the plates. The tempera-

TL TR

Tc
Tw Tc

tures  of  the  two  plates  are  maintained  at  and ,
respectively.  After  entering  the  steady  state,  although
the nonlinear distribution of temperature [section BD in
Fig.  14(d)]  and  the  temperature  jump  occurs  in  the
Knudsen layer, the temperature distribution in the area
away from the wall still changes linearly [section AB in
Fig. 14(d)]. Extending line segment AB to the wall, the
intersection point is denoted as C, and the corresponding
temperature  is  represented  as .  At  this  point,  the
difference between the plate temperature  and  is 

Tslip = Tw − Tc, (51)

∆T (x)

Tslip ∆T (x)

∆T (x)

which is defined as the slip temperature. The temperature
difference between the curves BD and BC, i.e., , as
a  function  of  position,  is  known  as  the  temperature
Knudsen  profile,  which  is  an  important  parameter  to
describe the temperature Knudsen layer. The analytical
solutions  of  and  can  be  found  in  Ref.  [95].
Figure  17 displays  the  agreement  of  the  temperature
difference  profiles  between  DBM  results  and
analytical  solutions,  for  cases  with  two  different  Kn

 
Fig. 15  Comparison between DBM simulation results and
analytical solutions: slip velocity. Reproduced with permission
from Ref. [92].  

Fig. 16  Comparison between DBM simulation results and
analytical  solutions:  velocity  difference  profile.  Reproduced
from Ref. [94] with permission.

 
Fig. 17  Comparison between DBM simulation results and
analytical solutions: temperature difference profile. Reproduced
with permission from Ref. [94].
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∆T (x) = Θ1(η)
√
2Kn · dT/dx

Θ1(η)

xx

numbers  [94].  The  analytical  solution  of  temperature
difference  profiles  is ,  where

 represents the temperature Knudsen-layer function.
Figure 18(a) shows the comparison of velocity distribution
between DBM results  and DSMC results  when Couette
flow  develops  to  a  steady  state,  with  two  different  Kn
numbers  [93]. Figure  18(b)  shows  the  profile  of  the 
component of shear stress, which contains the results of
DBM,  DSMC,  and  lattice  ES-BGK  under  three  Kn
numbers.  It  can  be  seen  that  the  DBM  results  are
consistent  with  the  DSMC  results  at  several  Kn
numbers.  However,  at  a  high  Kn  number  (Kn  =  0.5),
the DBM results are better than those of the lattice ES-
BGK model.

In  a  pressure-driven  Poiseuille  flow,  the  wall  is  fixed
and there is a pressure difference between the two ends
of  the pipe.  The flow of  fluid is  driven by the pressure
difference.  Due  to  the  action  of  the  wall  surface,  the
velocity of the fluid in the center of the pipeline is larger,
gradually  decreasing  from  the  center  to  the  wall,  as

ux

p x

ux(y) y

He

shown in Fig. 19(a). Figure 19(b) shows the  contour
for  three  different  Kn numbers. Figure  20(a)  illustrates
the  distribution  of  pressure  along  the  direction  at
the center line. It can be seen that the pressure distribution
is nonlinear and has negative curvature, which is consistent
with  the  previous  experimental  results  and  analytical
theory [94]. Figure 20(a) explains the phenomenon that
appeared in Fig. 19(b), showing that the more linear the
pressure distribution, the smaller the difference in velocity
distribution  in  the  cross  section. Figure  20(b)  displays
the  velocity  distribution  along  the  direction
under different Kn numbers. It can be seen that as the
Kn number increases, the deviation between the analytical
solution based on the NS equations and DBM simulation
results  becomes  more  pronounced.  This  is  physically
reasonable  because  as  the  Kn  increases,  slip  boundary
analysis  gradually  becomes  less  applicable. Figure  21
shows  the  variation  of  inverse  reduced  mass  flow  rate
with Kn number, including DBM simulation results, NS
combined  with  slip  boundary  simulation  results,  and
experimental results of two different gases (  and N2).
It can be seen that when the Kn number is less than 0.1,

 
Fig. 18  The results of Couette flow at steady state: (a) velocity profiles, the symbols are DSMC data and the lines denote
DBM results; (b) viscous shear stress profiles, the symbols denote DSMC data, the dashed line represents the Lattice ES-
BGK results, and the solid line represents the DBM results. Reproduced with permission from Ref. [93].

 
Fig. 19  Pressure-driven  flow. (a) Schematic,  and
(b) DBM simulation results of velocity contour under different
Kn numbers. Reproduced with permission from Ref. [94].

 
p(x)

ux y

Fig. 20  (a) Profiles of pressure  along the central line
under  different  Kn  numbers. (b) Profiles  of  along  the 
direction  under  different  Kn  numbers.  Reproduced  with
permission from Ref. [94].
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the results of NS are in good agreement with the experi-
mental results. With the increase of the Kn number, the
difference between the results of NS and the experimental
results becomes larger. However, the DBM result is still
in  good  agreement  with  the  experimental  result  when
the Kn number approaches 0.5 [94].

 4.3   Cavity flow

L× L

Uw

T0

m = 6.63× 10−26 kg
T0 = 273 K
Uw = 50 m/s

Two-dimensional square cavity flow is a common bound-
ary-driven flow, which is also frequently encountered in
non-equilibrium flow problems [93]. In a cavity with size

 filled with gas, the upper wall of the cavity moves
to the right at  a constant horizontal  velocity ,  while
the other three walls remain stationary. The temperature
on  the  four  walls  is  fixed  at .  In  a  specific  practical
scenario, we choose argon as the gaseous medium in the
square  cavity.  The  mass  of  the  argon  atom  is

,  the  temperature  of  the  wall  is
, and the motion velocity of the upper wall is
. DBM simulation uses dimensionless quanti-

ties. Figure 22(a) shows the temperature contour of the
flow  field  when  the  square  cavity  flow  develops  to  a
steady  state,  and Fig.  22(b)  is  the  corresponding  heat
flux streamline. From Fig. 22(a), it can be seen that the
left  side  of  the  flow field  is  the  low-temperature  region
and  the  right  side  is  the  high-temperature  region.
However, it is shown in Fig. 22(b) that the heat flux is
from the left  side to the right side.  This is  inconsistent
with  Fourier’s  thermal  conductivity  law  but  is  reason-
able.  This  is  a  typical  strong  thermodynamic  non-equi-
librium effect. According to the Chapman–Enskog multi-

 
Fig. 21  Inverse  reduced  mass  flow  rate  under  various
Knudsen  numbers,  in  which  including  the  results  of  DBM
simulation, NS simulation and experiment. Reproduced with
permission from Ref. [94].

 
Fig. 22  Simulation results of non-equilibrium cavity flow in steady state. (a) Temperature contour. (b) Heat flow stream-
line. (c) Horizontal velocity distribution on the vertical centerline. (d) Vertical velocity distribution on the vertical center-
line. Reproduced with permission from Ref. [93].

TOPICAL REVIEW FRONTIERS OF PHYSICS

Aiguo Xu, et al., Front. Phys. 19(4), 42500 (2024)   42500-23

 



scale analysis, when the Knudsen number is small, only
the first order term in Knudsen number is significant. In
other words, when the degree of TNE is low, the linear
response theory works. In this case, the heat flux is posi-
tively proportional to the negative temperature gradient.
But  with  increasing  the  Knudsen  number,  the  second
and even higher order terms in the Knudsen number can
no longer be ignored. In other words, with increasing the
degree of TNE, the linear response theory gradually fails
and  the  nonlinear  responses  begin  to  become  more
significant. The heat flux is no longer only related to the
temperature  gradient,  but  also  influenced  by  velocity
gradient  and/or  density  gradient.  When  the  negative
contribution  from  density  gradient  and/or  velocity
gradient  surpasses  the  contribution  of  the  temperature
gradient, the heat flux will flow from the low-temperature
region to the high-temperature region. The DBM results
in  this  case  are  confirmed  by  the  DSMC  predictions.
Figures  22(c)  and  (d)  demonstrate  the  comparison
between DBM results and DSMC results of the velocity
distribution, showing good agreement between the two.

 4.4   Fluid collision

Collision of two fluids will lead to the increase of gradients

of  density,  temperature,  flow  velocity,  and  pressure  at
the collision interface, resulting in strong non-equilibrium
effects at the interface [77, 79]. Therefore, fluid collisions
are often used to assess the ability of models to describe
non-equilibrium  effects.  According  to  CE  multi-scale
analysis theory, the degree of nonlinearity of constitutive
relation varies with the degree of non-equilibrium. Even
for  the  same  flow  behavior,  using  different  physical
quantities  to  investigate,  it  may  require  different  levels
of accuracy in the DBM physics.

xx

∆∗
2

∆∗
2,xx

τ

∆
∗(1)
2,xx

τ ∆
∗(2)
2,xx

Figures  23 and 24 show  the  distribution  of  the 
component  of  (corresponding  to  the  viscous  stress
tensor in the macroscopic fluid dynamics equations) for
detecting  the  system’s  non-equilibrium  behavior  [77].
The higher the degree of  TNE (from the perspective of
Kn  number)  considered  in  the  modeling  process,  the
corresponding  constitutive  relationship  of  in  EHE
is  more  accurate.  The  expressions  for  first-order  and
second-order  non-equilibrium  stresses  can  refer  to
Appendix  B.  It  is  clear  that  relaxation  time  and
macroscopic gradients are the driving forces of non-equi-
librium  effects.  For ,  the  main  driving  factors  are
relaxation time  and velocity gradient. But for , it
is  also  related  to  density  gradient  and  temperature

 
∆∗

2,xxFig. 23  Comparison of  profile between DBM simulation results and analytical results. The three figures represent the
cases of weak, medium, and strong TNE strength, respectively. The two symbols indicate the results of first-order and second-
order DBM, respectively, with lines representing the analytical results at two TNE levels. Reproduced with permission from
Ref. [77].
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gradient. Quantities such as Kn number, relaxation time
,  the  spatial  gradient  and  temporal  change  rate  of

macroscopic physical quantities, are all measures of TNE
intensity/degree/strength  from  a  certain  perspective.
The intensity of  is also a measure of TNE strength
from  a  particular  perspective.  Therefore,  it  is  again
stated  that  for  complex  flow  studies,  using  a  single
perspective  to  define  the  non-equilibrium  strength  is
easy  to  draw  one-sided  conclusions.  This  is  the  reason
why DBM introduces a non-equilibrium intensity vector
(with each component being a measure of TNE strength
from a specific perspective) to carry out multi-perspectives
cross-positioning for the non-equilibrium intensity.

∆∗
2,xx

∆∗
2,xx

∆∗
2,xx

τ τ

Based on the above considerations, in order to demon-
strate the ability of the DBM model to describe different
degrees  of  non-equilibrium,  three  different  cases  are
designed. If  only see from the view of ,  cases 1,  2,
and  3  correspond  to  weak,  moderate,  and  strong  non-
equilibrium  strengths,  respectively.  Among  these  cases,
case 1 has an initial velocity of 0, so its strength of 
is the weakest. In case 2, the initial collision velocity is
increased,  thereby  incorporating  first-order  non-equilib-
rium  effects,  resulting  in  a  greater  strength
compared to case 1. In case 3, we increase the relaxation
time  ten times compared with the  in case 2, so that
it  produces  a  strength  approximately  ten  times  greater
than  that  of  case  2.  However,  the  non-equilibrium

∆
∗(2)
2,xx ∆

∗(1)
2,xx

∆
∗(2)
2,xx/∆
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2,xx

strength of the system cannot be solely measured with a
single  indicator.  For  example,  in  case  1,  its  velocity
gradient is small, so the density gradient and temperature
gradient play a significant role, resulting in the relative
value of  to  can not be negligible. Therefore,
DBM  further  introduces  the  relative  non-equilibrium
strength  quantity  to  more  accurately
describe the relative importance of different levels of non-
equilibrium effects. From the perspective of relative non-
equilibrium  strength,  the  non-equilibrium  strength  in
case 2 is smaller than that in cases 1 and 3.
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In Fig.  23,  the  physical  accuracies  of  the  used  DBM
are  first  order  and  second  order  (represented  by  circles
with different colors), respectively. The analytic solution
results correspond to first order [ ] and second order
[  + ]  (represented  by  lines  with  different
colors),  respectively.  It  can  be  seen  that  in  case  1,
although the non-equilibrium strength from the view of

 is  weak,  the  results  of  the  first  order  DBM show
significant  deviations  from  both  first-order  and  second-
order analytical results. This is because in case 1, 
is  non-negligible  relative to  [i.e.,  the relative non-
equilibrium strength  is relatively large]. The
physical accuracy of second order non-equilibrium (from
the perspective of Kn number) is not guaranteed in the
first order DBM during the model construction process,

 
Fig. 24  The DBM simulation results from different orders of DBM. Reproduced with permission from Ref. [77].
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so the first order DBM does not guarantee the accuracy
of  description  of .  However,  the  results  of  second-
order  DBM  match  perfectly  with  the  second-order
analytical  results.  This  is  because  in  the  construction
process  of  second-order  DBM,  the  accuracy  of  the
second-order  non-equilibrium  description  (from  the
Knudsen  number  perspective)  is  ensured.  In  case  2,
although the non-equilibrium strength from the view of

 is increased,  becomes negligible compared to
 [  is  small].  As  a  result,  the  results  of

first-order DBM, second-order DBM, and first-order and
second-order  analytical  results  are  all  in  agreement.  In
case  3,  the  non-equilibrium  strength  from  the  view  of

 is  further  increased,  becomes  non-negligible
compared to . In this case, the results of first-order
DBM show  deviations  from  the  second-order  analytical
results, while the results of second-order DBM align well
with  the  second-order  analytical  results. Figure  23
demonstrates  one  specific  aspect  of  the  complexity  of
non-equilibrium flow behavior.

∆∗
2,xx

The higher the physical accuracy of the DBM model,
the  more  kinetic  moments  need  to  be  retained  in  the
modeling process,  which in turn increases the computa-
tional  cost  of  simulations.  So,  in  the  actual  simulation
study,  how  many  orders  of  physical  accuracy  of  DBM
need to be considered? Meeting the needs, the simplest,
the  least  cost,  is  the  first  choice.  The  required  level  of
physical  accuracy  can  be  determined  through  the
convergence of simulation results. The specific examples
are shown in Fig. 24, in which the above three working
cases are simulated with first order to sixth order DBM
(from  the  view  of  Kn  number),  respectively.  It  can  be
observed  that,  except  for  the  results  of  the  first  order
DBM,  the  rest  of  the  DBM results  are  consistent.  For
cases  1  and  2,  to  obtain  accurate  viscous  stresses,  at
least a second order model is required. However, for case
3, the second-order DBM results differ from the higher-
order DBM results and the results from the third-order
model and above overlap. Therefore, for case 3, to accu-
rately  describe  the  non-equilibrium  behavior  from  the
view of , at least a third order DBM is required.

 4.5   Multiphase flow

∆2,xx ∆3,xxx ∆3,1x ∆4,2xx

∆2,xx

Multiphase flows and phase change heat transfer pheno-
mena are widely exist in the natural world and engineering
applications  [97–99].  Reference  [65]  further  explores  the
ability of different orders of DBM (from the perspective
of Kn number) to describe the non-equilibrium effect in
liquid–vapor  phase  transition  systems.  Reference  [65]
analyzed the ability of the DBM model to describe diff-
erent degrees of non-equilibrium from four basic perspec-
tives,  i,e., , , ,  and . Figure  25
displays  the  spatial  distribution  of  typical  thermo-
dynamic non-equilibrium effects,  i.e., ,  (the combi-
nation of hydrodynamic non-equilibrium and thermody-
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namic  non-equilibrium)  near  the  gas-liquid  interface.  If
only  look  at  the  view  from ,  each  row  of Fig.  25
corresponds to weak, moderate, and strong non-equilibrium
scenarios.  Each  column  in  the  figure  corresponds  to
three  cases  where  the  selection  of  discrete  velocity  is
D2V13,  D2V15,  and  D2V30,  respectively.  In  terms  of
the retained order of the Knudsen number, the first two
correspond  to  the  NS  level  (retaining  up  to  the  first-
order  terms of  the  Knudsen number).  However,  D2V15
retains  moment  relations  more  than  the  D2V13
model,  making  the  constitutive  relations  in  the  EHE
more  complete.  The  D2V30  case  corresponds  to  the
super-Burnett  level  (retaining  up  to  the  third-order
terms  of  the  Knudsen  number).  For  comparison,  the
figure  also  provides  analytical  results  for  the  first-order
( )  and  second-order  ( )  non-equilibrium  effects.
For the case of weak non-equilibrium (from the perspective
of ), as can be seen in the first row of Fig. 25, there
exists a deviation between the first-order analytical solution
and  the  second-order  analytical  solution.  It  indicates
that the second order non-equilibrium ( ) cannot be
ignored  compared  with  the  first  order  non-equilibrium
( ),  that  is,  the  relative  non-equilibrium  strength

 is  larger.  Because the first  order  DBM does
not guarantee the accuracy of the description of  in
model construction, the results of D2V13 and D2V15 are
both  deviated  from  the  analytical  solutions.  However,
the D2V30 model which considers up to the third order
non-equilibrium,  provides  numerical  results  that  match
well  with the analytical  results.  For the case where the
non-equilibrium strength is moderate (from the perspec-
tive  of )  and  the  relative  non-equilibrium strength

 is  small,  as  shown  in  the  second  row  of
Fig.  25,  all  three  models  can  effectively  describe  non-
equilibrium. In the case of strong non-equilibrium (from
the  perspective  of ),  as  shown  in  the  third  row  of
Fig. 25, the results from the D2V30 model which considers
the  third  order  non-equilibrium  agree  well  with  the
analytic  solutions,  while  the  other  two  models  deviate
significantly.  But  relatively  speaking,  the  results  from
D2V15 are better than that from D2V13. These results
indicate that higher-order DBM models have a stronger
ability  to  describe  non-equilibrium effects.  As  discussed
in Sections 4.4 and 4.5, the Kn number, relaxation time
,  macroscopic  quantity  gradient,  TNE  quantity,  and

relative  TNE  quantity  can  all  be  used  to  describe  the
non-equilibrium  strength,  but  the  results  obtained  by
relying on a single quantity and from a single perspective
are obviously incomplete. It is more reasonable to introduce
the  non-equilibrium  strength  vector  and  describe  the
non-equilibrium strength from multiple perspectives.

