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ABSTRACT

In this  big  data era,  the use of  large dataset  in conjunction with machine
learning  (ML)  has  been  increasingly  popular  in  both  industry  and
academia. In recent times, the field of materials science is also undergoing
a  big  data  revolution,  with  large  database  and  repositories  appearing
everywhere.  Traditionally,  materials  science  is  a  trial-and-error  field,  in
both  the  computational  and  experimental  departments.  With  the  advent
of  machine  learning-based  techniques,  there  has  been  a  paradigm  shift:
materials can now be screened quickly using ML models and even gener-
ated based on materials with similar properties; ML has also quietly infil-
trated  many  sub-disciplinary  under  materials  science.  However,  ML
remains  relatively  new  to  the  field  and  is  expanding  its  wing  quickly.
There are a plethora of readily-available big data architectures and abun-
dance of ML models and software; The call to integrate all these elements
in a comprehensive research procedure is becoming an important direction
of material science research. In this review, we attempt to provide an intro-
duction  and  reference  of  ML  to  materials  scientists,  covering  as  much  as
possible the commonly used methods and applications, and discussing the
future possibilities.
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 1   Introduction

Commonly recognized as the fourth paradigm of science
[1–4], machine learning (ML) has played a crucial role in
the  development  of  the  data-driven  scientific  process,
shaping the changes in experimental methodology, from
measurement  to  data  analysis,  assisting  the  proving  of
mathematical  theorem,  and  finding  new  discoveries  in
areas that were once deemed impossible.  In the field of
computational  material  science,  the  methods  have  been

enriched  by  the  efficient  high-throughput  ML-aided
simulation/data generation and data-driven discovery [5,
6]. In experiments and materials synthesis, the advances
in ML have helped researchers to efficiently analyze the
data  and  identify  hidden  features  within  the  large
dataset [7–9].

Discovery  of  new  internal  logics,  patterns,  or  rules
[10–13],  and  the  study  of  complex  systems,  including
nanostructures  [14–29],  alloys  [30–35],  superlattices  [22,
36–38],  surfaces  [39–41],  and  interfaces  [40, 42–46],  as
well  as  from  materials  to  devices  [47–48],  are  typical
research topics in materials science. These areas could be
addressed  according  to  user  specifications  [49–50]  by
leveraging  ML  and  big  data  statistical  methods  [51],
which have advanced to a stage where users can utilize
them  to  achieve  large  and  complicated  objectives  with
complex models. By breaking down broad objectives into
smaller tasks, corresponding ML algorithms and objectives
that are suitable can be identified and applied.

There are numerous comprehensive surveys on ML in
material science [52–60]. In this review, we focus on the
application  of  ML  in  material  science,  discussing  the
recent  advances  in  ML,  illustrating  the  basic  principles
of  applying  ML  in  materials  science,  and  summarizing
the current applications and briefly introducing the ML
algorithms involved.

 2   Basics on machine learning

ML  has  a  long  history  [61–67].  However,  it  has  only
returned to the spotlight recently due to the compounding
ability  it  has  gained  from  the  surge  in  big  data  and
improving  data  infrastructure  and  computing  power.
Stemmed from statistical  learning, ML has gained huge
successes and popularity in many other tasks and has far-
reaching  influences  in  many  fields,  including  physics,
chemistry and material science. In this section, the basic
ideas and concepts in ML and essential milestones in its
illustrious history are covered.

ML can be broadly defined as computational methods
using experience (available past information) to improve
future performance or to make accurate predictions [68].
Typical  ML  methods  involve  three  parts:  the  inputs
(previously  obtained  data),  outputs  (predictions),  and
algorithms.  The  sample  size  (sample  complexity)  and
the  time  &  space  complexity  of  algorithms  are  crucial
for ML [68].  Therefore, the ML techniques are different
from  conventional  methods  such  as  experimental
measurements  or  computer  simulations,  but  are  related
to  data  analysis  and  statistics.  In  more  general  terms,
ML techniques are data-driven methods, which combines
the fundamental concepts of computer science with ideas
from statistics, probability, and optimization. ML can be
integrated with other disciplines, resulting in multi-disci-
pline techiques such as quantum ML or physics-informed
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neural networks, materials science-based learning.
In ML, the “standard” or conventional learning tasks

