Skip to main content
Log in

Detecting bulk and edge exceptional points in non-Hermitian systems through generalized Petermann factors

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

Non-orthogonality in non-Hermitian quantum systems gives rise to tremendous exotic quantum phenomena, which can be fundamentally traced back to non-unitarity. In this paper, we introduce an interesting quantity (denoted as η) as a new variant of the Petermann factor to directly and efficiently measure non-unitarity and the associated non-Hermitian physics. By tuning the model parameters of underlying non-Hermitian systems, we find that the discontinuity of both η and its first-order derivative (denoted as ∂η) pronouncedly captures rich physics that is fundamentally caused by non-unitarity. More concretely, in the 1D non-Hermitian topological systems, two mutually orthogonal edge states that are respectively localized on two boundaries become non-orthogonal in the vicinity of discontinuity of η as a function of the model parameter, which is dubbed “edge state transition”. Through theoretical analysis, we identify that the appearance of edge state transition indicates the existence of exceptional points (EPs) in topological edge states. Regarding the discontinuity of ∂η, we investigate a two-level non-Hermitian model and establish a connection between the points of discontinuity of ∂η and EPs of bulk states. By studying this connection in more general lattice models, we find that some models have discontinuity of ∂η, implying the existence of EPs in bulk states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. M. Bender, Making sense of non-Hermitian Hamiltonians, Rep. Prog. Phys. 70(6), 947 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  2. H. Cao and J. Wiersig, Dielectric microcavities: Model systems for wave chaos and non-Hermitian physics, Rev. Mod. Phys. 87(1), 61 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  3. I. Rotter, A non-Hermitian Hamilton operator and the physics of open quantum systems, J. Phys. A Math. Theor. 42(15), 153001 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Y. Ashida, Z. Gong, and M. Ueda, Non-Hermitian physics, Adv. Phys. 69(3), 249 (2020)

    Article  ADS  Google Scholar 

  5. E. J. Bergholtz, J. C. Budich, and F. K. Kunst, Exceptional topology of non-Hermitian systems, Rev. Mod. Phys. 93(1), 015005 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  6. R. Lin, T. Tai, L. Li, and C. H. Lee, Topological non-Hermitian skin effect, Front. Phys. 18(5), 53605 (2023)

    Article  ADS  Google Scholar 

  7. S. Yao and Z. Wang, Edge states and topological invariants of non-Hermitian systems, Phys. Rev. Lett. 121(8), 086803 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  8. K. Yokomizo and S. Murakami, Non-Bloch band theory of non-Hermitian systems, Phys. Rev. Lett. 123(6), 066404 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  9. Z. Yang, K. Zhang, C. Fang, and J. Hu, Non-Hermitian bulk-boundary correspondence and auxiliary generalized Brillouin zone theory, Phys. Rev. Lett. 125(22), 226402 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  10. W. D. Heiss, The physics of exceptional points, J. Phys. A 45(44), 444016 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. T. Gao, E. Estrecho, K. Y. Bliokh, T. C. H. Liew, M. D. Fraser, S. Brodbeck, M. Kamp, C. Schneider, S. Höfling, Y. Yamamoto, F. Nori, Y. S. Kivshar, A. G. Truscott, R. G. Dall, and E. A. Ostrovskaya, Observation of non-Hermitian degeneracies in a chaotic exciton–polariton billiard, Nature 526(7574), 554 (2015)

    Article  ADS  Google Scholar 

  12. B. Zhen, C. W. Hsu, Y. Igarashi, L. Lu, I. Kaminer, A. Pick, S. L. Chua, J. D. Joannopoulos, and M. Soljačić, Spawning rings of exceptional points out of Dirac cones, Nature 525(7569), 354 (2015)

    Article  ADS  Google Scholar 

  13. C. Hahn, Y. Choi, J. W. Yoon, S. H. Song, C. H. Oh, and P. Berini, Observation of exceptional points in reconfigurable non-Hermitian vector-field holographic lattices, Nat. Commun. 7(1), 12201 (2016)

    Article  ADS  Google Scholar 

  14. D. Zhang, X. Q. Luo, Y. P. Wang, T. F. Li, and J. Q. You, Observation of the exceptional point in cavity magnon-polaritons, Nat. Commun. 8(1), 1368 (2017)