 4.6   Hydrodynamic instability

RM instability under re-shock condition is an important
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SF6
research  topic  in  ICF  field.  In  Ref.  [100],  the  re-shock
process  of  and  air  was  studied  by  using  two-fluid
DBM, and the corresponding amplitude evolution curve
was  shown  in Fig.  26.  It  can  be  seen  that  DBM  can
capture  the  amplitude  evolution  accurately.  The  RMI
under same conditions were also simulated in Ref. [101].
It  should  be  noted  that  in  the  literature  [101],  the
numerical  simulation  uses  Euler  equation,  so  artificial
viscosity  has  to  be  added,  and  in  order  to  better
conform to the experiment, the diffusion effect was also
artificially corrected. In DBM simulations, such artificial
interventions are not used.

 4.7   Shock–bubble interaction

The  interaction  between  a  shock  wave  and  a  heavy-
cylindrical  bubble  (shock–bubble  interaction,  SBI)  is
studied in Ref. [103]. Figure 27 shows the comparison of
snapshots  of  schlieren  images  between  experimental
results and DBM simulation results. In Fig. 27, the odd
rows  represent  experimental  results  from Ref.  [34],  and

the even rows are DBM simulation results. The schlieren
images  of  DBM  simulation  are  calculated  from  the

 
∆2,xxFig. 25  Comparison of  profile between DBM simulation results and analytical results. Each row of the pictures show

corresponds to cases with weak, moderate, and strong TNE strength, and each column corresponds to the results of D2V13,
D2V15, and D2V30, respectively. In the figures, the circles represent results from DBM at various levels, the green lines and
green points are results calculated from the first theoretical analysis, and red lines denote results obtained from the second
theoretical analysis. Reproduced with permission from Ref. [65].

 
Fig. 26  Evolution  of  spike  amplitude.  The  red  points  in
the picture are experimental results from Ref. [102], and blue
line  represent  DBM  results.  Reproduced  with  permission
from Ref. [100].
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|∇ρ|/|∇ρ|max

|∇ρ| =
√
(∂ρ/∂x)2 + (∂ρ/∂y)2

density  gradient  formula,  i.e., ,  with
.  The  typical  wave  patterns

and  the  bubble’s  main  characteristic  structure  are
marked out in the figures. For example, “TS” represents
the  transmitted  shock  propagating  downstream  inside
the  bubble,  which is  generated after  the  incident  shock
impacts the bubble. The shock focusing occurs when two
high-pressure  regions  meet,  which  in  turn  produces
secondary  transmitted  shock  waves  (STS),  Reflected
Rarefaction Waves (RRW), and jet. These typical wave
patterns  during  the  SBI  can  all  be  captured  by  DBM.
The evolution of bubble characteristic scales during the
SBI  process  are  demonstrated  in Fig.  28.  The  lines  in
the figure are DBM simulation results, and the symbols
are the experimental results extracted from Ref. [34]. It
can  be  seen  that  DBM  can  accurately  describe  the
bubble deformation process in the SBI process.

 4.8   Plasma system

y = 0.625π

The compressible Orszag–Tang (OT) magnetic turbulence
problem  was  first  proposed  by  Orsazg  and  Tang.  It  is
widely  used  to  validate  the  effectiveness  of  magnetohy-
drodynamics models due to the complex wave structures
that  emerge  during  the  evolution  of  the  flow  field.
Figure  29 shows  the  pressure  distribution  at  the  line

 when  the  OT  magnetic  turbulence  problem
develops  to  steady  state  [43].  The  black  lines  represent
the  DBM  simulation  results,  and  the  red  dots  are  the
simulation results  from Ref.  [104].  DBM can accurately
capture the pressure distribution in this problem.

 4.9   Steady flow

Figure 30 presents a set of validation results for steady-
state DBM simulations [64]. Specifically, Figs. 30(a) and

 
Fig. 27  Snapshots of schlieren images of the interaction between a shock wave and a heavy-cylindrical  bubble.  The odd
rows represent experimental results from Ref. [34] with permission, and the even rows are DBM simulation results. Numbers
in the picture represent the time in μs. Reproduced with permission from Ref. [103].
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(b)  show  the  curves  of  mass  flow  rate  versus  the
rarefaction  coefficient  in  one-  and  two-dimensional
pressure-driven flow problems, respectively. Figure 30(a)
displays  results  for  different  TMAC  and Fig.  30(b)
shows  the  results  for  different  aspect  ratios  of
pipelines.  The  lines  represent  DBM  simulation  results,
and the symbols represent data from previous literature.
The results show that DBM can accurately describe the
mass  flow  rate  of  micropipe  flow  with  different  TMAC
and different aspect ratios.

 5   Applied research

To  study  the  unknown  is  the  original  intention  and
purpose  of  the  new  model.  New  models  are  often  built

because  existing  models  do  not  meet  requirements.  A
new  model,  if  it  does  not  exceed  any  of  the  physical
functions of the earlier model, the necessity of its existence
is  greatly  reduced!  In  addition  to  the  introduction  of
some  specific  research  works,  the  author  also  wants  to
convey  a  more  important  idea:  as  the  degrees  of
discreteness  and  thermodynamic  non-equilibrium
increase,  the  complexity  of  system  behavior  rises
sharply; it is incomplete to rely only on the macroscopic
quantities in the NS model, and more physical quantities
need to be introduced to describe the state and behavior
of the system to ensure that the actual control ability of
system behavior  does  not  decline.  Therefore,  this  paper
presented below includes results obtained from multiple
analysis methods and approaches. From the perspective
of the ways of extracting complex physical field informa-
tion, the following results are mainly obtained by three

 
Fig. 28  Evolution  curves  of  the  characteristic  scale  of
shock–bubble interaction. The lines indicate DBM simulation
results  and  the  symbols  are  experimental  results  extracted
from Ref. [34]. Reproduced with permission from Ref. [103].

 

y = 0.625π

Fig. 29  Comparison between DBM results and NS results
of  pressure  profile  at  the  line  in  simulation  of
Orszag–Tang magnetic turbulence. Reproduced with permis-
sion from Ref. [43].

 
Fig. 30  (a) Profiles of the dimensionless mass flow rate with various rarefaction parameters under three different values of
TMAC for the one-dimensional pressure driven flow through a microchannel. (b) Profiles of the dimensionless mass flow rate
with  rarefaction  parameters  for  three  different  aspect  ratios  in  the  context  of  the  two-dimensional  pressure-driven  flow
through a microchannel. Reproduced with permission from Ref. [64].
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methods: macroscopic quantitative analysis, morphological
feature  analysis,  and  thermodynamic  non-equilibrium
effect/behavior analysis. Among these, the thermodynamic
non-equilibrium  effect/behavior  analysis  means  the
description method based on the non-conserved moment
of , as shown in Sections 3.1 and 3.3. It should be
noted that the definition of non-equilibrium strength in
the following results may not be the same. However they
are all  selected according to the specific  system charac-
teristics,  and  all  describe  the  characteristics  of  the
system  behavior  from  the  corresponding  perspective.
Morphological feature analysis refers to the morphological
analysis method based on Minkowski measure [61]. In a

-dimensional  space,  a  set  of  convex  sets  satisfying
motion  invariance  and  additivity  can  be  completely
described  by  Minkowski  measures.  For  the  two-
dimensional case, the three Minkowski measures are the
proportion  of the area of the high-  region, the length
 of  the  boundary  between  the  high-  and  low-

regions,  and  the  Euler  characteristic  coefficient 
describing the degree of connectivity of the regions. Here

 can be any physical quantity, such as density, temper-
ature,  non-equilibrium  quantity,  etc.  Different  methods
and  different  angles  of  the  same  method  constitute  a
more  complete  description  of  the  behavior  of  fluid
systems.

Similarly,  we  first  introduce  the  application  of
unsteady  DBM  and  then  introduce  the  application  of
steady DBM. In terms of physical results, the simulation
results shown below are divided into two categories, one
that  can also  be obtained by NS,  and another  that  NS
cannot provide. The former, such as the evolution char-
acteristics  of  interface  spikes  in  RT  instability  systems
and the deformation process of bubbles during the shock-
bubble  interaction,  will  not  be  introduced  here.  The
latter represents where DBM surpasses NS. These previ-
ously poorly understood discrete effects and non-equilib-
rium behavior characteristics contain a large number of
physical functions to be developed. The physical problems
that DBM is concerned with include, but are not limited
to, hydrodynamic instability, phase separation/non-equi-
librium  phase  change,  bubble/droplet  collision,  fusion
and  fragmentation,  shock  and  detonation,  and  plasma
kinetic theory.

 5.1   Detonation and shock wave

Entropy  production  rate  is  an  important  concern  in
many  fields  related  to  compression  science,  such  as
shock wave and detonation physics, ICF, and aerospace
[105]. By detecting TNE features from different perspec-
tives,  we  can  study  the  main  mechanisms  causing
entropy  production  in  the  system  and  their  relative
importance.  In  detonation  problems  involving  chemical
reactions,  the  entropy  production  rate  contributes  in
three  ways:  chemical  reactions,  NOMF, and NOEF.  As
shown in Fig. 31, the entropy production rate for detonation

∆S3

∆S1 ∆S2

problems  involving  chemical  reactions  is  investigated
[90]. The results show that the entropy production rate
( )  caused  by  the  chemical  reaction  is  much  larger
than the other two (  and ).

In many cases, the initial shock waveform is not flat.
In the case where the initial waveform can be approximated
as a plane plus disturbance, such shock waves are often
referred  to  as  disturbance  shock  waves  for  convenience
of  description.  In  general,  the  waveform  of  such  a
disturbed shock gradually returns to a plane as it propa-
gates through the material. Such a process often referred
to as shock shaping. The RMI caused by the interaction
between  a  plane  shock  wave  and  a  disturbed  interface
has  been  extensively  studied.  In  recent  years,  more
attention has been paid to the RMI caused by interaction
between  a  disturbed  shock  wave  and  plane  interface
[106–108].  At  present,  all  the  studies  on  shock  shaping
and RMI induced by the interaction between disturbed
shock  wave  and  plane  interface  in  the  literature  are
based on traditional fluid modeling. Shan et al. [109] are
using DBM modeling and analysis method to investigate
the  kinetic  behaviors,  particularly  those  ignored  by
traditional fluid modeling.

 5.2   Shock–bubble interaction

|∆σ∗
2 |

|∆σ∗
3,1|

Below, we present examples from Refs. [103] and [110] to
illustrate  the  specific  applications  of  TNE  quantities.
These  two  works  introduce  a  non-equilibrium  intensity
vector to study the non-equilibrium effect and behavior
of the SBI process from multiple perspectives. Figure 32
shows the contour for two typical non-equilibrium quan-
tities  of  two  different  fluid  components  during  the  SBI
process  [110].  In  this  figure,  the  first  two  rows  are  the
spatial distribution of , and the last two rows corre-
spond to the spatial distribution of . The odd rows
are the distribution of component A and the even rows
are  the  distribution of  component  B.  Different  columns
in  the  figure  correspond  to  different  typical  moments.
The location and characteristics of shock waves (incident

 
Fig. 31  Comparison  of  three  entropy  production  rates  in
fluid systems of detonation problems with chemical reactions.
Reproduced with permission from Ref. [90].
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shock wave, transmitted shock wave, etc.) and rarefaction
wave are clearly captured by the non-equilibrium quan-
tity. Their spatial distribution is highly related to interfaces
with strong macroscopic gradients,  so they can be used
to  identify  interface  features.  At  the  same  time,  these
non-equilibrium quantities also have rich physical conno-
tations in phase space. The positive and negative values
of non-equilibrium quantity represent the direction that
deviates from the equilibrium state,  and the magnitude
of  a  non-equilibrium  quantity  indicates  the  extent  of
deviation  from  equilibrium.  The  non-equilibrium
strength  of  the  flow  field  is  analyzed  from  another
perspective. Figure  33 shows  the  spatial  profile  of  the
average  non-equilibrium  strength  along  the  direction
obtained by summing and averaging the non-equilibrium
quantity along the  direction. Figure 33 also shows the
viscous effects on the two types of average non-equilibrium
strengths. It can be seen that the spatial profile of these
non-equilibrium quantities shows interesting symmetries,
in  which  the  rich  and  complex  non-equilibrium  effects
and  mechanisms  are  far  from  being  fully  understood.
Taking  as  an  example,  the  profiles  of  is
symmetry  about  the  line ,  indicating  that  the

∆
A∗
2,xy

∆
A∗
2,xx ∆

A∗
2,yy

∆
A∗
2,αβ = 0

t1

upper  and  lower  parts  of  the  flow  field  deviate  from
equilibrium  in  the  same  way.  From  the  perspective  of

, the profile is symmetric about the origin, suggesting
that the upper and lower portions of the flow field deviate
from equilibrium in opposite directions but with consistent
magnitudes.  The  profiles  of  and  are  both
symmetric  about  the  line ,  indicating  that
when  looking  at  the  non-equilibrium  strength  of  the
fluid  field  from  these  two  different  perspectives,  yields
results  with  consistent  magnitudes  but  opposite  direc-
tions.  In  other  words,  looking  at  the  non-equilibrium
strength  of  the  system  from  different  perspectives,  the
result  may  be  the  same  or  opposite. Figure  33 only
displays  results  for  a  particular  time step,  while  results
for other time steps are equally important. It is because
the  non-equilibrium characteristics  of  the  flow  field  are
very  complex  and  far  from  being  fully  understood,  so
multi-level  and  multi-perspective  research  is  needed.
Understanding  the  time  evolution  of  non-equilibrium
quantities is helpful in understanding the kinetics of SBI
processes. Figure  34 shows  the  global  TNE strength  of
the  two  fluid  components,  where  corresponds  to  the

 
|∆σ∗

2 | |∆σ∗
3,1|Fig. 32  Contours of the two typical TNE quantities  and  at three different moments. Reproduced with permission

from Ref. [110].
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moment  when  the  incident  shock  wave  just  sweeps  the
bubble,  and  is  the  moment  when  the  incident  shock
wave exits the flow field, and these two moments correspond
to  the  extremum  of  the  global  TNE  strength  curve.

t2After ,  it  can  be  seen  that  the  global  TNE  strength
curve is oscillatory, which is attributed to the influence
of  reflected  shock  waves.  Hence,  global  TNE  strength
can  provide  a  comprehensive  reflection  of  certain  flow
field  characteristics,  serving  as  another  perspective  for
understanding  system  properties.  Different  perspectives
and different levels of description constitute a relatively
complete understanding of the fluid system.

 5.3   Phase transition and phase separation

D

L

lgR D
∗
2

It  is  found  that  in  the  case  of  non-equilibrium  phase
transition and phase separation, as shown in Fig. 35, the
TNE strength  gradually increases in the first stage of
phase separation (Spin Decomposition stage, SD stage),
and  gradually  decreases  in  the  second  stage  (Domain
Growth stage, DG stage). Therefore, its maximum point
can be used as the first  physical  criterion to divide the
two  stages  [111].  Similar  characteristics  exist  in  the
evolution of  morphological  characteristic  quantity ,  so
it can also serve as a physical criterion to divide the two
stages. Figure 36 shows the evolution of logarithm of the
characteristic  length ,  non-equilibrium  strength ,

 
yFig. 33  Profiles of average TNE strength along the  direction. Reproduced with permission from Ref. [110].

 
Fig. 34  Evolution  curves  of  the  quantity  of  global  TNE
strength. Reproduced with permission from Ref. [110].
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boundary  length  and  entropy  production  rate 
during  phase  transition.  The  changing  trends  of  these
quantities  can be  used to  identify  the  two stages  [112].
Specifically, the entropy production rate  gradually
increases  in  the  first  phase  of  phase  separation  (SD
stage), and gradually decreases in the second phase (DG
stage), so its maximum point can be used as the second
physical criterion to divide the two stages.