have  been  extensively  studied,  which  include  classifica-
tion,  regression,  ranking,  clustering,  and  dimensionality
reduction  or  manifold  learning  [68].  The  problems
related to the above tasks are listed in Fig. 1. The definitions
and  terminology  commonly  used  in  ML  for  different
learning stages are listed in Fig. 2. The typical stages of
a learning process are also shown in Fig. 3, which can be
briefly  described  as  follows:  with  a  given  collection  of
labeled  examples,  one  can  firstly  divide  the  data/
samples  into  three  groups,  namely,  training  samples,
validation  data  and  test  samples,  then  the  relevant
features associated to the desired properties are chosen,
which are next used to train the pre-determined learning
algorithm. This is done by adjusting the hyperparameters
Θ in order to ensure that the hypothesis Θ0 has the best
performance  on  the  validation  sample.  Typical  learning
scenarios  include  supervised  learning,  unsupervised
learning, semi-supervised learning, transductive inference,
on-line learning, reinforcement learning, active learning,
and  more  other  complex  learning  scenarios.  Different
from  traditional  data  analysis,  ML  is  fundamentally
about  generalization  [68].  Spectacularly,  the  neural
network-based ML is able to approximate functions in a
very  high  dimension  with  unprecedented  efficiency  and
accuracy  [2],  and  therefore  it  can  be  used  for  complex
tasks in a wide-range of applications.

 3   Recent progress in machine learning

Recently, the ML community has seen breakthroughs in
many  traditional  AI  tasks  and  classical  challenging
scientific  tasks.  This  leap  of  improvement  is  being
powered  by  both  the  new  grounds  in  the  underlying

theory, the overall implementation and architecture, and
the massive surge in data and data infrastructures. This
section  covers  the  advancement  of  ideas  from  various
areas  of  applications  of  Artificial  Intelligence – Natural
Language  Processing  (NLP),  Computer  Vision  (CV),
Reinforcement  Learning  (RL),  Explainability  Artificial
Intellignce (XAI), etc.

 3.1   Classical machine learning application areas

In  the  field  of  natural  language  processing  and  under-
standing,  ML  models  have  made  huge  progress  with
Attention  Transformer  networks  [69]  and  pre-training
techniques.  SuperGLUE  [70]  is  a  natural  language
understanding  benchmark  consisting  of  many  tasks,
which  requires  in-depth  understanding  of  short  proses
and sentences. With superhuman performances at Super-
GLUE benchmarks,  it  has  been  demonstrated  that  ML
is able to model both understanding of natural language
and generation of  relevant  natural  language in  context.
The technique that has led to this leap in performance is
pre-training [71], which refers to “training a model with
one task to help it form parameters that can be used in
other  tasks”.  Prompt  learning  is  a  form  of  ML  that
works  with  large  models,  to  learn  knowledge  from  a
language  model  simply  by  prompting  the  learnt  model
with  various  types  of  prompts.  BERT-like  models  have
also been extended to process data from realms outside
natural  language,  like  Programming  Languages,  e.g.,
CodeBERT  [72],  and  Images  [73],  and  had  been  very
successful in these realms too. Table 1 lists works relevant
to  several  main  ideas  in  machine  learning  for  Natural
Language Processing (NLP).

Unsupervised  learning  has  made  strides  in  computer
vision  tasks,  with  models  being  able  to  identify  subject
in video, or identify poses of objects from point cloud in

 
Fig. 1  List of the conventional machine learning tasks and the problems tackled [68].
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a video without labels. In the area of unsupervised learning
for  time-series  data,  ML  models  are  able  to  effectively
identify features from time-series data for both classifica-
tion and prediction. Recently, there has been many work
that extends the use of transformers to the characterization
and  prediction  of  extra-long  timeseries  sequences,
Informer [99], Longformer [100]. Table 2 lists works relevant
to several main ideas in ML for Computer Vision (CV).