    Article  ADS  Google Scholar 

  15. M. A. Miri and A. Alù, Exceptional points in optics and photonics, Science 363(6422), eaar7709 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  16. S. Wang, B. Hou, W. Lu, Y. Chen, Z. Q. Zhang, and C. T. Chan, Arbitrary order exceptional point induced by photonic spin-orbit interaction in coupled resonators, Nat. Commun. 10(1), 832 (2019)

    Article  Google Scholar 

  17. L. Xiao, T. Deng, K. Wang, Z. Wang, W. Yi, and P. Xue, Observation of non-Bloch parity-time symmetry and exceptional points, Phys. Rev. Lett. 126(23), 230402 (2021)

    Article  ADS  Google Scholar 

  18. H. Hu, S. Sun, and S. Chen, Knot topology of exceptional point and non-Hermitian no–go theorem, Phys. Rev. Res. 4(2), L022064 (2022)

    Article  Google Scholar 

  19. F. K. Kunst, E. Edvardsson, J. C. Budich, and E. J. Bergholtz, Biorthogonal bulk–boundary correspondence in non-Hermitian systems, Phys. Rev. Lett. 121(2), 026808 (2018)

    Article  ADS  Google Scholar 

  20. C. H. Lee and R. Thomale, Anatomy of skin modes and topology in non-Hermitian systems, Phys. Rev. B 99(20), 201103 (2019)

    Article  ADS  Google Scholar 

  21. N. Okuma, K. Kawabata, K. Shiozaki, and M. Sato, Topological origin of non-Hermitian skin effects, Phys. Rev. Lett. 124(8), 086801 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  22. N. Okuma and M. Sato, Non-Hermitian skin effects in Hermitian correlated or disordered systems: Quantities sensitive or insensitive to boundary effects and pseudo-quantum-number, Phys. Rev. Lett. 126(17), 176601 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  23. K. Zhang, Z. Yang, and C. Fang, Universal non-Hermitian skin effect in two and higher dimensions, Nat. Commun. 13(1), 2496 (2022)

    Article  ADS  Google Scholar 

  24. Z. Lin, H. Ramezani, T. Eichelkraut, T. Kottos, H. Cao, and D. N. Christodoulides, Unidirectional invisibility induced by PT-symmetric periodic structures, Phys. Rev. Lett. 106(21), 213901 (2011)

    Article  ADS  Google Scholar 

  25. S. Yao, F. Song, and Z. Wang, Non-Hermitian Chern bands, Phys. Rev. Lett. 121(13), 136802 (2018)

    Article  ADS  Google Scholar 

  26. T. S. Deng and W. Yi, Non-Bloch topological invariants in a non-Hermitian domain wall system, Phys. Rev. B 100(3), 035102 (2019)

    Article  ADS  Google Scholar 

  27. T. Liu, Y. R. Zhang, Q. Ai, Z. Gong, K. Kawabata, M. Ueda, and F. Nori, Second-order topological phases in non-Hermitian systems, Phys. Rev. Lett. 122(7), 076801 (2019)

    Article  ADS  Google Scholar 

  28. S. Longhi, Non-Bloch-band collapse and chiral Zener tunneling, Phys. Rev. Lett. 124(6), 066602 (2020)

    Article  ADS  Google Scholar 

  29. K. Zhang, Z. Yang, and C. Fang, Correspondence between winding numbers and skin modes in non-Hermitian systems, Phys. Rev. Lett. 125(12), 126402 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  30. K. Kawabata, N. Okuma, and M. Sato, Non-Bloch band theory of non-Hermitian Hamiltonians in the symplectic class, Phys. Rev. B 101(19), 195147 (2020)

    Article  ADS  Google Scholar 

  31. H. Shen, B. Zhen, and L. Fu, Topological band theory for non-Hermitian Hamiltonians, Phys. Rev. Lett. 120(14), 146402 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  32. Z. Gong, Y. Ashida, K. Kawabata, K. Takasan, S. Higashikawa, and M. Ueda, Topological phases of non-Hermitian systems, Phys. Rev. X 8(3), 031079 (2018)

    Google Scholar 

  33. K. Kawabata, T. Bessho, and M. Sato, Classification of exceptional points and non-Hermitian topological semimetals, Phys. Rev. Lett. 123(6), 066405 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  34. K. Kawabata, K. Shiozaki, M. Ueda, and M. Sato, Symmetry and topology in non-Hermitian physics, Phys. Rev. X 9(4), 041015 (2019)

    Google Scholar 

  35. H. Zhou and J. Y. Lee, Periodic table for topological bands with non-Hermitian symmetries, Phys. Rev. B 99(23), 235112 (2019)