 5.4   Phase transition and bubble coalescence
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During the non-equilibrium phase transition and bubble
coalescence,  the  characteristics  of  each  component  of
average  stress  exhibit  distinct  stages  [113].  Therefore,
the  quantity  of  inside  the  bubble  can  be  used  to
calibrate  the  bubble  merging  features  and  divide  the
merging  stages.  As  shown  in Fig.  37,  the  evolution  of

 shows  two  characteristic  instants:  the  moment
 when the mean coalescence speed  gets the maxi-

D
∗

a

dL/dt

mum (at this time the ratio of minor and major axes is
about 0.5) and the moment when the ratio of minor and
major axes becomes 1 for the first time. These two char-
acteristic instants divide the process of bubble coalescence
into three stages. As also shown in Fig. 38, the average
TNE  strength ,  coalescence  acceleration  and  the
slope  of  boundary  length  are  highly  correlated  in
the early stage, and their amplitudes reach their maximum
values almost simultaneously. Therefore, their maximum
point  can  be  regarded  as  the  end  of  the  first  stage  of
bubble coalescence and the beginning of the second stage.
In another work, Ref. [114], it is shown that the temporal
evolutions  of  the  total  TNE  strength  and  the  total
entropy production rate can both provide physical criteria
to distinguish the stages of droplet coalescence.

 
L

D

Fig. 35  Evolution  curves  of  boundary  length  and  non-
equilibrium  strength  in  non-isothermal  phase  separation
process. Reproduced with permission from Ref. [111].

 
Fig. 36  Evolution curves of several characteristic quantities
in the phase separation process. Reproduced with permission
from Ref. [112].
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Fig. 37  Evolution curves of average coalescence velocity 
and . Reproduced with permission from Ref. [113].
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Fig. 38  Evolution curves of the average strength , average
coalescence  velocity ,  the  slope  of  boundary  length ,
and . Reproduced with permission from Ref. [113].
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 5.5   Droplet collision
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In  droplet  collision  kinetics,  the  characteristic  of  the
average  non-organized  momentum  flow  (NOMF)
strength  ( )  can  be  used  to  distinguish  the  type  of
droplet  collision  and  divide  the  collision  stage  [36].  As
shown in Fig. 39, in the collision–fusion case, in the late
period  of  collision  (after  point  D  in  the  figure), 
rapidly decreases and then oscillates towards to a steady
state. However, in collision–separation case,  continues
to exhibit significant oscillations during the descent.

 5.6   RTI and anti-RTI: Effects of intermolecular
potential and high compressibility

dL/dt
dṠNOMF/dt

L

L

In the study of RTI with consideration of intermolecular
potential  effects,  the  surface  tension  has  a  stage-wise
impact on perturbation amplitudes, bubble velocity, and
two entropy generation rates [115]. The interface tension
inhibits the evolution of RTI during the bubble accelera-
tion  stage.  In  the  stage  of  bubble  asymptotic  velocity,
the interface tension first promotes and then inhibits the
evolution of  RTI.  In addition,  as  shown in Fig.  40,  the
first  maximum point  of  (green  line  in  the  figure)
and  the  first  maximum  point  of  induced  by
NOMF (purple  line  in  the  figure)  can  both  be  used  as
physical  criteria  for  the  bubble  velocity  entering  the
asymptotic  stage in RTI.  Interface  length  is  also  one
of  the  perspectives  for  the  study/characterization  of
TNE  behavior,  and  the  exponential  growth  stage  of 
corresponds to the bubble acceleration stage.

RTI  under  constant  acceleration  has  been  studied

extensively and a relatively mature physical understanding
has  been  obtained,  but  the  acceleration  of  the  RTI
occurring in ICF is variable. The research on RTI under
variable  acceleration  is  relatively  few,  and  the  physical
understanding is insufficient. The reverse of acceleration
will  cause  the  anti-RTI  mechanism  and  behavior,  and
Jia et al. [116] are conducting research on this issue. It
has been shown that the magnitude of acceleration and
the time of acceleration reversal have significant influences

 
D

∗
2 D

∗
3Fig. 39  Evolution curves of two TNE quantities (  and ) during the droplet collisions, where (a) represents the two

droplets are fused together after the head-on collision, (b) indicates the two droplets are separated after collision. Reproduced
with permission from Ref. [36].
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Fig. 40  Evolution  curves  of  change  rate  of  entropy
production  rate ,  change  rate  of  boundary  length

, and bubble velocity . Reproduced with permission
from Ref. [115].
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on  the  evolution  of  RTI,  such  as  the  location  of  the
interface,  the  location  and  development  trend  of  the
spike  bubble,  the  evolution  of  local  and  global  TNE
characteristics  and  effects.  In  the  strongly  compressible
case,  some  new  behaviors  and  mechanisms  may  also
emerge in the evolution of the RTI system. For example,
the  density  of  the  fluid  from  the  upper  layer  which  is
originally  higher  may  become  lower  dense  than  that  of
the  surrounding  originally  lighter  fluid,  resulting  in  the
exchange of identities of the light and heavy fluids, leading
to anti-RTI mechanism and behavior. The emergence of
these  new  mechanisms  and  behaviors  invalidate  earlier
methods  of  determining  the  source  of  matter  particles
based on density. Therefore, Chen et al. [117] introduced
tracer  particles  into  the  DBM model  of  van  der  Waals
fluids  to  study  the  influence  of  flow  compressibility  on
the  evolution  of  single-mode  RTI  systems  of  van  der
Waals  fluids  from  the  perspective  of  statistical  physics
combined with morphological analysis.

 5.7   KHI and coupled RT-KHI system

In  order  to  solve  the  problem  of  analyzing  various
complex physical  fields  during the evolution of  KHI,  in
the  literature  [24],  Gan et  al. combined  tracking  non-
equilibrium  behavior  characteristics  and  morphological
analysis  techniques  to  carry  out  physical  identification
and  tracking  technology  design  of  feature  structures  or
patterns,  and quantitatively characterize the width and
development  rate  of  KHI  mixed  layer.  It  is  found  that
the  width  of  the  mixed  layer,  the  non-equilibrium
strength and the length of the interface boundary show
a  high  spatiotemporal  correlation.  The  viscosity,  which
is highly correlated with the NOMF, inhibits the devel-
opment  rate  of  KHI,  prolongates  the  duration  of  linear
phase, reduces the maximum disturbance kinetic energy,
improves  the  overall  and  local  thermal  non-equilibrium
strength, and expands the range of non-equilibrium. The
thermal conduction effect,  generally consistent with the
viscous  effect,  inhibits  the  growth  of  structures  with
small  wavelengths  during  the  evolution  of  KHI,  thus
making it easier for the system to form large-scale struc-

tures. Different from the consistent inhibition of viscosity
on KHI, the thermal conduction effect is first suppressed
and then increased in phases when the heat conduction
is  strong.  The  inhibition  is  due  to  the  heat  conduction
extending the interface width, reducing the macroscopic
quantity gradient and the non-equilibrium driving force
strength, and the enhancement is due to the broadened
density  transition  layer  making  the  KHI  more  easily
absorb energy from the fluid on both sides, thus enhancing
the KHI. The competition of these two effects accompanied
the whole process of KHI evolution, the inhibitory effect
is  dominant  in  the  early  stage,  and  the  enhancement
effect is dominant in the late stage.

L

L

D3,1

In  the  coupled  RT-KHI  system,  the  TNE  quantities
can  serve  as  criteria  for  identifying  the  transition  of
dominant instability mechanisms [17, 118]. As shown in
Fig.  41,  in  the case  where KHI dominates  at  an earlier
time and the RTI dominates at a later time (corresponding
to  shear  dominance  and  buoyancy  dominance,  respec-
tively), the boundary length  and NOEF strength show
similar  linear  growth  stages.  The  end  of  the  linear
growth stage of boundary length  and NOEF strength

 can be used as a physical criterion for the transition
from KHI dominance to RTI dominance [118].

 5.8   Shock wave/boundary layer interaction

There exist complex shock wave/boundary layer interac-
tion phenomena in supersonic flow. The main sources of
aerodynamic drag in scramjet engines are “friction drag”
caused  by  boundary  layer  and  “wave  drag” caused  by
shock  wave,  both  of  which  are  directly  related  to
entropy increase, so entropy increase is the key parameter
to  evaluate  the  aerodynamic  drag.  Song et  al. [105]
recently  investigated  this  problem  using  the  DBM
modeling  and  analysis  method.  Their  results  show that
for  regular  reflection,  the  non-equilibrium  intensity  of
the  reflected  shock  wave  is  stronger  than  that  of  the
incident shock wave. For shock wave/laminar boundary
layer  interaction,  entropy  production  rate  caused  by
viscosity  is  dominant  in  shock  wave,  and  entropy
production rate caused by heat conduction is  dominant

 
L D3,1Fig. 41  Evolution curves of boundary length  and strength of NOEF  in coupled RT-KHI system. These two figures

correspond to the cases with different initial shear velocity. Reproduced with permission from Ref. [118].
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in  boundary  layer.  The  intensity  of  the  two  entropy
production  rates  increases  with  the  increase  of  Mach
number.  The  research  results  can  provide  theoretical
guidance for evaluating the flow quality in the inlet.

 5.9   Plasma shock wave
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In plasma research, TNE characteristics can be used to
physically  distinguish  plasma shock  waves  from neutral
fluid  shock  waves.  This  distinction  can  help  in  the
design of tracking techniques for the respective interfaces
[119]. Figure 42 shows profiles of TNE quantity near the
shock  front  in  plasma  shock  wave  under  different  Ma
numbers.  The left four figures are for  and the right
four figures are for .  In a neutral  fluid shock wave,
the TNE quantities  and  exhibit symmetry with
their  and  components  deviating  from equilibrium
in opposite  directions  (results  for  neutral  fluids  are  not
shown  here).  For  plasma  shock  waves,  the  profiles  of
non-equilibrium quantity  behave the same as that of
neutral  fluid.  However,  the  profile  of  does  not
exhibit the symmetric deviation. Thus, these differences
can  be  used  to  distinguish  plasma  shock  waves  from
neutral fluid shock waves.

 5.10   Plasma Orszag–Tang vortex

t = 3

Through a DBM for plasma system, the kinetic behaviors
of the Orszag–Tang vortex problem are investigated for
the  first  time  [43]. Figure  43(a)  shows  the  contour  of
total TNE strength at . It is observed that the total
TNE strength is mainly distributed near the shock front.
Figure  43(b)  shows  the  evolution  of  four  kinds  of
entropy  production  rates  with  time.  In  general,  the

t = 1.7

t = 1.7

entropy  production  rate  is  related  to  the  difficulty  of
compression.  From Fig.  43(b),  it  is  found  that  the
compression difficulty is divided into two stages. Before

,  the  entropy  production  rate  and  compression
difficulty  increase  with  time.  After ,  the  entropy
production rate and compression difficulty decrease with
time.

 5.11   Plasma RMI

The influence of magnetic field on KHI has been extensively
studied  since  the  1960s,  where  transport  characteristics
such  as  viscosity  and  heat  conduction  are  the  focus  of
attention. The physical  models used in previous studies
are  mainly  macroscopic  magnetohydrodynamic  (MHD)
models  based  on  the  continuum  assumption.  However,
the MHD is valid only when the time- and length-scales
of  particle  collisions  are  sufficiently  small  compared  to

 
∆∗

2 ∆∗
4,2Fig. 42  Profiles of  and  of plasma shock wave with different Ma numbers. Reproduced with permission from Ref.

[119].

 

t = 3

Fig. 43  TNE  effects  of  Orszag–Tang  vortex  problem.
(a) Contour of total TNE strength at . (b) Evolution of
four kinds of entropy production rates with time. Reproduced
with permission from Ref. [43].
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those  of  the  system  behaviors  under  consideration.
Rinderknecht et  al. [40]  pointed  out  that  the  kinetic
behaviors  occurring  on  the  time-  and  length-scales  of
particle  collisions  may  cause  the  hydrodynamic  results
to deviate from the experimental results. Song et al. [43]
studied RMI kinetics using DBM modeling and analysis
method.  As  a  preliminary  study,  only  the  case  of  first
order  discrete/TNE effect  is  considered in this  work.  A
few typical results are as follows: (i) As shown in Fig. 44,
before  the  RMI  interface  inversion,  the  magnetic  field
indirectly enhances the TNE strength  by inhibiting
the interface development. After the interface inversion,
the TNE strength  is significantly reduced. The mini-
mum value  of  the  global  average  TNE strength  can be
used  as  a  physical  criterion  to  determine  the  critical
magnetic  field  strength  under  which  the  RMI  interface
amplitude  could  be  reduced  to  0.  (ii)  As  shown  in
Figs.  45 and 46,  the  magnetic  field  has  little  effect  on
the  entropy production  rate  contributed  by the  NOMF

, but has a strong inhibition effect on the entropy
production  rate  contributed  by  the  NOEF .  The
minimum value of  can be used as a physical criterion
to  determine  the  critical  magnetic  field  strength  under
which the RMI interface amplitude could be reduced to
0.

 5.12   Plasma KHI

χ̄p

Song et al. [120] introduced tracer particles into DBM to
study  the  influence  of  magnetic  field  on  the  transport
and mixing characteristics of plasma KHI, as well as the
influence of magnetic field on various kinetic behaviors.
Preliminary  results  are  as  follows:  (i)  For  the  cases  of
weak  magnetic  fields,  the  magnetic  field  could  inhibit
the development of KHI at an early stage, but will lead
to  the  formation  of  small-scale  vortex  structure  and
cause  the  KHI  to  enter  the  mixing  stage  earlier.  The
degree  of  mixing  decreases  in  the  early  stage  but
increases  in  the later  stage.  (ii)  For the cases  of  strong
magnetic fields, the development of KHI is significantly
inhibited, and the mixing degree is greatly reduced. (iii)
With  the  increase  of  Knudsen  number,  the  TNE
strength, entropy production rate and mixing degree all
decrease.

The  following  two  subsections  continue  to  introduce
the  application  of  TNE  effects  in  probing  complex
systems.  Just  as  a  fingerprint  is  a  person’s  identity.
TNE  feature  is  the  identity  feature  of  a  system  or
behavior. The techniques described below can be used to
study  various  complex  flows,  not  just  the  types  listed
above.

 5.13   Recovery of actual distribution function
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The  TNE  feature  of  a  flow  state  is  its  identity.  The
kinetic  theory  uses  the  distribution  function  to
describe the system state, while the discrete distribution
function  itself does not have a clear physical meaning
in  LBM  and  unsteady  DBM.  Specifically,  is  by  no
means  the  actual  distribution  function  of  velocity .
What  physically  meaningful  are  the  kinetic  moments,
such as  and . The equilibrium
distribution  function  can  be  obtained  from  the
density ,  velocity  and  temperature .  Therefore,
DBM can use  and  to recover the main features of
the  actual  distribution  function  of  the  target  region
[121, 122]. Figure  47 shows  the  two-dimensional

 

t = 0

Fig. 44  Evolution  of  global  average  TNE  effects  with
different  initial  applied  magnetic  fields  from  to  500.
Reproduced with permission from Ref. [43].

 
t = 0Fig. 45  Evolution  of  entropy  production  rates  from 

to 500 with magnetic fields ranging from 0.01 to 0.05. Repro-
duced with permission from Ref. [43].

 
t = 0Fig. 46  Evolution  of  entropy  production  rates  from 

to 500 with magnetic fields ranging from 0.10 to 0.30. Repro-
duced with permission from Ref. [43].
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vr vθ

contours  of  the  actual  distribution  function  in  velocity
space ( , ) at the rarefaction wave, the material interface
and  the  shock  front,  respectively,  and Fig.  48 displays
the  three-dimensional  contours  of  actual  distribution
function  at  the  corresponding  positions.  It  can  be  seen
that  the  distribution  functions  of  different  interfaces
show different morphological appearances. DBM simula-
tions and theoretical  derivations allow for the represen-
tation of the morphological features of the real distribution
functions. In literatures [122–124], an alternative method
for  recovering  the  main  characteristics  of  the  velocity
distribution  quantitatively  is  presented  and  developed
through the macroscopic quantities and their spatial and
temporal derivatives.

 5.14   Identification of various interfaces

There  generally  more  than  one  kinds  of  interfaces  in
complex  flows.  The  TNE  feature  of  an  interface  is  its
identity. By analyzing the TNE effect, the finer physical
structure of the interface can be obtained, which can be
used for the design of physical identification and tracking
technology  of  different  interfaces  in  the  system.
Figure  49 shows  the  characteristics  of  non-equilibrium
quantities at the rarefaction wave, the material interface,

∆∗
(3,1)y

and  the  shock  front  when  the  shock  wave  propagates
from  the  heavy  fluid  to  the  light  fluid.  These  distinct
characteristics  of  these  quantities  can  be  used  to
discriminate different types of interfaces [121]. Figure 50
shows  the  contour  of  TNE quantity  at  the  interface  of
the RTI system [125]. It is evident that TNE quantity is
highly correlated with the macroscopic quantity gradient
at the interface. Therefore, the distribution of TNE can
well  represent  the  characteristics  of  the  interface  and
then  can  be  used  to  identify  the  interface.  As Fig.  51
shows,  the  evolution  of  interface  amplitude  captured
with the  matches the interface captured with the
average temperature [126].