Reinforcement  learning  is  the  training  of  agents  to
make a sequence of reward-optimal decisions in an envi-
ronment, often modelled as maximizing reward expectation
in  a  partial  Markov  Decision  Process  (MDP).  In  rein-
forcement learning thrust,  there is  a huge improvement
in  the  ability  of  state-of-the-art  models  to  effectively
navigate extra large search space to search for sequential

actions  to  maximize  task  goals.  Most  notably,  models
like  AlphaGo  [116]  and  AlphaHoldem  [117]  have  been
able  to  navigate  extra  large  search  spaces  with  Monte
Carlo  search  tree  methods  on  latent  representation  of
state  space  and  action.  Classical  methods  like
State–Action–Reward–State–Action  (SARSA)  [118],  Q-
learning [119], TD-learning explores action space with a
reward function, and learns a matching of state space to
action,  a  policy  or  the q-value  of  the  actions.  In  2012,
apprenticeship  learning  [120]  initiated  by  Abbeel,
proposes  to  define  the  architecture  such  that  agent  is
able to learn directly from observations of  a task being
completed,  instead  of  specifying  the  steps  of  a  task.
There is also a trend to integrate reinforcement learning
with  meta-learning  in  order  to  train  multi-tasks  agents
to  perform  a  variety  of  tasks  [121, 122]. Table  3 lists
works  relevant  to  several  main  ideas  in  ML  for  Rein-
forcement Learning (RL).

Many  human  teaching  or  learning  techniques  have
been  the  source  of  inspiration  for  advancement  of  this
thrust. With the emergence of effective sampling techniques
amongst  others,  the  Efficient  Zero  [140]  models  have
been  able  to  progress  by  accumulating  experiences
through  randomly  playing  against  itself  repeatedly,
which  improves  the  ability  of  game-playing  models.
Reinforcement learning has not only made breakthroughs
in  all-information  open  games;  recently  there  has  also
been  breakthrough  in  multi-player  partial  information
games like Texas Hold’em and Alpha Hold’em [117]. For
multi-agent  reinforcement  learning,  the  common bench-
mark  task  StarCraft  Multi-Agent  Challenge  (SMAC)
[141] can now be effectively completed by reinforcement

 
Fig. 2  List of typical machine learning terminologies [68].

 
Fig. 3  Illustration  of  the  typical  stages  of  a  learning
process [68].

Table  1  Natural language processing (NLP) ideas, techniques and models.

Ideas & technique Relevant development and models
Pre-training Ref. [71], Ref. [74], BLIP [75], Pretrained transformers [76], Ref. [77]
Fine-tuning Ref. [78], Ref. [79]
Bidirectional encoder BERT [80], Albert [81], Robustly optimized BERT pre-training approach (RoBERTa) [82],

CodeBERT [72], BeiT [73]
Transformer Ref. [69], Ref. [83], Ref. [84], Transfomer memory as search index [85]
Attention prompt Ref. [86], AutoPrompt [87], OpenPrompt [88]
Learning extra huge models Open pretrained transfomer (OPT 175B) [89], Jurassic-1 [90], Generative pre-trained transformer 3

(GPT-3) [91], CLD-3 [92]
End-to-end model Word2Vec [93], Global vectors for word representation (GLoVE) [94], Context2Vec [95],

Structure2Vec [96], Driver2Vec [97], wav2Vec [98]
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learning models, which effectively decomposes the coop-
eration task into role-learning by large  neural  networks
[142] amongst many other techniques [143, 144]. This is
a breakthrough for multi-agent reinforcement learning.

 3.2   On quantum machine learning

Quantum ML is  one of  the big next steps of  ML [145].
While  error-correction  still  limits  our  ability  to  build  a
fully quantum computer, it is possible to innovate with
hybrid algorithms that uses quantum sub-algorithms or
components  to  speed-up,  robustify  ML  or  simply  to
expand  the  theoretical  boundaries  of  ML  with  2  norm
probabilities.  In  quantum  computing,  we  can  compute
the similarity between feature vectors with state overlaps
(denoted  by  bra  and  ket)  instead  of  kernels  via  inner
product. Consider a simple quantum ML scenario below:

K (x, x′) = ⟨ϕ(x), ϕ (x′)⟩ → QKE (x, x′)

= ⟨ϕ(x) | ϕ (x′)⟩ . (3.1)

The feature space in quantum ML can be obtained by
state preparation. For instance,