    Article  ADS  Google Scholar 

  36. L. Herviou, N. Regnault, and J. H. Bardarson, Entanglement spectrum and symmetries in non-Hermitian fermionic non-interacting models, SciPost Phys. 7, 069 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  37. C. C. Wojcik, X. Q. Sun, T. Bzdušek, and S. Fan, Homotopy characterization of non-Hermitian Hamiltonians, Phys. Rev. B 101(20), 205417 (2020)

    Article  ADS  Google Scholar 

  38. P. Y. Chang, J. S. You, X. Wen, and S. Ryu, Entanglement spectrum and entropy in topological non-Hermitian systems and nonunitary conformal field theory, Phys. Rev. Res. 2(3), 033069 (2020)

    Article  Google Scholar 

  39. L. M Chen, S. A. Chen, and P. Ye, Entanglement, non-hermiticity, and duality, SciPost Phys. 11, 003 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  40. S. Sayyad, J. Yu, A. G. Grushin, and L. M. Sieberer, Entanglement spectrum crossings reveal non-Hermitian dynamical topology, Phys. Rev. Res. 3(3), 033022 (2021)

    Article  Google Scholar 

  41. Y. B. Guo, Y. C. Yu, R. Z. Huang, L. P. Yang, R. Z. Chi, H. J. Liao, and T. Xiang, Entanglement entropy of non-Hermitian free fermions, J. Phys.: Condens. Matter 33(47), 475502 (2021)

    Google Scholar 

  42. L. M. Chen, Y. Zhou, S. A. Chen, and P. Ye, Quantum entanglement of non-Hermitian quasicrystals, Phys. Rev. B 105(12), L121115 (2022)

    Article  ADS  Google Scholar 

  43. S. Longhi, Topological phase transition in non-Hermitian quasicrystals, Phys. Rev. Lett. 122(23), 237601 (2019)

    Article  ADS  Google Scholar 

  44. Q. B. Zeng and Y. Xu, Winding numbers and generalized mobility edges in non-Hermitian systems, Phys. Rev. Res. 2(3), 033052 (2020)

    Article  Google Scholar 

  45. Y. Liu, X. P. Jiang, J. Cao, and S. Chen, Non-Hermitian mobility edges in one-dimensional quasicrystals with parity-time symmetry, Phys. Rev. B 101(17), 174205 (2020)

    Article  ADS  Google Scholar 

  46. Y. Liu, Q. Zhou, and S. Chen, Localization transition, spectrum structure, and winding numbers for one-dimensional non-Hermitian quasicrystals, Phys. Rev. B 104(2), 024201 (2021)

    Article  ADS  Google Scholar 

  47. N. Hatano and D. R. Nelson, Localization transitions in Non-Hermitian quantum mechanics, Phys. Rev. Lett. 77(3), 570 (1996)

    Article  ADS  Google Scholar 

  48. N. Hatano and D. R. Nelson, Vortex pinning and non-Hermitian quantum mechanics, Phys. Rev. B 56(14), 8651 (1997)

    Article  ADS  Google Scholar 

  49. N. Hatano and D. R. Nelson, Non-Hermitian delocalization and eigenfunctions, Phys. Rev. B 58(13), 8384 (1998)

    Article  ADS  Google Scholar 

  50. Q. Lin, T. Li, L. Xiao, K. Wang, W. Yi, and P. Xue, Observation of non-Hermitian topological Anderson insulator in quantum dynamics, Nat. Commun. 13(1), 3229 (2022)

    Article  ADS  Google Scholar 

  51. C. M. Bender, Introduction to PT-symmetric quantum theory, Contemp. Phys. 46(4), 277 (2005)

    Article  ADS  Google Scholar 

  52. J. Wiersig, Nonorthogonality constraints in open quantum and wave systems, Phys. Rev. Res. 1(3), 033182 (2019)

    Article  Google Scholar 

  53. K. Petermann, Calculated spontaneous emission factor for double-heterostructure injection lasers with gain-induced waveguiding, IEEE J. Quantum Electron. 15(7), 566 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  54. K. G. Makris, R. El-Ganainy, D. N. Christodoulides, and Z. H. Musslimani, Beam dynamics in PT symmetric optical lattices, Phys. Rev. Lett. 100(10), 103904 (2008)