 6   Summary and prospect

The research content presented in this article is primarily
motivated by two sets of scientific problems. These two
sets  of  scientific  problems  can  also  be  said  to  be  “two
dark clouds” faced in this  cross-over  field  at  that  time.
Each dark cloud is composed of a set of scientific prob-
lems.  The  first  set  of  scientific  questions  are  related  to
the LBM method: what exactly can LBM do as a system
of method other than restore known governing equations

 
vr vθFig. 47  The sketch of the two-dimensional contours of actual distribution function in velocity space ( , ) at rarefaction

front, material interface, and shock front, respectively. Reproduced with permission from Ref. [121].

 
vr vθFig. 48  The  three-dimensional  contour  graph  of  the  actual  distribution  function  in  velocity  space  ( , )  at  rarefaction

front, material interfaces, and shock fronts, respectively. Reproduced with permission from Ref. [121].
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(or as a revolutionary discrete format for known governing
equations)?  Can  it  be  really  beyond  traditional  fluid
theory? If so, where and how is it beyond? If still not, in
which  way  can  it  be  hopeful  to  be  truly  beyond?  The
second  set  of  scientific  problems,  independent  of  LBM
and originated from the study of complex medium kinet-
ics,  correspond  to  the  set  mentioned  in  Section  2.1.
Thinking  about  the  first  set  of  scientific  problems
becomes  one  of  the  methodological  backgrounds  and
basis for the authors to seek solutions to the second set
of scientific problems.

Compared to macroscopic (large-scale and slow-chang-
ing)  behavior,  the  description  of  mesoscale  behavior
requires more physical quantities. The typical character-
istics  of  mesoscale  behavior  are  significant  discrete
effects  and  significant  thermodynamic  non-equilibrium
effects.  Therefore,  before  simulation,  the  ability  to
describe  these  discrete  effects  and  non-equilibrium
effects  is  the  basic  requirement  for  selecting/developing
physical models. After simulation, it is the basic require-
ment  of  the  analysis  method  to  construct  appropriate
physical  quantities  to detect  and identify  these discrete
effects and non-equilibrium effects,  and then to give an
intuitive  geometric  image  correspondence.  The  discrete
Boltzmann  method  is  a  physical  model  construction
method  and  complex  physical  field  analysis  method
developed based on the discrete Boltzmann equation for

a  series  of  fundamental  scientific  problems  involved  in
the study of mesoscale behavior. It is the specific application
and  further  development  of  coarse-grained  description
method,  non-equilibrium  behavior  description  method,
and phase space description method in statistical physics
under  the  framework  of  discrete  Boltzmann  equation.
From a historical perspective, DBM was developed from
the  physical  modeling  branch  of  LBM,  undergoing  a
process of taking, abandoning and adding. It aims at the
two major problems of how to model and how to analyze
in numerical experimental research. It no longer relies on
the continuity assumption and near equilibrium approxi-
mation  of  traditional  fluid  modeling,  and  it  abandons
the “lattice gas” images of standard LBM. It adds detec-
tion,  presentation,  description,  and  analysis  solutions
based on phase space for discrete/TNE states and effects.
Over  time  and  according  to  the  research  needs,  more
information extraction techniques and complex physical
field analysis schemes will be introduced.

f (0)

Although  the  flow  behavior  targeted  is  complex,  the
DBM  approach  is  inherently  simple.  As  far  as  the
modeling  method  is  concerned,  it  only  needs  to  check
the kinetic moments of  involved in the more accurate
constitutive  relationships  according  to  the  orders  of
tensors,  and  determine  them  as  the  kinetic  moments
that  needs  to  preserve  value,  instead  of  deriving
extremely  complex  extended  hydrodynamic  equations

 
Fig. 49  Profiles of four types of TNE quantities. Each column of the figure represent different TNE quantities, and each
row indicate the case with various positions. Reproduced with permission from Ref. [121].
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like the KMM approach. As far as the analysis methods
are  concerned,  they  are  simply  a  concrete  application

and  development  of  the  basic  principles  of  statistical
physics.  They  have  clear  physical  images,  are  easy  to

 
Fig. 50  Contours of various TNE quantities at a typical moment during the RTI evolution. Reproduced with permission
from Ref. [125].

FRONTIERS OF PHYSICS TOPICAL REVIEW

42500-40   Aiguo Xu, et al., Front. Phys. 19(4), 42500 (2024)

 



understand and convenient to use. The model equations
of  DBM  include  the  system  behavior  evolution
equation(s)  and  discrete  velocity  constraint  equations,
where  the  evolution  equations,  in  addition  to  discrete
Boltzmann equation, depending on the specific situation,
may also include phase field evolution equation, chemical
reaction evolution equation, electromagnetic field evolution
equation, etc. With the model equations, if further with
the  concrete  discrete  scheme,  numerical  simulation  can
be  carried  out.  With  the  model  equations,  if  without
specific  discrete  format,  the  Chapman–Enskog  multi-
scale  analysis  and  subsequent  analytical  studies  can  be
performed.

The  “mesoscopic” characteristics  of  DBM  can  be
summarized as follows: (i) In terms of scale, it connects
micro and macro scales. (ii) In terms of functionality, it
is beyond the NS but is weaker than molecular dynamics
in  describing  the  discrete  behavior  and  non-equilibrium
behavior. It should be pointed out that, compared with
traditional  fluid  modeling,  what  the  kinetic  modeling
brings  are  the  improvement  of  understanding  level,  the
broadening of  application range,  and the supplement of
technology, but not a replacement. For the cases where
the conventional  fluid modeling is  convenient,  effective,
and adequate, it remains the first choice for most practical
applications.  Because  the  associated  theory,  method,
software  and  so  on  are  more  mature.  The  user’s  own
convenience  is  also  an  important  factor  in  decision-
making process.

The  mesoscale  behaviors  promote  the  emergence  of
new  technologies.  The  studies  on  mesoscale  behavior
have  made  gratifying  progress,  but  there  is  still  a  long
way  to  go.  Fortunately,  experimental  studies  on  non-
equilibrium  flow  are  attracting  increasing  attention
[127–134].  Due  to  various  limitations  of  measurements
for  non-equilibrium  effects,  progress  in  experimental
study  has  been  relatively  slower.  This  is  precisely  why
numerical  simulation  studies  have  surged  ahead  of

experiments,  and  it  is  also  why  numerical  simulation
should be accorded priority in many studies of non-equi-
librium flow. Some practical applications of discrete/non-
equilibrium effects  have first  been realized in numerical
experimental studies. There will be more of these discov-
eries  and  applications  over  time.  Numerical  research
provides  cognitive  basis  for  experimental  research  and
engineering applications, which is the value of numerical
simulation.

In  addition  to  the  relative  discreteness  caused  by
rarefaction  or  small  structure  and  the  fast  flow  in  the
case  of  no  reaction  or  slow  reaction,  both  the  real  gas
effect  at  high  temperature  and  fast  chemical  reaction
can also cause the thermodynamic non-equilibrium flow.
In  addition  to  the  further  study  of  discrete  and  non-
equilibrium  effects,  DBM  modeling  in  the  latter  two
cases  and  related  non-equilibrium regulation  techniques
are  meaningful  research  directions  that  need  to  be
explored in the near future.

Astrophysics is one of the important application fields
of fluid mechanics. Since many of the extreme conditions,
behaviors,  or  physical  images  of  high  energy  density
physics techniques like ICF can be found in astrophysics,
in  addition  to  pure  astrophysicists,  scientists  in  fields
related to  high energy density  physics  techniques  (such
as  ICF-related  scientists)  are  often  interested  in  astro-
physics related research. Using fluid mechanics to model
astrophysical  processes  has  many  specific  applications,
such  as  the  evolution  of  stars,  planets,  accretion  disks,
and galaxies. Star behaviors are divided into atmospheric
and  internal  convection  regions,  and  accretion  disk
behaviors  are divided into protostellar  disks,  black hole
disks,  binary  disks,  and  so  on.  At  present,  the  fluid
mechanics simulations in astrophysics are mainly the NS
simulation,  Smoothed  Particle  Hydrodynamics  (SPH)
simulation  and  Particle  In  Cell  (PIC)  simulation.  SPH
and  PIC  simulations  have  a  certain  degree  of  kinetics
simulation  characteristics,  but  mainly  focus  on  physics
images of NS. The NS continuous description corresponds
to the fact that we are far enough away from that celestial
structure  so  that  the  field  of  view is  large  enough,  and
consequently the distance between the stars is negligible
relative  to  the  scale  of  our  field  of  view.  As  our  space-
craft’s observing instruments get closer and the scale of
the  field  of  view  decreases,  we  will  gradually  observe
larger and larger gaps and more inhomogeneity between
the  stars  including  different  sizes  of  the  stars,  different
translational and rotational speeds, etc. The existence of
gravitation,  etc.,  makes  these  asymmetries  often  imply
non-equilibrium. Discreteness and non-equilibrium begin
to be observed, which is the benefit of improved observation
accuracy.  The  gradual  approach  of  our  spacecraft’s
observing instruments corresponds to a gradual increase
in the Knudsen number, because the scale corresponding
to  our  observing  field  of  view  is  gradually  decreasing.

 
Fig. 51  Evolution  curve  of  interface  amplitude  obtained
from  two  kinds  of  tracking  techniques.  Reproduced  with
permission from Ref. [126].
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DBM simulations  can show changes  in  the  view as  our
spacecraft’s observing instruments get closer. Of course,
it  is  presented in  the  form of  statistical  features  to  the
extent that DBM theory is valid.

Dust  gas  kinetics  and  granular  flow  kinetics  have
important  engineering  application  background  and
prospect.  “Particles” in  dust  gases  and  granular  flows
are “macroscopic” particles made up of a large number
of  molecules.  Collisions  between  such  particles  are  not
elastic, but dissipative. Therefore, dust gas kinetics and
granular flow kinetics are more complex than the usual
complex fluids.  The study of  this  kind of  complex fluid
system is also divided into macroscopic, mesoscopic and
microscopic  levels,  facing  the  meso-scale  dilemma  of
“insufficient physical function of traditional fluid modeling
and  impossibility  of  molecular  dynamics  simulation  in
terms  of  scale”.  As  long  as  the  generalized  BGK-like
Boltzmann equation including particle collision dissipation
effect can be obtained, the DBM modeling and analysis
method introduced in this review can be generalized and
applied.  The  theory  of  dust  kinetics  and  granular  flow
kinetics, although more complex and beyond the discussion
scope  of  the  current  review,  has  a  history  of  nearly  30
years. Interested readers are referred to more specialized
literature. Everything flows. As long as traditional fluid
mechanics has applications, there will be kinetic behaviors
that  traditional  fluid  mechanics  fails  to  well  describe,
and  DBM  can  find  a  reasonable  application.  Although
the former can also be studied using the long-established
NS  simulation,  DBM  can  achieve  a  certain  degree  of
cross-scale  simulation  under  the  same  framework,
thereby avoiding the problems that arise when different
scale methods are interfaced.

The previous sections of this article do not cover the
discussion  of  specific  discrete  format,  because  that  is
another field. Finally, just present a brief comment from
the perspective of application. Any form of discretization
of  an  originally  continuous  space  will  inevitably  bring
about  symmetry  breaking.  In  numerical  simulation,
symmetry  breakings  from  different  dimensions  are
coupled together to make effects. In the study of specific
discrete  format,  not  only  the  numerical  accuracy  but
also  the  numerical  stability  should  be  guaranteed.  In
many practical  applications,  numerical  stability is  more
important  than  numerical  accuracy.  The  numerical
stability  depends  not  only  on  the  discrete  scheme,  but
also on the specific flow behavior. Because the traditional
fluid modeling works in time–position space, the specific
discrete  format  of  time–position  space  has  been  deeply
and systematically studied in the traditional computational
fluid  dynamics.  With the  emergence  of  kinetic  methods
using  discrete  particle  velocities  such  as  lattice  gas
method,  LBM  and  DBM,  the  study  of  stable  discrete
format  in  time-position-velocity  space  has  become  an
urgent  research  topic  in  computational  mathematics.
For  more  details  on  discrete  format  study,  please  refer
to the more specialized literature.
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Appendix A: Rationality, accuracy, and
efficiency of DBM results

The accuracy of the simulation results depends on both
the accuracy of the physical model and the accuracy of
the  numerical  algorithm.  Problems  in  physical  model
cannot be solved by improving the accuracy of numerical
algorithm.  Given  the  authors’ background  in  physics,
the  accuracy  discussed  herein  is  predominantly  focuses
on the accuracy of the physical  model.  The comparison
of results presented in this paper primarily evaluates the
reasonableness  of  the  physical  model,  rather  than  the
accuracy  of  the  numerical  algorithm.  Physically  real
results  are  stable  and  invariable  within  the  range  of
numerical error for any reasonable numerical algorithm.

The  comparison  of  computation  cost  needs  to  be
based on the premise that both models possess identical
physical  function.  This  paper  focuses  on  the mesoscale
dilemmas  in  which  the  macroscopic  continuous  model
falters, but the molecular dynamics method is unable to
simulate because of the scale problem.

How to test the rationality of such models?
First  of  all,  just  as  the  theory  of  special  relativity,

which  mainly  addresses  macroscopic  high-speed  situa-
tions, needs to be able to smoothly revert to Newtonian
mechanics  theory  in  macroscopic  low-speed  situations,
the  DBM,  which  mainly  focuses  on  the  aforementioned
mesoscale dilemma, needs to smoothly return to traditional
fluid Navier–Stokes theory in near continuous and near
equilibrium situations. This is the first test for DBM.

As  the  degree  of  discreteness/non-equilibrium
increases,  the  theoretical  basis  of  Navier–Stokes  begins
to  be  challenged.  How  can  the  rationality  of  DBM
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results be tested or guaranteed? Given that engineering
applications  generally  use  macroscopic  continuous
modeling,  yet  encounter  some  dissatisfaction,  our  first
consideration is: how can mesoscale modeling be “seam-
less” with macroscopic continuous modeling? Therefore,
the starting point for DBM is the side of the mesoscale
range near the macro. Due to the stage of development,
DBM primarily considers cases where Chapman–Enskog
(CE)  multi-scale  analysis  theory  remains  valid.  So,  CE
multi-scale analysis theory is the effective mathematical
guarantee for this set of ideas and methods.

In  the  absence  of  experimental  or  simulation  result
comparisons,  the  rationality  test  largely  relies  on  theo-
retical analysis. In practical scenarios, a common testing
method  involves  identifying  the  physical  mechanism
behind  characteristic  behaviors  and  examining  whether
these  behaviors  exhibit  self-consistency  from  various
perspectives. The theoretical basis is that any fundamental
flaw will inevitably lead to inconsistencies in some way.

Just  as  in  situations  where  Newtonian  mechanics  is
sufficient,  special  relativity  theory  can  be  used,  but  is
generally  no  longer  the  first  choice  because  it  is  more
complex,  DBM  can  also  be  used  in  situations  where
traditional fluid Navier–Stokes theory is convenient and
sufficient,  but  is  no  longer  necessary.  As  for  the  final
choice, it depends on the user’s own convenience.

The computation cost depends on the chosen discrete
format and algorithm. Different formats and algorithms
can  significantly  alter  the  actual  computational  work-
load.  In  general,  however,  DBM  simulations  might
demand  more  computationally  resources  in  situations
where traditional fluid Navier–Stokes theory suffices due
to its expanded physical capability. Its physical capability
is in between Navier–Stokes and molecular dynamics. In
the cases where all three of them are physically reasonable
and available,  its computational cost is  also in between
them two. In short, the function is “mesoscopic” and the
cost is also “mesoscopic”. That is fair and reasonable.

DBM considers Navier–Stokes as a special  case in its
quasi-continuous  near  equilibrium  situation.  However,
its  primary  target  is  not  to  replace  Navier–Stokes,  but
to  reveal  the  kinetic  behavior  characteristics  missed  by
Navier–Stokes,  provide  more  methods  for  analyzing
complex  physical  fields,  and  explore  the  discrete,  non-
equilibrium  complex  flows  that  Navier–Stokes  is  no
longer accurate and/or effective.

Even  when  traditional  Navier–Stokes  theory  suffices,
DBM’s  complex physical  field  analysis  method can still
be utilized to analyze simulation data. For example, one
can open phase space based on different behavior char-
acteristics to provide an intuitive geometric image corre-
sponding to the set of behavior characteristics, and can
also  construct  non-equilibrium  strength  vector,  each  of
whose  component  representing  a  non-equilibrium
strength  from  a  perspective,  to  multi-channel  cross-
locate the non-equilibrium strength of the complex flow
system.