ϕ : [x1;x2] → (x1|0⟩+ x2|1⟩)⊗ (x1|0⟩+ x2|1⟩) . (3.2)

The corresponding circuit is denoted by

SAB
x (|0⟩A ⊗ |0⟩B) = SA

x |0⟩A ⊗ SB
x |0⟩B . (3.3)

We can have quantum kernel estimation [see Eq. (1)]
[146],  or  quantum  feature  spaces  [147]  in  hybrid  ML
algorithms  or  intermediate  scale  hybrid  machines  [148].
This  offers  a  new  insight  to  the  types  of  kernels  and
linear  algebra  that  we  can  use  to  improve  ML  in  the
classical  sense.  Quantum  physics  or  chemistry  can  be

more  effectively  simulated  in  the  primitive  sense  using
quantum  ML  algorithm.  The  hybrid  ML  coupled  with
quantum  material  science  is  potentially  an  important
stepping  stone  for  material  scientists  and  computer
scientists alike to innovate and research more efficiently.

 3.3   Theory, explainable AI and verification

In  classical  computer  science,  the  very  hard  case  of
Travelling  Salesman  Problem  (TSP),  a  classical  NP
problem,  has  been  solved  with  very  satisfactory  result
based on neural networks, which either blend with pre-
training  of  a  solver  of  a  mini-TSP  or  a  reinforcement
learning-based  [149]  strategy  selector  combined  with
heuristic.  Other prominent NP problems like Maximum
Independent  Set  (MIS)  or  Satisfiability  Modulo  Test
(SMT)  have  also  been  solved  satisfactorily  with  ML-
guided  heuristic  search  [150].  This  demonstrates  that
ML models  have been able  to push through boundaries
that  have  been  set  forth  by  traditional  theoretical
computer  science.  This  breakthrough  has  been  made
possible  by  effective  latent  representation  learning  of
essential features of the problem itself and the solver.

Explainability XAI techniques like Integrated Gradients
(IG) [151],  Local  Interpretable Model-agnostic  Explana-
tions  (LIME)[152],  Shapley  Additive  Explanations
(SHAP)[153],  SimplEx  [154]  and  various  others  have
gained  much  attention.  LIME  attempts  to  identify  hot
areas in the image responsible for features that result in
the prediction. SimplEx [154] is an explainability technique
that attempts to explain a prediction with linear combi-
nations  of  samples  drawn  from  the  corpus  of  training
data;  the  technique  returns  a  combination  of  training
samples  that  has  contributed  to  the  predictions.  There

Table  2  Computer vision (CV) ideas, techniques and references.

Ideas & techniques Relevant literature
Visual models Visual transformer [101], Flamingo (LM) [102]
Image-text processing CoCa [103], FuseDream [104], CLIP [105]
Convolutional neural network DEtection transformer (DETR)[106], LiT [107], Ref. [108]
Image rendering Dall-E [109], Review [110], Neural radiance field (NeRF) [111]
Point cloud reconstruction PointNorm [112], Ref. [113], Residual MLP [114], Learning on point cloud [115]

Table  3  Reinforcement learning (RL) ideas, techniques and references.

Ideas & techniques Relevant literature
Types of RL Q-learning [119], SARSA [118], Temporal difference (TD)-learning [123]
RL algorithm Self-training [124], Deep Q-learning (DQN) [125], Deep deterministic policy gradient (DDPG)

[126], Offline [127]
Apprenticeship learning efficient RL SayCan[128], Q-attention [129], Imitation learning [130] Replay with compression [131],

Decision transformer [132]
Evolving curriculum Adversarially compounding complexity by editing levels (ACCEL) [133], Paired open-ended

trailblazer (POET) [134], Autonomous driving scene render (READ) [135]
Bandit problem Bandit learning [136], Batched bandit [137], Dueling bandit [138], Upper confidence bound

(UCB) [139]
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are also efforts to incorporate explainability by adding a
layer  at  the  end  of  neural  networks  for  capturing
explainability  information.  Explainable  Graph  Neural
Network  NN)  techniques  that  apply  specifically  to
Graph  Neural  Networks  are  broadly  classified  into
several  classes:  Gradients/features  based  Guided  Back-
propagation  (BP)  [155],  Perturbation  Based  GNN
Explainer [156], SubgraphX [157], Decomposition Based,
Surrogates  GraphLIME  [158]  and  Generation  [159].
These GNN XAI techniques are well-suited for explaining
feature  importance  for  predictions  at  either  the  node
level, edge level or graph level.