    Article  ADS  Google Scholar 

  55. H. Schomerus, Excess quantum noise due to mode nonorthogonality in dielectric microresonators, Phys. Rev. A 79(6), 061801 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  56. J. Wiersig, A. Eberspächer, J. B. Shim, J. W. Ryu, S. Shinohara, M. Hentschel, and H. Schomerus, Nonorthogonal pairs of copropagating optical modes in deformed microdisk cavities, Phys. Rev. A 84(2), 023845 (2011)

    Article  ADS  Google Scholar 

  57. Y. V. Fyodorov and D. V. Savin, 0, Statistics of resonance width shifts cLS cL SI gnature of eigenfunction nonorthogonality, Phys. Rev. Lett. 108(18), 184101 (2012)

    Article  ADS  Google Scholar 

  58. K. G. Makris, L. Ge, and H. E. Türeci, Anomalous transient amplification of waves in non-normal photonic media, Phys. Rev. X 4(4), 041044 (2014)

    Google Scholar 

  59. M. Davy and A. Z. Genack, Selectively exciting quasinormal modes in open disordered systems, Nat. Commun. 9(1), 4714 (2018)

    Article  ADS  Google Scholar 

  60. M. Davy and A. Z. Genack, Probing nonorthogonality of eigenfunctions and its impact on transport through open systems, Phys. Rev. Res. 1(3), 033026 (2019)

    Article  Google Scholar 

  61. F. Song, S. Yao, and Z. Wang, Non-Hermitian topological invariants in real space, Phys. Rev. Lett. 123(24), 246801 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  62. T. D. Lee and L. Wolfenstein, Analysis of CP-noninvariant interactions and the A:10, k20 system, Phys. Rev. 138(6B), B1490 (1965)

    Article  ADS  Google Scholar 

  63. H. Wang, Y. H. Lai, Z. Yuan, M. G. Suh, and K. Vahala, Petermann-factor sensitivity limit near an exceptional point in a Brillouin ring laser gyroscope, Nat. Commun. 11(1), 1610 (2020)

    Article  ADS  Google Scholar 

  64. J. Cheng, X. Zhang, M. H. Lu, and Y. F. Chen, Competition between band topology and non-Hermiticity, Phys. Rev. B 105(9), 094103 (2022)

    Article  ADS  Google Scholar 

  65. Z. Oztas and N. Candemir, Su–Schrieffer–Heeger model with imaginary gauge field, Phys. Lett. A 383(15), 1821 (2019)

    Article  ADS  MATH  Google Scholar 

  66. X. R. Wang, C. X. Guo, and S. P. Kou, Defective edge states and number-anomalous bulk-boundary correspondence in non-Hermitian topological systems, Phys. Rev. B 101(12), 121116 (2020)

    Article  ADS  Google Scholar 

  67. W. Zhu, W. X. Teo, L. Li, and J. Gong, Delocalization of topological edge states, Phys. Rev. B 103(19), 195414 (2021)

    Article  ADS  Google Scholar 

  68. Y. Zhou, L. M. Chen, and P. Ye, to be appeared (2023)

  69. J. W. Demmel, Nearest defective matrices and the geometry of ill-conditioning, Reliable Numer. Comput. 44, 35 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  70. C. H. Lee, P. Ye, and X. L. Qi, Position-momentum duality in the entanglement spectrum of free fermions, J. Stat. Mech. 2014(10), P10023 (2014)

    Article  Google Scholar 

  71. C. H. Lee and P. Ye, Free-fermion entanglement spectrum through Wannier interpolation, Phys. Rev. B 91(8), 085119 (2015)

    Article  ADS  Google Scholar 

  72. Y. Long, H. Xue, and B. Zhang, Non-Hermitian topological systems with eigenvalues that are always real, Phys. Rev. B 105(10), L100102 (2022)

    Article  ADS  Google Scholar 

  73. A. Zettl, Sturm-Liouville Theory, 121, American Mathematical Society, 2012

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC) Grant No. 12074438, the Guangdong Basic and Applied Basic Research Foundation under Grant No. 2020B1515120100, the Open Project of Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices under Grant No. 2022B1212010008, and the Fundamental Research Funds for the Central Universities, Sun Yat-sen University (No. 23ptpy05).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Ye.

Ethics declarations

Declarations The authors declare that they have no competing interests and there are no conflicts.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, YY., Zhou, Y., Chen, LM. et al. Detecting bulk and edge exceptional points in non-Hermitian systems through generalized Petermann factors. Front. Phys. 19, 23201 (2024). https://doi.org/10.1007/s11467-023-1337-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-023-1337-8

Keywords

Navigation