 Appendix B: Nonlinear constitutive
relations
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For clarity, the first two order constitutive relations (i.e.,
the expressions of  and ) based on the BGK collision
model  and  derived  from  CE  multi-scale  analysis  are
given  below.  The  first  order  expressions  of  and
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where  represents the dynamic viscosity coefficient,
 denotes the heat conduction coefficient, and the scalar

quantity  indicates number of additional degree of free-
dom.  For  convenience,  we  refer  to  the -th  order
term of . When a DBM considers up to the -th order
non-equilibrium  effect  [i.e.,  calculating  up  to 
and  up to ], the retained DBM is termed the -
th order DBM. The following part gives the expressions
of  and ,  with detailed derivation available in
Ref. [79]. The expressions are 
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2
]

+ ρR2[l2 (∂xT )
2 − l1l2 (∂yT )

2
]

−R2T 2

(
l2

∂2

∂x2
ρ− l1l2

∂2

∂y2
ρ

)
+

R2T 2

ρ
[l2(∂xρ)

2 − l1l2(∂yρ)
2]

}
, (B5)
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∆
∗(2)
3,1x = l−1

2 τ2
{
ρR2T 2

(
l−2

∂2

∂x2
ux + l2

∂2

∂y2
ux − 4

∂2

∂x∂y
uy

)
+ ρR2T [(l22 + 4l)∂xux∂xT + l2l6∂yux∂yT

− 2l6∂yuy∂xT + 2l2∂xuy∂yT ]

}
,

(B6)
 

∆
∗(2)
3,1y = l−1

2 τ2
{
ρR2T 2

(
l2

∂2

∂x2
uy + l−2

∂2

∂y2
uy − 4

∂2

∂x∂y
ux

)
+ ρR2T [(l22 + 4l)∂yuy∂yT + l2l6∂xuy∂xT

− 2l6∂xux∂yT + 2l2∂yux∂xT ]

}
,

(B7)

la = l + a ∆
∗(j)
2 ∆

∗(j)
3,1

j > 2

where . The formulations of  and  with
 are  so  complex,  presenting  significant  complexity

in their derivation. This indicates that the KMM modeling
and  simulation  approach  rapidly  becomes  infeasible  as
the degree of discreteness/non-equilibrium increases.

References 

 H. S. Tsien, Superaerodynamics, mechanics of rarefied
gases, J. Aeronaut. Sci. 13(12), 653 (1946)

1.

 W. Thomson, Hydrokinetic solutions and observations,
Lond. Edinb. Dublin Philos. Mag. J. Sci. 42(281), 362
(1871)

2.

 H.  L.  F.  Helmholtz,  On  discontinuous  movements  of
fluids, Monatsberichte  der  Königlichen  Preussische
Akademie der Wissenschaften zu Berlin 36, 337 (1868)

3.

 R. Rayleigh, Investigation of the character of the equi-
librium  of  an  incompressible  heavy  fluid  of  variable
density, Proceedings of the London Mathematical Society
s1‒14, pp 170–177 (1882)

4.

 G.  I.  Taylor, The  instability  of  liquid  surfaces  when
accelerated in a direction perpendicular to their planes
(I), Proc. R. Soc. Lond. A 201(1065), 192 (1950)

5.

 R. D. Richtmyer, Taylor instability in shock acceleration
of  compressible  fluids, Commun.  Pure  Appl.  Math.
13(2), 297 (1960)

6.

 E. E. Meshkov, Instability of the interface of two gases
accelerated  by  a  shock  wave, Fluid  Dyn. 4(5),  101
(1972)

7.

 Y. X. Liu, L. F. Wang, K. G. Zhao, Z. Y. Li, J. F. Wu,
W. H. Ye, and Y. J. Li, Thin-shell effects on nonlinear
bubble  evolution  in  the  ablative  Rayleigh–Taylor
instability, Phys. Rev. Lett. 29(8), 082102 (2022)

8.

 Y. X. Liu, Z. Chen, L. F. Wang, Z. Y. Li, J. F. Wu, W.
H. Ye, and Y. J. Li, Dynamic of shock–bubble interactions
and  nonlinear  evolution  of  ablative  hydrodynamic
instabilities  initialed  by  capsule  interior  isolated
defects, Phys. Plasmas 30(4), 042302 (2023)

9.

 K. Lan, Dream fusion in octahedral spherical hohlraum,
Matter Radiat. Extrem. 7(5), 055701 (2022)

10.

 Y. H. Chen, Z. C. Li, H. Cao, K. Q. Pan, S. W. Li, X.
F. Xie, B. Deng, Q. Q. Wang, Z. R. Cao, L. F. Hou, X.
S. Che, P. Yang, Y. J. Li, X. A. He, T. Xu, Y. G. Liu,

11.

Y.  L.  Li,  X.  M.  Liu,  H.  J.  Zhang,  W.  Zhang,  B.  L.
Jiang, J. Xie, W. Zhou, X. X. Huang, W. Y. Huo, G. L.
Ren, K. Li, X. D. Hang, S. Li, C. L. Zhai, J. Liu, S. Y.
Zou,  Y.  K.  Ding,  and  K.  Lan, Determination  of  laser
entrance hole size for ignition-scale octahedral spherical
hohlraums, Matter  Radiat.  Extrem. 7(6),  065901
(2022)
 K. Lan,  Y.  Dong,  J.  Wu,  Z.  Li,  Y.  Chen,  H.  Cao,  L.
Hao, S. Li, G. Ren, W. Jiang, C. Yin, C. Sun, Z. Chen,
T. Huang, X. Xie, S. Li, W. Miao, X. Hu, Q. Tang, Z.
Song, J. Chen, Y. Xiao, X. Che, B. Deng, Q. Wang, K.
Deng, Z. Cao, X. Peng, X. Liu, X. He, J. Yan, Y. Pu,
S. Tu, Y. Yuan, B. Yu, F. Wang, J. Yang, S. Jiang, L.
Gao, J. Xie, W. Zhang, Y. Liu, Z. Zhang, H. Zhang, Z.
He, K. Du, L. Wang, X. Chen, W. Zhou, X. Huang, H.
Guo,  K.  Zheng,  Q.  Zhu,  W.  Zheng,  W.  Y.  Huo,  X.
Hang,  K.  Li,  C.  Zhai,  H.  Xie,  L.  Li,  J.  Liu,  Y.  Ding,
and W. Zhang, First inertial confinement fusion implosion
experiment  in  octahedral  spherical  Hohlraum, Phys.
Rev. Lett. 127(24), 245001 (2021)

12.

 X. M. Qiao and K. Lan, Novel target designs to mitigate
hydrodynamic instabilities growth in inertial confinement
fusion, Phys. Rev. Lett. 126(18), 185001 (2021)

13.

 Y.  B.  Gan,  A.  G.  Xu,  G.  C.  Zhang,  and  Y.  J.  Li,
Lattice  Boltzmann  study  on  Kelvin–Helmholtz  insta-
bility:  Roles  of  velocity  and  density  gradients, Phys.
Rev. E 83(5), 056704 (2011)

14.

 C. D. Lin, A. G. Xu, G. C. Zhang, K. H. Luo, and Y.
J. Li, Discrete Boltzmann modeling of Rayleigh–Taylor
instability in two-component compressible flows, Phys.
Rev. E 96(5), 053305 (2017)

15.

 F.  Chen,  A.  G.  Xu,  and  G.  C.  Zhang, Collaboration
and competition between Richtmyer–Meshkov instability
and  Rayleigh–Taylor  instability, Phys.  Fluids 30(10),
102105 (2018)

16.

 F. Chen, A. G. Xu, Y. D. Zhang, Y. B. Gan, B. B. Liu,
and  S.  Wang, Effects  of  the  initial  perturbations  on
the  Rayleigh–Taylor–Kelvin–Helmholtz  instability
system, Front. Phys. 17(3), 33505 (2022)

17.

 L. Chen, H. L. Lai, C. D. Lin, and D. M. Li, Specific
heat  ratio  effects  of  compressible  Rayleigh–Taylor
instability  studied  by  discrete  Boltzmann  method,
Front. Phys. 16(5), 52500 (2021)

18.

 G. Zhang, A. G. Xu, D. J. Zhang, Y. J. Li, H. L. Lai,
and  X.  M.  Hu, Delineation  of  the  flow  and  mixing
induced by Rayleigh–Taylor instability through tracers,
Phys. Fluids 33(7), 076105 (2021)

19.

 Y. F. Li, H. L. Lai, C. D. Lin, and D. M. Li, Influence
of  the  tangential  velocity  on  the  compressible
Kelvin–Helmholtz  instability  with  non-equilibrium
effects, Front. Phys. 17(6), 63500 (2022)

20.

 H. Lai, C. Lin, Y. Gan, D. Li, and L. Chen, The influences
of acceleration on compressible Rayleigh–Taylor insta-
bility  with  non-equilibrium  effects, Comput.  Fluids
266(15), 106037 (2023)

21.

 C.  D.  Lin,  K.  H.  Luo,  Y.  B.  Gan,  and  Z.  P.  Liu,
Kinetic simulation of nonequilibrium Kelvin–Helmholtz
instability, Commum. Theor. Phys. 71(1), 132 (2019)

22.

 C. D. Lin, K. H. Luo, A. G. Xu, Y. B. Gan, and H. L.
Lai, Multiple-relaxation-time  discrete  Boltzmann
modeling of multicomponent mixture with non-equilib-

23.

FRONTIERS OF PHYSICS TOPICAL REVIEW

42500-44   Aiguo Xu, et al., Front. Phys. 19(4), 42500 (2024)

 

https://doi.org/10.2514/8.11476
https://doi.org/10.2514/8.11476
https://doi.org/10.2514/8.11476
https://doi.org/10.2514/8.11476
https://doi.org/10.2514/8.11476
https://doi.org/10.1080/14786447108640585
https://doi.org/10.1080/14786447108640585
https://doi.org/10.1080/14786447108640585
https://doi.org/10.1080/14786447108640585
https://doi.org/10.1098/rspa.1950.0052
https://doi.org/10.1098/rspa.1950.0052
https://doi.org/10.1098/rspa.1950.0052
https://doi.org/10.1098/rspa.1950.0052
https://doi.org/10.1098/rspa.1950.0052
https://doi.org/10.1098/rspa.1950.0052
https://doi.org/10.1002/cpa.3160130207
https://doi.org/10.1002/cpa.3160130207
https://doi.org/10.1002/cpa.3160130207
https://doi.org/10.1002/cpa.3160130207
https://doi.org/10.1007/BF01015969
https://doi.org/10.1007/BF01015969
https://doi.org/10.1007/BF01015969
https://doi.org/10.1007/BF01015969
https://doi.org/10.1007/BF01015969
https://doi.org/10.1007/BF01015969
https://doi.org/10.1063/5.0137856
https://doi.org/10.1063/5.0137856
https://doi.org/10.1063/5.0137856
https://doi.org/10.1063/5.0137856
https://doi.org/10.1063/5.0137856
https://doi.org/10.1063/5.0137856
https://doi.org/10.1063/5.0137856
https://doi.org/10.1063/5.0137856
https://doi.org/10.1063/5.0103362
https://doi.org/10.1063/5.0103362
https://doi.org/10.1063/5.0103362
https://doi.org/10.1063/5.0102447
https://doi.org/10.1063/5.0102447
https://doi.org/10.1063/5.0102447
https://doi.org/10.1063/5.0102447
https://doi.org/10.1063/5.0102447
https://doi.org/10.1063/5.0102447
https://doi.org/10.1063/5.0102447
https://doi.org/10.1103/PhysRevLett.127.245001
https://doi.org/10.1103/PhysRevLett.127.245001
https://doi.org/10.1103/PhysRevLett.127.245001
https://doi.org/10.1103/PhysRevLett.127.245001
https://doi.org/10.1103/PhysRevLett.127.245001
https://doi.org/10.1103/PhysRevLett.126.185001
https://doi.org/10.1103/PhysRevLett.126.185001
https://doi.org/10.1103/PhysRevLett.126.185001
https://doi.org/10.1103/PhysRevLett.126.185001
https://doi.org/10.1103/PhysRevLett.126.185001
https://doi.org/10.1103/PhysRevLett.126.185001
https://doi.org/10.1103/PhysRevE.83.056704
https://doi.org/10.1103/PhysRevE.83.056704
https://doi.org/10.1103/PhysRevE.83.056704
https://doi.org/10.1103/PhysRevE.83.056704
https://doi.org/10.1103/PhysRevE.83.056704
https://doi.org/10.1103/PhysRevE.83.056704
https://doi.org/10.1103/PhysRevE.83.056704
https://doi.org/10.1103/PhysRevE.96.053305
https://doi.org/10.1103/PhysRevE.96.053305
https://doi.org/10.1103/PhysRevE.96.053305
https://doi.org/10.1103/PhysRevE.96.053305
https://doi.org/10.1103/PhysRevE.96.053305
https://doi.org/10.1103/PhysRevE.96.053305
https://doi.org/10.1063/1.5049869
https://doi.org/10.1063/1.5049869
https://doi.org/10.1063/1.5049869
https://doi.org/10.1063/1.5049869
https://doi.org/10.1063/1.5049869
https://doi.org/10.1063/1.5049869
https://doi.org/10.1063/1.5049869
https://doi.org/10.1063/1.5049869
https://doi.org/10.1063/1.5049869
https://doi.org/10.1007/s11467-021-1145-y
https://doi.org/10.1007/s11467-021-1145-y
https://doi.org/10.1007/s11467-021-1145-y
https://doi.org/10.1007/s11467-021-1145-y
https://doi.org/10.1007/s11467-021-1145-y
https://doi.org/10.1007/s11467-021-1145-y
https://doi.org/10.1007/s11467-021-1145-y
https://doi.org/10.1007/s11467-021-1145-y
https://doi.org/10.1007/s11467-021-1145-y
https://doi.org/10.1007/s11467-021-1096-3
https://doi.org/10.1007/s11467-021-1096-3
https://doi.org/10.1007/s11467-021-1096-3
https://doi.org/10.1007/s11467-021-1096-3
https://doi.org/10.1007/s11467-021-1096-3
https://doi.org/10.1007/s11467-021-1096-3
https://doi.org/10.1063/5.0051154
https://doi.org/10.1063/5.0051154
https://doi.org/10.1063/5.0051154
https://doi.org/10.1063/5.0051154
https://doi.org/10.1063/5.0051154
https://doi.org/10.1007/s11467-022-1200-3
https://doi.org/10.1007/s11467-022-1200-3
https://doi.org/10.1007/s11467-022-1200-3
https://doi.org/10.1007/s11467-022-1200-3
https://doi.org/10.1007/s11467-022-1200-3
https://doi.org/10.1007/s11467-022-1200-3
https://doi.org/10.1007/s11467-022-1200-3
https://doi.org/10.1007/s11467-022-1200-3
https://doi.org/10.1016/j.compfluid.2023.106037
https://doi.org/10.1016/j.compfluid.2023.106037
https://doi.org/10.1016/j.compfluid.2023.106037
https://doi.org/10.1016/j.compfluid.2023.106037
https://doi.org/10.1016/j.compfluid.2023.106037
https://doi.org/10.1016/j.compfluid.2023.106037
https://doi.org/10.1016/j.compfluid.2023.106037
https://doi.org/10.1088/0253-6102/71/1/132
https://doi.org/10.1088/0253-6102/71/1/132
https://doi.org/10.1088/0253-6102/71/1/132
https://doi.org/10.1088/0253-6102/71/1/132
https://doi.org/10.1088/0253-6102/71/1/132
https://doi.org/10.1088/0253-6102/71/1/132
https://doi.org/10.1103/PhysRevE.103.013305
https://doi.org/10.1103/PhysRevE.103.013305
https://doi.org/10.1103/PhysRevE.103.013305


rium effects, Phys. Rev. E 103(1), 013305 (2021)
 Y. B. Gan, A. G. Xu, G. C. Zhang,  C. D. Lin,  H. L.
Lai, and Z. P. Liu, Nonequilibrium and morphological
characterizations  of  Kelvin–Helmholtz  instability  in
compressible flows, Front. Phys. 14(4), 43602 (2019)

24.

 W. F. Chen and W. W. Zhao, Moment Equations and
Numerical  Methods  for  Rarefied  Gas  Flows,  Beijing:
Science Press, 2017 (in Chinese)

25.

 Z.  H.  Li,  A.  P.  Peng,  H.  X.  Zhang,  and X.  G.  Deng,
Numerical study on the gas-kinetic high-order schemes
for solving Boltzmann model equation, Sci. China Phys.
Mech. Astron. 54(9), 1687 (2011)

26.

 G. Karniadaskis, A. Beskok, and N. Aluru, Microflows
and  Nanoflows:  Fundamentals  and  Simulation,  New
York: Springer-Verlag, 2005

27.

 A. Keerthi, A. K. Geim, A. Janardanan, A. P. Rooney,
A. Esfandiar, S. Hu, S. A. Dar, I. V. Grigorieva, S. J.
Haigh, F. C. Wang, and B. Radha, Ballistic molecular
transport  through  two-dimensional  channels, Nature
558(7710), 420 (2018)

28.

 G.  López  Quesada,  G.  Tatsios,  D.  Valougeorgis,  M.
Rojas-Cárdenas,  L.  Baldas,  C.  Barrot,  and  S.  Colin,
Design  guidelines  for  thermally  driven  micropumps  of
different architectures based on target applications via
kinetic  modeling  and  simulations, Micromachines
(Basel) 10(4), 249 (2019)

29.

 N.  Kavokine,  R.  R.  Netz,  and  L.  Bocquet, Fluids  at
the  nanoscale:  From  continuum  to  subcontinuum
transport, Annu. Rev. Fluid Mech. 53(1), 377 (2021)

30.

 X. Jiang, G. A. Siamas, K. Jagus, and T. G. Karayian-
nis, Physical  modelling  and  advanced  simulations  of
gas–liquid  two-phase  jet  flows  in  atomization  and
sprays, Prog. Eenerg. combust. 36(2), 131 (2010)

31.

 J.  C.  Ding,  T.  Si,  M. J.  Chen,  Z.  G.  Zhai,  X.  Y.  Lu,
and  X.  S.  Luo, On  the  interaction  of  a  planar  shock
with  a  three-dimensional  light  gas  cylinder, J.  Fluid
Mech. 828, 289 (2017)

32.