Verification  is  important  for  protecting  neural
network models against adversarial behaviours; adversary
behaviours  can  be  characterized  by  ill-intent  shifts  of
planes  of  separation  in  the  model  so  that  it  is  more
likely to err on otherwise correctly classified samples or
corrupting input samples with noise or otherwise. Neural
network robustness verification techniques like Rectified
Linear  Unit-Plex  (ReLUPlex)  [160]  and  alpha-beta
CROWN  [161]  have  also  made  huge  progress.  It  is  a
numerical bounds back-propagation technique where the
score  boundaries  for  each  class  are  back-propagated
throughout  the  network  to  determine  the  overlap
between  class  scores.  Specifically,  in  the  non-linear
portions  of  the  neural  network,  the  ReLU  activation
functions  were  bounded  with  linear  functions.  Safety-
critical  applications  have  also  been  secured  with  neural
network verification techniques, and the Airborne Collision
Avoidance  System  for  Unmanned  Aircraft  (ACAS  Xu)
[162]  is  an  ensemble  of  45  neural  networks  whose
purpose  is  to  give  anti-collision  advice  to  flying  planes,
and  utilize  ReLUplex  methods  to  make  their  advice
robust.

 3.4   Stack optimizations for deep learning

Graphical Processing Units (GPU) are processors capable
of  parallel  processing  instructions.  Standard  GPU  deep
learning  speedup  techniques  include  convolutional  layer
reuse,  featuremap  reuse  and  filter  reuse,  and  memory
access  is  a  common  bottleneck  [163].  The  basic  idea  is
that functions that are computed many times should be
optimized on all  levels,  from high to low,  including the
instruction set level. The entire software stack, compiler
technologies,  and  code  generation  have  been  optimized
for  deep learning  computations  on GPU.  Deep learning
GPU is known for its high energy usage; reducing energy
usage  is  an  essential  objective  for  GPU  optimization
research [164]. The requirement for the scale of hardware
architecture for ML is also loosening up, as engineers are
packing  engineering  insights  from  large  systems  into
smaller and energy-conserving systems, TensorFlow Lite
Micro [165].

ML theory  and  practice  have  made  massive  progress
in  recent  years.  It  is  now  transforming  the  scientific

methods  and  has  become  deeply  integrated  with  many
scientific  and  humanities  [166]  fields.  Application-wise,
ML models  have  been  trusted  to  make  more  and  more
crucial  decisions  for  the well-functioning of  society.  For
instance, in the criminal justice setting [167], ML models
have been used to set bail for defendants; in the finance
sector,  models  can  help  make  decisions  [168];  in  the
energy  sector,  they  predict  power  generation  efficiency
for  wind  power  stations.  While  neural  network  might
still be a black box and can be hard to verify at times,
its effectiveness as a predictor and sometimes generator
has  already  been  relied  upon  by  many  societal  sectors
for greater efficiency and effectiveness.

 4   Development trend of machine learning
for materials science

ML  has  helped  material  scientist  achieve  their  study
aims in  a  wide  variety  of  tasks,  most  prominently  as  a
screening tool in the design of a large variety of materi-
als,  which  include  energy  materials,  semiconductors,
polymer  design,  catalyst,  high  entropy  alloy,  etc.  The
trend  of  going  from  processing  a  single  dataset  to
achieving a specific aim to learning a latent representation
of the underlying structure, which can later be finetuned
to perform specific tasks, such as predicting the energeti-
cally  stable  structure  across  datasets,  is  rather  promi-
nent.

 4.1   From numerical analysis to feature engineering

Traditionally, ML has been used as an advanced numerical
regression tool to analyse experimental data in material
science and many other fields [169, 170]. The remarkable
ability  of  ML to  interpolate  data  has  allowed scientists
to explain phenomena and verify hypotheses effectively.