 Y.  Liang,  Z.  G.  Zhai,  and  X.  S.  Luo, Interaction  of
strong converging shock wave with SF6 gas bubble, Sci.
China Phys. Mech. Astron. 61(6), 064711 (2018)

33.

 J.  C.  Ding,  Y.  Liang,  M.  J.  Chen,  Z.  G.  Zhai,  T.  Si,
and X. S.  Luo, Interaction of planar shock wave with
three-dimensional  heavy  cylindrical  bubble, Phys.
Fluids 30(10), 106109 (2018)

34.

 X.  S.  Luo,  M.  Li,  J.  C.  Ding,  Z.  G.  Zhai,  and  T.  Si,
Nonlinear  behaviour  of  convergent  Richtmyer–
Meshkov instability, J. Fluid Mech. 877, 130 (2019)

35.

 Y. D. Zhang, A. G. Xu, J. J. Qiu, H. T. Wei, and Z. H.
Wei, Kinetic  modeling  of  multiphase  flow  based  on
simplified Enskog equation, Front.  Phys. 15(6),  62503
(2020)

36.

 Z.  L.  Jiang  and  H.  H.  Teng,  Gaseous  Detonation
Physics  and  Its  Universal  Framework  Theory,  Singa-
pore: Springer, 2022

37.

 J.  P.  Wang and S.  B.  Yao,  Principle  and Technology
of  Continuous  Detonation  Engine,  Beijing:  Science
Press, 2018 (in Chinese)

38.

 J. Xiao, P. Liu, C. X. Wang, and G. W. Yang, External
field-assisted laser ablation in liquid: An efficient strategy
for  nanocrystal  synthesis  and nanostructure  assembly,
Prog. Mater. Sci. 87, 140 (2017)

39.

 H. G.  Rinderknecht,  P.  A.  Amendt,  S.  C.  Wilks,  and
G. Collins, Kinetic physics in ICF: Present understanding
and  future  directions, Plasma  Phys.  Contr.  Fusion
60(6), 064001 (2018)

40.

 F. Vidal, J. P. Matte, M. Casanova, and O. Larroche,
Ion kinetic simulations of the formation and propagation
of  a  planar  collisional  shock  wave  in  a  plasma, Phys.
Fluids B Plasma Phys. 5(9), 3182 (1993)

41.

 D. Bond, V. Wheatley, R. Samtaney, and D. I. Pullin,
Richtmyer–Meshkov  instability  of  a  thermal  interface
in a two-fluid plasma, J. Fluid Mech. 833, 332 (2017)

42.

 J. H. Song, A. G. Xu, L. Miao, F. Chen, Z. P. Liu, L.
F.  Wang,  N.  F.  Wang,  and  X.  Hou,  Plasma  kinetics:
Discrete  Boltzmann  modelling  and  Richtmyer–
Meshkov instability, Phys. Fluids 36, 016107(2023)

43.

 P. L. Yao, H. B. Cai, X. X. Yan, W. S. Zhang, B. Du,
J. M. Tian, E. H. Zhang, X. W. Wang, and S. P. Zhu,
Kinetic  study  of  transverse  electron-scale  interface
instability  in  relativistic  shear  flows, Matter  Radiat.
Extrem. 5(5), 054403 (2020)

44.

 H.  B.  Cai,  X.  X.  Yan,  P.  L.  Yao,  and  S.  P.  Zhu,
Hybrid  fluid–particle  modeling  of  shock-driven  hydro-
dynamic  instabilities  in  a  plasma, Matter  Radiat.
Extrem. 6(3), 035901 (2021)

45.

 R.  K.  Agarwal,  K.  Y.  Yun,  and  R.  Balakrishnan,
Beyond Navier–Stokes:  Burnett  equations  for  flows  in
the  continuum-transition  regime, Phys.  Fluids 13(10),
3061 (2001)

46.

 P.  K.  Kundu,  I.  M.  Cohen,  and  D.  Dowling,  Fluid
Mechanics, 4th Ed., Ch. 13, pp 537–601, Oxford: Elsevier
Academic Press, 2008

47.

 H. J. Zhou, Y. Zhang, and Z. C. Ouyang, Bending and
base-stacking  interactions  in  double-stranded  DNA,
Phys. Rev. Lett. 82(22), 4560 (1999)

48.

 X. Y. Zhang, S. Boccaletti, S. G. Guan, and Z. H. Liu,
Explosive  synchronization  in  adaptive  and  multilayer
networks, Phys. Rev. Lett. 114(3), 038701 (2015)

49.

 G. H. Tang, C. Bi, Y. Zhao, and W. Q. Tao, Thermal
transport in nano-porous insulation of aerogel: Factors,
models and outlook, Energy 90, 701 (2015)

50.

 Z. C. Zong, S. C. Deng, Y. J. Qin, X. Wan, J. H. Zhan,
D.  K.  Ma,  and  N.  Yang, Enhancing  the  interfacial
thermal  conductance  of  Si/PVDF  by  strengthening
atomic couplings, Nanoscale 15(40), 16472 (2023)

51.

 L.  N.  Yang,  B.  S.  Yang,  and  B.  W.  Li, Enhancing
interfacial thermal conductance of an amorphous inter-
face  by  optimizing  the  interfacial  mass  distribution,
Phys. Rev. B 108(16), 165303 (2023)

52.

 H.  Zhao, Identifying  diffusion  processes  in  one-dimen-
sional lattices in thermal equilibrium, Phys. Rev. Lett.
96(14), 140602 (2006)

53.

 Y. Li, X. Y. Shen, Z. H. Wu, J. Y. Huang, Y. X. Chen,
Y.  S.  Ni,  and  J.  P.  Huang, Temperature-dependent
transformation  thermotics:  From  switchable  thermal
cloaks to macroscopic thermal diodes, Phys. Rev. Lett.
115(19), 195503 (2015)

54.

 Z.  Wang,  W.  C.  Fu,  Y.  Zhang,  and  H.  Zhao, Wave-
turbulence origin of the instability of anderson localiza-
tion  against  many-body  interactions, Phys.  Rev.  Lett.
124(18), 186401 (2020)

55.

 N. B. Li, J. Ren, L. Wang, G. Zhang, P. Hänggi, and56.

TOPICAL REVIEW FRONTIERS OF PHYSICS

Aiguo Xu, et al., Front. Phys. 19(4), 42500 (2024)   42500-45

 

https://doi.org/10.1103/PhysRevE.103.013305
https://doi.org/10.1103/PhysRevE.103.013305
https://doi.org/10.1103/PhysRevE.103.013305
https://doi.org/10.1103/PhysRevE.103.013305
https://doi.org/10.1007/s11467-019-0885-4
https://doi.org/10.1007/s11467-019-0885-4
https://doi.org/10.1007/s11467-019-0885-4
https://doi.org/10.1007/s11467-019-0885-4
https://doi.org/10.1007/s11467-019-0885-4
https://doi.org/10.1007/s11467-019-0885-4
https://doi.org/10.1007/s11467-019-0885-4
https://doi.org/10.1007/s11433-011-4440-8
https://doi.org/10.1007/s11433-011-4440-8
https://doi.org/10.1007/s11433-011-4440-8
https://doi.org/10.1007/s11433-011-4440-8
https://doi.org/10.1007/s11433-011-4440-8
https://doi.org/10.1038/s41586-018-0203-2
https://doi.org/10.1038/s41586-018-0203-2
https://doi.org/10.1038/s41586-018-0203-2
https://doi.org/10.1038/s41586-018-0203-2
https://doi.org/10.3390/mi10040249
https://doi.org/10.3390/mi10040249
https://doi.org/10.3390/mi10040249
https://doi.org/10.3390/mi10040249
https://doi.org/10.3390/mi10040249
https://doi.org/10.3390/mi10040249
https://doi.org/10.1146/annurev-fluid-071320-095958
https://doi.org/10.1146/annurev-fluid-071320-095958
https://doi.org/10.1146/annurev-fluid-071320-095958
https://doi.org/10.1146/annurev-fluid-071320-095958
https://doi.org/10.1146/annurev-fluid-071320-095958
https://doi.org/10.1146/annurev-fluid-071320-095958
https://doi.org/10.1016/j.pecs.2009.09.002
https://doi.org/10.1016/j.pecs.2009.09.002
https://doi.org/10.1016/j.pecs.2009.09.002
https://doi.org/10.1016/j.pecs.2009.09.002
https://doi.org/10.1016/j.pecs.2009.09.002
https://doi.org/10.1016/j.pecs.2009.09.002
https://doi.org/10.1016/j.pecs.2009.09.002
https://doi.org/10.1017/jfm.2017.528
https://doi.org/10.1017/jfm.2017.528
https://doi.org/10.1017/jfm.2017.528
https://doi.org/10.1017/jfm.2017.528
https://doi.org/10.1017/jfm.2017.528
https://doi.org/10.1007/s11433-017-9151-6
https://doi.org/10.1007/s11433-017-9151-6
https://doi.org/10.1007/s11433-017-9151-6
https://doi.org/10.1007/s11433-017-9151-6
https://doi.org/10.1007/s11433-017-9151-6
https://doi.org/10.1007/s11433-017-9151-6
https://doi.org/10.1007/s11433-017-9151-6
https://doi.org/10.1063/1.5050091
https://doi.org/10.1063/1.5050091
https://doi.org/10.1063/1.5050091
https://doi.org/10.1063/1.5050091
https://doi.org/10.1063/1.5050091
https://doi.org/10.1017/jfm.2019.610
https://doi.org/10.1017/jfm.2019.610
https://doi.org/10.1017/jfm.2019.610
https://doi.org/10.1017/jfm.2019.610
https://doi.org/10.1017/jfm.2019.610
https://doi.org/10.1007/s11467-020-1014-0
https://doi.org/10.1007/s11467-020-1014-0
https://doi.org/10.1007/s11467-020-1014-0
https://doi.org/10.1007/s11467-020-1014-0
https://doi.org/10.1007/s11467-020-1014-0
https://doi.org/10.1007/s11467-020-1014-0
https://doi.org/10.1016/j.pmatsci.2017.02.004
https://doi.org/10.1016/j.pmatsci.2017.02.004
https://doi.org/10.1016/j.pmatsci.2017.02.004
https://doi.org/10.1016/j.pmatsci.2017.02.004
https://doi.org/10.1016/j.pmatsci.2017.02.004
https://doi.org/10.1088/1361-6587/aab79f
https://doi.org/10.1088/1361-6587/aab79f
https://doi.org/10.1088/1361-6587/aab79f
https://doi.org/10.1088/1361-6587/aab79f
https://doi.org/10.1063/1.860654
https://doi.org/10.1063/1.860654
https://doi.org/10.1063/1.860654
https://doi.org/10.1063/1.860654
https://doi.org/10.1063/1.860654
https://doi.org/10.1017/jfm.2017.693
https://doi.org/10.1017/jfm.2017.693
https://doi.org/10.1017/jfm.2017.693
https://doi.org/10.1017/jfm.2017.693
https://doi.org/10.1017/jfm.2017.693
https://doi.org/10.1017/jfm.2017.693
https://doi.org/10.1063/5.00452
https://doi.org/10.1063/5.00452
https://doi.org/10.1063/5.00452
https://doi.org/10.1063/5.00452
https://doi.org/10.1063/5.00452
https://doi.org/10.1063/5.00452
https://doi.org/10.1063/5.00452
https://doi.org/10.1063/5.0017962
https://doi.org/10.1063/5.0017962
https://doi.org/10.1063/5.0017962
https://doi.org/10.1063/5.0017962
https://doi.org/10.1063/5.0017962
https://doi.org/10.1063/5.0042973
https://doi.org/10.1063/5.0042973
https://doi.org/10.1063/5.0042973
https://doi.org/10.1063/5.0042973
https://doi.org/10.1063/5.0042973
https://doi.org/10.1063/5.0042973
https://doi.org/10.1063/5.0042973
https://doi.org/10.1063/1.1397256
https://doi.org/10.1063/1.1397256
https://doi.org/10.1063/1.1397256
https://doi.org/10.1063/1.1397256
https://doi.org/10.1063/1.1397256
https://doi.org/10.1063/1.1397256
https://doi.org/10.1063/1.1397256
https://doi.org/10.1103/PhysRevLett.82.4560
https://doi.org/10.1103/PhysRevLett.82.4560
https://doi.org/10.1103/PhysRevLett.82.4560
https://doi.org/10.1103/PhysRevLett.82.4560
https://doi.org/10.1103/PhysRevLett.114.038701
https://doi.org/10.1103/PhysRevLett.114.038701
https://doi.org/10.1103/PhysRevLett.114.038701
https://doi.org/10.1103/PhysRevLett.114.038701
https://doi.org/10.1103/PhysRevLett.114.038701
https://doi.org/10.1016/j.energy.2015.07.109
https://doi.org/10.1016/j.energy.2015.07.109
https://doi.org/10.1016/j.energy.2015.07.109
https://doi.org/10.1016/j.energy.2015.07.109
https://doi.org/10.1016/j.energy.2015.07.109
https://doi.org/10.1016/j.energy.2015.07.109
https://doi.org/10.1039/D3NR03706A
https://doi.org/10.1039/D3NR03706A
https://doi.org/10.1039/D3NR03706A
https://doi.org/10.1039/D3NR03706A
https://doi.org/10.1039/D3NR03706A
https://doi.org/10.1039/D3NR03706A
https://doi.org/10.1103/PhysRevB.108.165303
https://doi.org/10.1103/PhysRevB.108.165303
https://doi.org/10.1103/PhysRevB.108.165303
https://doi.org/10.1103/PhysRevB.108.165303
https://doi.org/10.1103/PhysRevB.108.165303
https://doi.org/10.1103/PhysRevB.108.165303
https://doi.org/10.1103/PhysRevLett.96.140602
https://doi.org/10.1103/PhysRevLett.96.140602
https://doi.org/10.1103/PhysRevLett.96.140602
https://doi.org/10.1103/PhysRevLett.96.140602
https://doi.org/10.1103/PhysRevLett.96.140602
https://doi.org/10.1103/PhysRevLett.115.195503
https://doi.org/10.1103/PhysRevLett.115.195503
https://doi.org/10.1103/PhysRevLett.115.195503
https://doi.org/10.1103/PhysRevLett.115.195503
https://doi.org/10.1103/PhysRevLett.115.195503
https://doi.org/10.1103/PhysRevLett.124.186401
https://doi.org/10.1103/PhysRevLett.124.186401
https://doi.org/10.1103/PhysRevLett.124.186401
https://doi.org/10.1103/PhysRevLett.124.186401
https://doi.org/10.1103/PhysRevLett.124.186401
https://doi.org/10.1103/PhysRevLett.124.186401


B. W. Li, Phononics: Manipulating heat flow with elec-
tronic  analogs  and  beyond, Rev.  Mod.  Phys. 84(3),
1045 (2012)
 L. Wang, D. H. He, and B. B. Hu, Heat conduction in
a three-dimensional momentum-conserving anharmonic
lattice, Phys. Rev. Lett. 105(16), 160601 (2010)

57.

 L. Zhao, C. L. Wang, J. Liu, B. H. Wen, Y. S. Tu, Z.
W. Wang, and H. P. Fang, Reversible state transition
in  nanoconfined  aqueous  solutions, Phys.  Rev.  Lett.
112(7), 078301 (2014)

58.

 I.  Maasilta and A. J. Minnich, Heat under the micro-
scope, Phys. Today 67(8), 27 (2014)

59.

 S.  G.  Chen,  Nonequilibrium  Statistical  Mechanics,
Beijing: Science Press, 2010 (in Chinese)

60.

 A. G. Xu and Y. D. Zhang, Complex Media Kinetics,
Beijing: Science Press, 2022 (in Chinese)

61.

 J. H. Li, G. Wei, W. Wang, N. Yang, X. H. Liu, L. M.
Wang,  X.  F.  He,  X.  W.  Wang,  J.  W.  Wang,  and  M.
Kwauk, From Multiscale Modeling to Meso-Science: A
Chemical  Engineering  Perspective,  Berlin:  Springer-
Verlag, 2013

62.

 W.  L.  Huang,  J.  H.  Li,  and  P.  P.  Edwards, Meso-
science: exploring the common principle at mesoscales,
Natl. Sci. Rev. 5(3), 321 (2018)

63.

 Y. D.  Zhang,  X.  Wu,  B.  B.  Nie,  A.  G.  Xu,  F.  Chen,
and R. Wei, Lagrangian steady-state discrete Boltzmann
model  for  non-equilibrium  flows  at  micro–nanoscale,
Phys. Fluids 35(9), 092008 (2023)

64.

 Y. B. Gan, A. G. Xu, H. L. Lai, W. Li, G. L. Sun, and
S.  Succi, Discrete  Boltzmann  multi-scale  modelling  of
non-equilibrium multiphase flows, J. Fluid Mech. 951,
A8 (2022)

65.

 C.  L.  Tien, Molecular  and  microscale  transport
phenomena: A report on the 2nd US Japan Joint Semi-
nar,  Santa  Barbara,  California,  7–10  August,  1996,
Microscale Thermophys. Eng. 1(1), 71 (1997)

66.

 B. M. McCoy, Advanced Statistical Mechanics, Oxford:
Oxford university press, 2010

67.

 T. D. Lee and C. N. Yang, Statistical theory of equations
of state and phase transitions. II. Lattice gas and Ising
model, Phys. Rev. 87(3), 410 (1952)

68.

 S.  Succi,  The  Lattice  Boltzmann  Equation:  For  Fluid
Dynamics  and  Beyond,  Oxford:  Oxford  University
Press, 2001

69.

 Y.  L.  He,  Y.  Wang,  and  Q.  Li,  Lattice  Boltzmann
Method:  Theory  and  Applications,  Beijing:  Science
Press, 2009 (in Chinese)

70.

 Z. L. Guo and C. Shu, Lattice Boltzmann Method and
its Applications in Engineering, Beijing: World Scientific
Publishing, 2013

71.

 H. B. Huang, M. C. Sukop, and X. Y. Lu, Multiphase
Lattice  Boltzmann  Methods:  Theory  and  Application,
John Wiley & Sons, 2015

72.

 A. G. Xu, G. C. Zhang, Y. B. Gan, F. Chen, and X. J.
Yu, Lattice  Boltzmann  modeling  and  simulation  of
compressible flows, Front. Phys. 7(5), 582 (2012)

73.

 A. G. Xu, C. D. Lin, G. C. Zhang, and Y. J. Li, Multiple
relaxation-time  lattice  Boltzmann  kinetic  model  for
combustion, Phys. Rev. E 91(4), 043306 (2015)

74.

 A. G. Xu, G. C. Zhang, Y. D. Zhang, and Y. B. Gan,
Discrete Boltzmann modeling of nonequilibrium effects

75.

in multiphase flow, Presentation at the 31st International
Symposium  on  Rarefied  Gas  Dynamics,  see  also
FLOWS: Physics & Beyond, 1001 (2018)
 A. G. Xu, J. H. Song, F. Chen, K. Xie, and Y. J. Ying,
Modeling  and  analysis  methods  for  complex  fields
based on phase space, Chinese Journal of Computational
Physics 38(6), 631 (2021) (in Chinese)

76.

 D. J. Zhang, A. G. Xu, Y. D. Zhang, Y. B. Gan, and
Y.  J.  Li, Discrete  Boltzmann  modeling  of  high-speed
compressible flows with various depths of  non-equilib-
rium, Phys. Fluids 34(8), 086104 (2022)

77.

 Y. D. Zhang, Modeling and research of non-equilibrium
flows and multi-phase flows: Based on discrete Boltzmann
method,  Nanjing:  Nanjing  University  of  Science  &
Technology, 2019 (in Chinese)

78.

 Y. B. Gan, A. G. Xu, G. C. Zhang, Y. D. Zhang, and
S.  Succi, Discrete  Boltzmann  trans-scale  modeling  of
highspeed  compressible  flows, Phys.  Rev.  E 97(5),
053312 (2018)

79.

 L.  Wu,  J.  M.  Reese,  and  Y.  H.  Zhang, Solving  the
Boltzmann equation deterministically by the fast spectral
method: Application to gas microflows, J. Fluid Mech.
746, 53 (2014)

80.

 B. Yan, A. G. Xu, G. C. Zhang, Y. J. Ying, and H. Li,
Lattice  Boltzmann  model  for  combustion  and  detona-
tion, Front. Phys. 8, 94 (2013)

81.

 C.  D.  Lin,  A.  G.  Xu,  G.  C.  Zhang,  and  Y.  J.  Li,
Double distribution-function discrete Boltzmann model
for combustion, Combust. Flame 164, 137 (2016)

82.

 C.  D.  Lin  and  K.  H.  Luo, Mesoscopic  simulation  of
nonequilibrium  detonation  with  discrete  Boltzmann
method, Combust. Flame 198, 356 (2018)

83.

 C. D. Lin, A. G. Xu, G. C. Zhang, and Y. J. Li, Polar
coordinate lattice Boltzmann kinetic modeling of deto-
nation phenomena, Commum. Theor. Phys. 62(5), 737
(2014)

84.

 C. D. Lin, K. H. Luo, L. L. Fei, and S. Succi, A multi-
component discrete Boltzmann model for nonequilibrium
reactive  fows, Commum.  Theor.  Phys.  7(1),  14580
(2017)

85.

 C.  D.  Lin  and  K.  H.  Luo,  MRT  discrete  Boltzmann
method  for  compressible  exothermic  reactive  flows,
Comput. Fluids 166, 176 (2018)

86.

 C. D. Lin and K. H. Luo, Discrete Boltzmann modeling
of unsteady reactive flows with nonequilibrium effects,
Phys. Rev. E 99(1), 012142 (2019)

87.

 C.  D.  Lin  and  K.  H.  Luo, Kinetic  simulation  of
unsteady  detonation  with  thermodynamic  nonequilib-
rium effects, Combust. Explos. Shock Waves 56(4), 435
(2020)

88.

 C. D. Lin, X. L. Su, and Y. D. Zhang, Hydrodynamic
and  thermodynamic  nonequilibrium  effects  around
shock  waves:  Based  on  a  discrete  Boltzmann method,
Entropy (Basel) 22(12), 1397 (2020)

89.

 Y. D. Zhang, A. G. Xu, G. C. Zhang, C. M. Zhu, and
C.  D.  Lin, Kinetic  modeling  of  detonation and effects
of  negative  temperature  coefficient, Combust.  Flame
173, 483 (2016)

90.

 Y. M. Shan, A. G. Xu, Y. D. Zhang, L. F. Wang, and
F.  Chen, Discrete  Boltzmann  modeling  of  detonation:
Based on the Shakhov model, Proc. Inst. Mech. Eng.,

91.

FRONTIERS OF PHYSICS TOPICAL REVIEW

42500-46   Aiguo Xu, et al., Front. Phys. 19(4), 42500 (2024)

 

https://doi.org/10.1103/RevModPhys.84.1045
https://doi.org/10.1103/RevModPhys.84.1045
https://doi.org/10.1103/RevModPhys.84.1045
https://doi.org/10.1103/RevModPhys.84.1045
https://doi.org/10.1103/RevModPhys.84.1045
https://doi.org/10.1103/RevModPhys.84.1045
https://doi.org/10.1103/RevModPhys.84.1045
https://doi.org/10.1103/PhysRevLett.105.160601
https://doi.org/10.1103/PhysRevLett.105.160601
https://doi.org/10.1103/PhysRevLett.105.160601
https://doi.org/10.1103/PhysRevLett.105.160601
https://doi.org/10.1103/PhysRevLett.105.160601
https://doi.org/10.1103/PhysRevLett.105.160601
https://doi.org/10.1103/PhysRevLett.112.078301
https://doi.org/10.1103/PhysRevLett.112.078301
https://doi.org/10.1103/PhysRevLett.112.078301
https://doi.org/10.1103/PhysRevLett.112.078301
https://doi.org/10.1063/PT.3.2479
https://doi.org/10.1063/PT.3.2479
https://doi.org/10.1063/PT.3.2479
https://doi.org/10.1063/PT.3.2479
https://doi.org/10.1063/PT.3.2479
https://doi.org/10.1063/PT.3.2479
https://doi.org/10.1093/nsr/nwx083
https://doi.org/10.1093/nsr/nwx083
https://doi.org/10.1093/nsr/nwx083
https://doi.org/10.1093/nsr/nwx083
https://doi.org/10.1063/5.0166488
https://doi.org/10.1063/5.0166488
https://doi.org/10.1063/5.0166488
https://doi.org/10.1063/5.0166488
https://doi.org/10.1063/5.0166488
https://doi.org/10.1017/jfm.2022.844
https://doi.org/10.1017/jfm.2022.844
https://doi.org/10.1017/jfm.2022.844
https://doi.org/10.1017/jfm.2022.844
https://doi.org/10.1017/jfm.2022.844
https://doi.org/10.1017/jfm.2022.844
https://doi.org/10.1080/108939597200458
https://doi.org/10.1080/108939597200458
https://doi.org/10.1080/108939597200458
https://doi.org/10.1080/108939597200458
https://doi.org/10.1080/108939597200458
https://doi.org/10.1080/108939597200458
https://doi.org/10.1080/108939597200458
https://doi.org/10.1103/PhysRev.87.410
https://doi.org/10.1103/PhysRev.87.410
https://doi.org/10.1103/PhysRev.87.410
https://doi.org/10.1103/PhysRev.87.410
https://doi.org/10.1103/PhysRev.87.410
https://doi.org/10.1103/PhysRev.87.410
https://doi.org/10.1007/s11467-012-0269-5
https://doi.org/10.1007/s11467-012-0269-5
https://doi.org/10.1007/s11467-012-0269-5
https://doi.org/10.1007/s11467-012-0269-5
https://doi.org/10.1007/s11467-012-0269-5
https://doi.org/10.1103/PhysRevE.91.043306
https://doi.org/10.1103/PhysRevE.91.043306
https://doi.org/10.1103/PhysRevE.91.043306
https://doi.org/10.1103/PhysRevE.91.043306
https://doi.org/10.1103/PhysRevE.91.043306
https://doi.org/10.1103/PhysRevE.91.043306
https://mp.weixin.qq.com/s/WwHnZNX42f7taw_zSxZO5g
https://mp.weixin.qq.com/s/WwHnZNX42f7taw_zSxZO5g
https://mp.weixin.qq.com/s/WwHnZNX42f7taw_zSxZO5g
https://mp.weixin.qq.com/s/WwHnZNX42f7taw_zSxZO5g
https://mp.weixin.qq.com/s/WwHnZNX42f7taw_zSxZO5g
https://doi.org/10.1063/5.0100873
https://doi.org/10.1063/5.0100873
https://doi.org/10.1063/5.0100873
https://doi.org/10.1063/5.0100873
https://doi.org/10.1063/5.0100873
https://doi.org/10.1063/5.0100873
https://doi.org/10.1063/5.0100873
https://doi.org/10.1103/PhysRevE.97.053312
https://doi.org/10.1103/PhysRevE.97.053312
https://doi.org/10.1103/PhysRevE.97.053312
https://doi.org/10.1103/PhysRevE.97.053312
https://doi.org/10.1103/PhysRevE.97.053312
https://doi.org/10.1103/PhysRevE.97.053312
https://doi.org/10.1017/jfm.2014.79
https://doi.org/10.1017/jfm.2014.79
https://doi.org/10.1017/jfm.2014.79
https://doi.org/10.1017/jfm.2014.79
https://doi.org/10.1017/jfm.2014.79
https://doi.org/10.1007/s11467-013-0286-z
https://doi.org/10.1007/s11467-013-0286-z
https://doi.org/10.1007/s11467-013-0286-z
https://doi.org/10.1007/s11467-013-0286-z
https://doi.org/10.1007/s11467-013-0286-z
https://doi.org/10.1007/s11467-013-0286-z
https://doi.org/10.1016/j.combustflame.2015.11.010
https://doi.org/10.1016/j.combustflame.2015.11.010
https://doi.org/10.1016/j.combustflame.2015.11.010
https://doi.org/10.1016/j.combustflame.2015.11.010
https://doi.org/10.1016/j.combustflame.2015.11.010
https://doi.org/10.1016/j.combustflame.2018.09.027
https://doi.org/10.1016/j.combustflame.2018.09.027
https://doi.org/10.1016/j.combustflame.2018.09.027
https://doi.org/10.1016/j.combustflame.2018.09.027
https://doi.org/10.1016/j.combustflame.2018.09.027
https://doi.org/10.1016/j.combustflame.2018.09.027
https://doi.org/10.1088/0253-6102/62/5/18
https://doi.org/10.1088/0253-6102/62/5/18
https://doi.org/10.1088/0253-6102/62/5/18
https://doi.org/10.1088/0253-6102/62/5/18
https://doi.org/10.1088/0253-6102/62/5/18
https://doi.org/10.1088/0253-6102/62/5/18
https://doi.org/10.1088/0253-6102/62/5/18
https://doi.org/10.1088/0253-6102/62/5/18
https://doi.org/10.1016/j.compfluid.2018.02.012
https://doi.org/10.1016/j.compfluid.2018.02.012
https://doi.org/10.1016/j.compfluid.2018.02.012
https://doi.org/10.1016/j.compfluid.2018.02.012
https://doi.org/10.1103/PhysRevE.99.012142
https://doi.org/10.1103/PhysRevE.99.012142
https://doi.org/10.1103/PhysRevE.99.012142
https://doi.org/10.1103/PhysRevE.99.012142
https://doi.org/10.1134/S0010508220040073
https://doi.org/10.1134/S0010508220040073
https://doi.org/10.1134/S0010508220040073
https://doi.org/10.1134/S0010508220040073
https://doi.org/10.1134/S0010508220040073
https://doi.org/10.1134/S0010508220040073
https://doi.org/10.1134/S0010508220040073
https://doi.org/10.1134/S0010508220040073
https://doi.org/10.3390/e22121397
https://doi.org/10.3390/e22121397
https://doi.org/10.3390/e22121397
https://doi.org/10.3390/e22121397
https://doi.org/10.3390/e22121397
https://doi.org/10.1016/j.combustflame.2016.04.003
https://doi.org/10.1016/j.combustflame.2016.04.003
https://doi.org/10.1016/j.combustflame.2016.04.003
https://doi.org/10.1016/j.combustflame.2016.04.003
https://doi.org/10.1177/09544062221096254
https://doi.org/10.1177/09544062221096254
https://doi.org/10.1177/09544062221096254


C J. Mech. Eng. Sci. 237(11), 2517 (2023)
 Y. D. Zhang, A. G. Xu, G. C. Zhang, and Z. H. Chen,
Discrete Boltzmann method with Maxwell-type boundary
condition for slip flow, Commum. Theor. Phys. 69(1),
77 (2018)

92.

 Y. D. Zhang, A. G. Xu, G. C. Zhang, Z. H. Chen, and
P. Wang, Discrete Boltzmann method for non-equilib-
rium  flows:  Based  on  Shakhov  model, Comput.  Phys.
Commun. 238, 50 (2019)

93.

 Y. Zhang, A. Xu, F. Chen, C. Lin, and Z. H. Wei, Non-
equilibrium  characteristics  of  mass  and  heat  transfers
in the slip flow, AIP Adv. 12(3), 035347 (2022)

94.

 Y. Sone, Molecular Gas Dynamics: Theory, Techniques,
and Applications,  Springer Science & Business Media,
2007

95.

 Y.  Onishi,  A  rarefied  gas  flow  over  a  flat  wall, Bull.
Univ.  Osaka  Prefect.  Ser.  A Eng.  Nat.  Sci.  22(2),  91
(1974)

96.

 X. S. Chen, V. Dohm, and N. Schultka, Order-parameter
distribution function of finite O(n) symmetric systems,
Phys. Rev. Lett. 77(17), 3641 (1996)

97.

 A. J. Wagner and J. M. Yeomans, Breakdown of scale
invariance in the coarsening of phase-separating binary
fluids, Phys. Rev. Lett. 80(7), 1429 (1998)

98.

 M.  R.  Swift,  W.  R.  Osborn,  and  J.  M.  Yeomans,
Lattice Boltzmann simulation of nonideal fluids, Phys.
Rev. Lett. 75(5), 830 (1995)

99.

 Y. M. Shan, A. G. Xu, L. F. Wang, and Y. D. Zhang,
Nonequilibrium kinetics effects in Richtmyer–Meshkov
instability  and  reshock  processes, Commum.  Theor.
Phys. 75(11), 115601 (2023)

100.

 M. Latini, O. Schilling, and W. S. Don, High-resolution
simulations  and  modeling  of  reshocked  single-mode
Richtmyer–Meshkov instability: Comparison to experi-
mental  data  and  to  amplitude  growth  model  predic-
tions, Phys. Fluids 19(2), 024104 (2007)

101.

 B. D. Collins and J. W. Jacobs, PLIF flow visualization
and measurements of the Richtmyer–Meshkov instability
of an air/SF6 interface, J. Fluid Mech. 464, 113 (2002)

102.

 D. J. Zhang, A. G. Xu, J. H. Song, Y. B. Gan, Y. D.
Zhang, and Y. J.  Li, Specific-heat ratio effects on the
interaction  between  shock  wave  and  heavy-cylindrical
bubble: Based on discrete Boltzmann method, Comput.
Fluids 265, 106021 (2023)

103.

 G. S. Jiang and C. L. Wu, A high-order WENO finite
difference  scheme  for  the  equations  of  ideal  magneto-
hydrodynamics, J. Comput. Phys. 150(2), 561 (1999)

104.

 J.  H.  Song,  A.  G.  Xu,  L.  Miao,  Y.  G.  Liao,  F.  W.
Liang, F. Tian, M. Q. Nie, and N. F. Wang, Entropy
increase  characteristics  of  shock  wave/plate  laminar
boundary layer interaction, Acta Aeronautica et Astro-
nautica Sinica 44(21), 528520 (2023) (in Chinese)

105.

 S. F. Liao, W. B. Zhang, H. Chen, L. Y. Zou, J. H. Liu,
and X. X. Zheng, Atwood number effects on the instability
of  a  uniform  interface  driven  by  a  perturbed  shock
wave, Phys. Rev. E 99(1), 013103 (2019)

106.

 L. Y. Zou, M. Al-Marouf, W. Cheng, R. Samtaney, J.
C. Ding, and X. S. Luo, Richtmyer–Meshkov instability
of  an  unperturbed  interface  subjected  to  a  diffracted
convergent shock, J. Fluid Mech. 879, 448 (2019)

107.