Traditional  material  science  ML  practitioners  often
concern  themselves  with  explicit  feature  engineering  of
specific  materials  [171].  Bhadeshia  [171]  has  outlined
four categories of models in material science; traditionally
ML  models  are  “models  used  to  express  data,  reveal
patterns,  or  for  implementation  in  control  algorithm”.
The  classical  works  that  involve  material  property
prediction mostly fall into the fourth category. Figure 4
illustrates  the  feature  engineering  process  for  material
science,  which  encompasses  four  stages:  feature  extrac-
tion; feature analysis; correlation and importance analy-
sis; and feature selection [172].

In material space, there are many degrees of freedoms,
such  as  the  atomic  coordinates,  coordination  numbers,
interatomic  distances,  and  the  position  of  the  various
species.  Often,  they  are  impractical  to  be  used  as  the
direct inputs to the algorithms, as they are not invariant
under translation and rotation. In feature extraction [see
Fig.  4(a)],  we  seek  to  convert  them  into  descriptors,
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which extract  the underlying symmetry and distinguish
systems that  are  truly  different  and not  just  a  product
of translations and/or rotations.

After the features are extracted, they undergo a series
of analysis to fine tune and reduce the dimensionality of
the descriptors space. The four commonly used methods,
shown  in Fig.  4(b),  are  the  filter  method,  embedded
method,  wrapper  method,  and  deep  learning  method.
With  the  analysis  process  completed,  a  mapping,  as
illustrated in Fig. 4(c), which relates the importance and
correlations among the selected features, can be used to
visualize their dependence. In turn, this aids the process
of  feature  selection,  in  which  many  suitable  subsets  of
features [see Fig. 4(d)] are chosen to proceed to the next
stage – fed  into  the  ML  algorithm  and  compared  to
obtain the best performing minimal subset.

 4.2   From feature engineering to representation learning

While  explicit  feature  engineering  is  a  practical  and
valuable task, it often restricts the type of task that ML
can perform and does not fully use its ability to learn a
generalized  representation  or  sound  separation  of
features  and  ability  to  interpolate  or  extrapolate  along

those  dimensions.  Moreover,  the task of  sifting through
a vast dataset is laborious and hard to manage for indi-
viduals. Furthermore, with the ever-expanding computing
power, the dimensionality of the features that is compu-
tationally  feasible  also  rapidly  scales  up,  allowing  the
consideration of more factors, which ultimately improves
the  accuracy  of  the  prediction  while  also  widening  the
coverage  of  material  types  screened.  Thus,  there  is  a
push towards representation learning,  an automation of
feature  engineering  of  a  large  material  dataset  [173],
which better captures the internal  latent features [174].
This  trend  encouraged  a  deeper  integration  in  both
development trends in ML and material science, coupled
with  a  concise  selection  of  ML  tools,  which  require  an
intuitive understanding of mathematical and theoretical
computer science ideas behind these tools.

In representation learning, the features are automatically
discovered  and  extracted  from  the  raw  data,  and  thus
complicated  patterns  that  are  hidden  from  the  human
user  but  are  highly  relevant  could  boost  the  accuracy
and effieciency of the ML model, which is highly dependent
on the quality of the selected features. Therefore, repre-
sentation learning excels in applications where the data
dimensionality is high and features extraction is difficult,

 
Fig. 4  Feature  engineering  for  ML  applications. (a) Feature  extraction  process.  Starting  from  material  space,  one  can
extract information from material space into chemical structures then to descriptors space. (b) Typical ML feature analysis
methods.  “FEWD” refers  to  Filter  method,  Embedded method,  Wrapper  method,  and Deep learning. (c) Correlation and
importance  analysis  of  selected features.  The feature  correlations  is  visualized in  the  diagram on the  left.  Diagram on the
right is normalized version of left diagram, where the colors indicate the relative correlation of every other feature for prediction
of  the  row/column  feature. (d) Various  feature  subsets  obtained  from  feature  engineering  analysis.  One  can  construct
features  with  linearly  independent  combination  of  subsets,  in  other  words,  subsets  of  features  are  basis.  Reproduced  with
permission from Ref. [172].

REVIEW ARTICLE FRONTIERS OF PHYSICS

Sue Sin Chong, et al., Front. Phys. 19(1), 13501 (2024)   13501-7

 



such as speech recognition and signal processing, object
recognition, and natural language processing [175].