 L. Y. Zou, Q. Wu, and X. Z. Li, Research progress of108.

general Richtmyer–Meshkov instability, Sci. Sin. Phys.
Mech. Astron. 50, 104702 (2020)
 Y. M. Shan, A. G. Xu, Y. D. Zhang, and L. F. Wang,
Wall-heating phenomena in shock wave physics: Physical
or artificial? (in preparation)

109.

 D. J. Zhang, A. G. Xu, Y. B. Gan, Y. D. Zhang, J. H.
Song,  and  Y.  J.  Li, Viscous  effects  on  morphological
and  thermodynamic  non-equilibrium  characterizations
of  shock-bubble  interaction, Phys.  Fluids 35(10),
106113 (2023)

110.

 Y.  B.  Gan,  A.  G.  Xu,  G.  C.  Zhang,  and  S.  Succi,
Discrete  Boltzmann  modeling  of  multiphase  flows:
Hydrodynamic  and  thermodynamic  non-equilibrium
effects, Soft Matter 11(26), 5336 (2015)

111.

 Y. D. Zhang, A. G. Xu, G. C. Zhang, Y. B. Gan, Z. H.
Chen,  and  S.  Succi, Entropy  production  in  thermal
phase  separation:  A  kinetic-theory  approach, Soft
Matter 15(10), 2245 (2019)

112.

 G. L. Sun, Y. B. Gan, A. G. Xu, Y. D. Zhang, and Q.
F.  Shi, Thermodynamic  nonequilibrium  effects  in
bubble coalescence: A discrete Boltzmann study, Phys.
Rev. E 106(3), 035101 (2022)

113.

 G.  L.  Sun,  Y.  B.  Gan,  A.  G.  Xu,  and  Q.  F.  Shi,
Droplet coalescence kinetics: Thermodynamic nonequi-
librium  effects  and  entropy  production  mechanism,
arXiv:  2311.06546  (2023), Phys.  Fluids (2024)  (in
press)

114.

 J. Chen, A. G. Xu, D. W. Chen, Y. D. Zhang, and Z.
H.  Chen, Discrete  Boltzmann  modeling  of
Rayleigh–Taylor  instability:  Effects  of  interfacial
tension, viscosity, and heat conductivity, Phys. Rev. E
106(1), 015102 (2022)

115.

 Y.  Q.  Jia,  A.  G.  Xu,  L.  F.  Wang,  and  D.  W.  Chen,
Study  on  Rayleigh–Taylor  instability  under  variable
acceleration:  Based  on  discrete  Boltzmann  method,
Beijing:  Symposium  on  Interfacial  Instability  and
Multi-media Turbulence, 2023 (in Chinese)

116.

 J. Chen, A. G. Xu, D. W. Chen, Y. D. Zhang, and Z.
H. Chen,  Kinetics  of  RT instability in van der Waals
fluid: The influence of compressibility (in preparation)

117.

 F.  Chen,  A.  G.  Xu,  Y.  D.  Zhang,  and  Q.  K.  Zeng,
Morphological and non-equilibrium analysis of coupled
Rayleigh–Taylor–Kelvin–Helmholtz  instability, Phys.
Fluids 32(10), 104111 (2020)

118.

 Z. P. Liu, J. H. Song, A. G. Xu, Y. D. Zhang, and K.
Xie, Discrete  Boltzmann  modeling  of  plasma  shock
wave, Proc.  Inst.  Mech.  Eng.,  C  J.  Mech.  Eng.  Sci.
237(11), 2532 (2023)

119.

 J. H. Song, L. Miao, A. G. Xu, F. Chen, L. Li, and X.
Hou, Plasma kinetics: Transport and mixing character-
istics  induced  by  Kelvin–Helmholtz  instability  (in
preparation)

120.

 C.  D.  Lin,  A.  G.  Xu,  G.  C.  Zhang,  Y.  J.  Li,  and  S.
Succi, Polar-coordinate  lattice  Boltzmann modeling  of
compressible flows, Phys. Rev. E 89(1), 013307 (2014)

121.

 Y. D. Zhang, A. G. Xu, G. C. Zhang, Z. H. Chen, and
P.  Wang, Discrete  ellipsoidal  statistical  BGK  model
and  Burnett  equations, Front.  Phys. 13(3),  135101
(2018)

122.

 X. L. Su and C. D. Lin, Nonequilibrium effects of reactive
flow  based  on  gas  kinetic  theory, Commum.  Theor.

123.

TOPICAL REVIEW FRONTIERS OF PHYSICS

Aiguo Xu, et al., Front. Phys. 19(4), 42500 (2024)   42500-47

 

https://doi.org/10.1177/09544062221096254
https://doi.org/10.1177/09544062221096254
https://doi.org/10.1088/0253-6102/69/1/77
https://doi.org/10.1088/0253-6102/69/1/77
https://doi.org/10.1088/0253-6102/69/1/77
https://doi.org/10.1088/0253-6102/69/1/77
https://doi.org/10.1088/0253-6102/69/1/77
https://doi.org/10.1088/0253-6102/69/1/77
https://doi.org/10.1016/j.cpc.2018.12.018
https://doi.org/10.1016/j.cpc.2018.12.018
https://doi.org/10.1016/j.cpc.2018.12.018
https://doi.org/10.1016/j.cpc.2018.12.018
https://doi.org/10.1016/j.cpc.2018.12.018
https://doi.org/10.1016/j.cpc.2018.12.018
https://doi.org/10.1063/5.0086400
https://doi.org/10.1063/5.0086400
https://doi.org/10.1063/5.0086400
https://doi.org/10.1063/5.0086400
https://doi.org/10.1063/5.0086400
https://doi.org/10.1063/5.0086400
https://doi.org/10.1103/PhysRevLett.77.3641
https://doi.org/10.1103/PhysRevLett.77.3641
https://doi.org/10.1103/PhysRevLett.77.3641
https://doi.org/10.1103/PhysRevLett.77.3641
https://doi.org/10.1103/PhysRevLett.77.3641
https://doi.org/10.1103/PhysRevLett.77.3641
https://doi.org/10.1103/PhysRevLett.77.3641
https://doi.org/10.1103/PhysRevLett.80.1429
https://doi.org/10.1103/PhysRevLett.80.1429
https://doi.org/10.1103/PhysRevLett.80.1429
https://doi.org/10.1103/PhysRevLett.80.1429
https://doi.org/10.1103/PhysRevLett.80.1429
https://doi.org/10.1103/PhysRevLett.80.1429
https://doi.org/10.1103/PhysRevLett.75.830
https://doi.org/10.1103/PhysRevLett.75.830
https://doi.org/10.1103/PhysRevLett.75.830
https://doi.org/10.1103/PhysRevLett.75.830
https://doi.org/10.1088/1572-9494/acf305
https://doi.org/10.1088/1572-9494/acf305
https://doi.org/10.1088/1572-9494/acf305
https://doi.org/10.1088/1572-9494/acf305
https://doi.org/10.1088/1572-9494/acf305
https://doi.org/10.1088/1572-9494/acf305
https://doi.org/10.1063/1.2472508
https://doi.org/10.1063/1.2472508
https://doi.org/10.1063/1.2472508
https://doi.org/10.1063/1.2472508
https://doi.org/10.1063/1.2472508
https://doi.org/10.1063/1.2472508
https://doi.org/10.1063/1.2472508
https://doi.org/10.1063/1.2472508
https://doi.org/10.1063/1.2472508
https://doi.org/10.1063/1.2472508
https://doi.org/10.1063/1.2472508
https://doi.org/10.1017/S0022112002008844
https://doi.org/10.1017/S0022112002008844
https://doi.org/10.1017/S0022112002008844
https://doi.org/10.1017/S0022112002008844
https://doi.org/10.1017/S0022112002008844
https://doi.org/10.1017/S0022112002008844
https://doi.org/10.1016/j.compfluid.2023.106021
https://doi.org/10.1016/j.compfluid.2023.106021
https://doi.org/10.1016/j.compfluid.2023.106021
https://doi.org/10.1016/j.compfluid.2023.106021
https://doi.org/10.1016/j.compfluid.2023.106021
https://doi.org/10.1016/j.compfluid.2023.106021
https://doi.org/10.1006/jcph.1999.6207
https://doi.org/10.1006/jcph.1999.6207
https://doi.org/10.1006/jcph.1999.6207
https://doi.org/10.1006/jcph.1999.6207
https://doi.org/10.1006/jcph.1999.6207
https://doi.org/10.1006/jcph.1999.6207
https://doi.org/10.1103/PhysRevE.99.013103
https://doi.org/10.1103/PhysRevE.99.013103
https://doi.org/10.1103/PhysRevE.99.013103
https://doi.org/10.1103/PhysRevE.99.013103
https://doi.org/10.1103/PhysRevE.99.013103
https://doi.org/10.1103/PhysRevE.99.013103
https://doi.org/10.1017/jfm.2019.694
https://doi.org/10.1017/jfm.2019.694
https://doi.org/10.1017/jfm.2019.694
https://doi.org/10.1017/jfm.2019.694
https://doi.org/10.1017/jfm.2019.694
https://doi.org/10.1017/jfm.2019.694
https://doi.org/10.1017/jfm.2019.694
https://doi.org/10.1063/5.0172345
https://doi.org/10.1063/5.0172345
https://doi.org/10.1063/5.0172345
https://doi.org/10.1063/5.0172345
https://doi.org/10.1063/5.0172345
https://doi.org/10.1063/5.0172345
https://doi.org/10.1063/5.0172345
https://doi.org/10.1039/C5SM01125F
https://doi.org/10.1039/C5SM01125F
https://doi.org/10.1039/C5SM01125F
https://doi.org/10.1039/C5SM01125F
https://doi.org/10.1039/C5SM01125F
https://doi.org/10.1039/C5SM01125F
https://doi.org/10.1039/C8SM02637H
https://doi.org/10.1039/C8SM02637H
https://doi.org/10.1039/C8SM02637H
https://doi.org/10.1039/C8SM02637H
https://doi.org/10.1039/C8SM02637H
https://doi.org/10.1103/PhysRevE.106.035101
https://doi.org/10.1103/PhysRevE.106.035101
https://doi.org/10.1103/PhysRevE.106.035101
https://doi.org/10.1103/PhysRevE.106.035101
https://doi.org/10.1103/PhysRevE.106.035101
https://doi.org/10.1103/PhysRevE.106.015102
https://doi.org/10.1103/PhysRevE.106.015102
https://doi.org/10.1103/PhysRevE.106.015102
https://doi.org/10.1103/PhysRevE.106.015102
https://doi.org/10.1103/PhysRevE.106.015102
https://doi.org/10.1103/PhysRevE.106.015102
https://doi.org/10.1063/5.0023364
https://doi.org/10.1063/5.0023364
https://doi.org/10.1063/5.0023364
https://doi.org/10.1063/5.0023364
https://doi.org/10.1063/5.0023364
https://doi.org/10.1063/5.0023364
https://doi.org/10.1063/5.0023364
https://doi.org/10.1063/5.0023364
https://doi.org/10.1177/09544062221075943
https://doi.org/10.1177/09544062221075943
https://doi.org/10.1177/09544062221075943
https://doi.org/10.1177/09544062221075943
https://doi.org/10.1103/PhysRevE.89.013307
https://doi.org/10.1103/PhysRevE.89.013307
https://doi.org/10.1103/PhysRevE.89.013307
https://doi.org/10.1103/PhysRevE.89.013307
https://doi.org/10.1103/PhysRevE.89.013307
https://doi.org/10.1007/s11467-018-0749-3
https://doi.org/10.1007/s11467-018-0749-3
https://doi.org/10.1007/s11467-018-0749-3
https://doi.org/10.1007/s11467-018-0749-3
https://doi.org/10.1007/s11467-018-0749-3
https://doi.org/10.1007/s11467-018-0749-3
https://doi.org/10.1088/1572-9494/ac53a0
https://doi.org/10.1088/1572-9494/ac53a0
https://doi.org/10.1088/1572-9494/ac53a0


Phys. 74(3), 035604 (2022)
 X.  L.  Su  and  C.  D.  Lin, Unsteady  detonation  with
thermodynamic  nonequilibrium  effect  based  on  the
kinetic  theory, Commum.  Theor.  Phys. 75(7),  075601
(2023)

124.

 H.  L.  Lai,  Modeling  and  Simulation  of  Compressible
Rayleigh-Taylor  Instability  by  Discrete  Boltzmann,
Post-doctoral  research  report  of  Beijing  Institute  of
Applied  Physics  and  Computational  Mathematics,
2015 (in Chinese)

125.

 H.  L.  Lai,  A.  G.  Xu,  G.  C.  Zhang,  Y.  B.  Gan,  Y.  J.
Ying, and S. Succi, Nonequilibrium thermohydrodynamic
effects on the Rayleigh-Taylor instability in compressible
flows, Phys. Rev. E 94(2), 023106 (2016)

126.

 A.  G.  Chen,  Study  of  shock  detachment  distance  in
rarefied flow field, Hefei: The 2nd National Conference
on Shock Wave and Shock Tube, 2022 (in Chinese)

127.

 W. M. Bao, Future aerospace technology development
and  aerodynamics  challenges,  Tianjin:  The  2nd  Aero-
dynamics Congress, 2023 (in Chinese)

128.

 G. S. Zhu, Several encountered aerodynamic problems
and  progress  in  hypersonic  flight,  Tianjin:  The  2nd
Aerodynamics Congress, 2023 (in Chinese)

129.

 B. C. Ai, Research on some problems of aerodynamics
of  space  vehicle,  Tianjin:  The  2nd  Aerodynamics
Congress, 2023 (in Chinese)

130.

 A. G. Chen, J. Wang, Z. H. Li, Z. Q. Li, Y. Tian, and
Z.  Y.  Long,  Velocity  measurement  investigation  of
rarefied flow field by pulse electron beam fluorescence
technique, Phys. Gases 6(5), 67 (2021) (in Chinese)

131.

 W.  Chen,  H.  Y.  Hu,  and  L.  Wang,  Characterization
method and measurement technique of thermodynamic
non-equilibrium  characteristics  of  high  enthalpy  flow
field, Dalian: The 17th National Conference on Physics
and Mechanics, 2023 (in Chinese)

132.

 P. M. Danehy, Molecular based hypersonic nonequilib-
rium flow optical  diagnosis  (in  Chinese,  translated  by
Qifeng Chen) (to be published)

133.

 P.  M.  Danehy,  B.  F.  Bathel,  C.  T.  Johansen,  et  al.,
Molecular  Based  Hypersonic  Non-Equilibrium  Flow
Optical Diagnosis, AIAA Progress Series, 2013

134.

FRONTIERS OF PHYSICS TOPICAL REVIEW

42500-48   Aiguo Xu, et al., Front. Phys. 19(4), 42500 (2024)

 

https://doi.org/10.1088/1572-9494/ac53a0
https://doi.org/10.1088/1572-9494/ac53a0
https://doi.org/10.1088/1572-9494/acd6dd
https://doi.org/10.1088/1572-9494/acd6dd
https://doi.org/10.1088/1572-9494/acd6dd
https://doi.org/10.1088/1572-9494/acd6dd
https://doi.org/10.1088/1572-9494/acd6dd
https://doi.org/10.1088/1572-9494/acd6dd
https://doi.org/10.1088/1572-9494/acd6dd
https://doi.org/10.1103/PhysRevE.94.023106
https://doi.org/10.1103/PhysRevE.94.023106
https://doi.org/10.1103/PhysRevE.94.023106
https://doi.org/10.1103/PhysRevE.94.023106
https://doi.org/10.1103/PhysRevE.94.023106
https://doi.org/10.1103/PhysRevE.94.023106

	1 Introduction
	2 State of art for complex flow
	2.1 Problems and challenges
	2.2 Ideas and schemes
	2.3 Statistical physics: Coarse-grained modeling and phase space description

	3 Discrete Boltzmann method
	3.1 Brief review of non-steady DBM
	3.2 Rules for selecting discrete velocities
	3.3 Description of non-equilibrium behavior and effect
	3.4 Additional remarks on DBM
	3.5 Modeling examples and flowchart
	3.6 Brief review of steady DBM

	4 Verification and validation
	4.1 Combustion, detonation and shock wave
	4.2 Microscale flow
	4.3 Cavity flow
	4.4 Fluid collision
	4.5 Multiphase flow
	4.6 Hydrodynamic instability
	4.7 Shock−bubble interaction
	4.8 Plasma system
	4.9 Steady flow

	5 Applied research
	5.1 Detonation and shock wave
	5.2 Shock−bubble interaction
	5.3 Phase transition and phase separation
	5.4 Phase transition and bubble coalescence
	5.5 Droplet collision
	5.6 RTI and anti-RTI: Effects of intermolecular potential and high compressibility
	5.7 KHI and coupled RT-KHI system
	5.8 Shock wave/boundary layer interaction
	5.9 Plasma shock wave
	5.10 Plasma Orszag−Tang vortex
	5.11 Plasma RMI
	5.12 Plasma KHI
	5.13 Recovery of actual distribution function
	5.14 Identification of various interfaces

	6 Summary and prospect
	Declarations
	Acknowledgements
	Appendix A: Rationality, accuracy, and efficiency of DBM results
	Appendix B: Nonlinear constitutive relations
	References