Neural networks can be packed into layers or attention
blocks  that  can  be  integrated  into  a  single  neural
network.  Effective  embedding  of  information  that  is  a
dimensional reduction tool reduces the complexity of the
model, when upended upon the training pipeline, brings
us  to  end-to-end  learning. Figure  5 shows  a  simplified
pipeline  for  material  science  end-to-end  model,  where
datasets are turned into vectors by the encoder to use as
the  input  for  the  surrogate  model,  which  attempts  to
identify the latent representation that can be decoded to
generate predictions.

Representation learning has been applied in materials
science. By using the raw experimental X-ray absorption
near edge structure (XANES) spectra, Routh et al. [176]

managed  to  obtain  latent  features  after  performing
unsupervised  ML  methods.  The  raw  experimental  data
are  fed  into  an  autoencoder  that  includes  the  encoder
and  decoder,  which  uses  the  input  data  as  the  output
data,  while  information  is  passed  through  a  bottleneck
layer, as illustrated in Fig. 6.

 4.3   From representation learning to inverse design

After  learning  the  representations  that  are  critical  in
influencing  the  functionality  of  the  materials,  we  ought
to think: could we use them inversely, to generate novel
and  maybe  better  materials?  This  question  had  been
sought in 1999 by Franceschetti and Zunger [177], where
they successfully searched for the alloy of fixed elements
with  targeted  electronic  structure,  using  Monte  Carlo

 
Fig. 5  Infographic of End-to-End Model. End-to-End models take multi-modal dataset as inputs, and encodes them into
vectors  for  the  surrogate  model.  The  surrogate  model  then  learns  the  latent  representation,  which  makes  the  internal
patterns of these datasets indexable. One is then able to decode the latent representation into an output form of our choice,
which includes property predictions, generated novel materials and co-pilot simulation engines.

 
Fig. 6  Schematic  of  the  representation  learning  methods  used  in  the  structural  characterization  of  catalysts,  where  the
autoencoder, which includes the encoder and decoder, is used, with the input and output data being the same. Reproduced
with permission from Ref. [176].
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method only. This limited yet profound results show us
the vast usefulness of solving the inverse problem. Now,
armed with the computation power and advancement in
ML, we are in a better position to answer this question.
Generative models like Variational Autoencoders (VAE)
and Generative Adversarial Networks (GAN) have been
applied in the inverse design of molecules and solid-state
crystal.

By  combining  the  power  of  representation  learning
and  generative  models  into  a  single  extensive  model,
that is the joining of neural networks from several parts
of the workflow into a single network, many benefits can
be  reaped.  First  of  all,  the  ability  of  an  extensive
network  to  counter  noise  levels  in  the  training  dataset,
resulting  in  better  predictions  or  better-generated  solu-
tions.  Secondly,  the  latent  representation  learnt  from
each  part  of  the  pipeline  is  more  consistent  with  the
final  goal  of  experimentation  or  design.  Thirdly,  the
absence  of  human  error-prone  non-ML  intervention
helps experimenters focus on the overall goal and archi-
tecture.

By  using  discriminative  models,  generative  models,
and rapid simulation, whether standalone or in combina-
tion, one can construct sophisticated models that tackle
problems  ranging  from  predicting  density  functional
theory  (DFT)  properties  to  inverse  device  design  with
confidence.  One  can  also  explore  material  design  at

different scale and granularity with ML model as an aide.
An example is shown in Fig. 7, where both discriminative
and generative models are used jointly to design photon-
ics. When the dimensionality of the photonic structures
involved is very low, at the order of 1, analytical methods
are well-suited. However, as the dimensionality increases,
the  analytical  methods  are  no  longer  feasible,  and  the
ML  methods  are  required.  On  its  own,  discriminative
models  are  suitable  at  slightly  larger  parameters  space,
but when the degree of  freedom scales  up considerably,
generative model can be employed to reduce the dimen-
sionality.

 5   Databases in material science

Data is prevalent in material science; data which originates
from  every  aspect  and  process  of  material  science
research  endeavour  have  varying  types,  accuracy  and
genre. Table 4 lists the typical data types and database
that  are  used  in  ML  models.  A  material  science  task
often  includes  processing  a  combination  of  data  types
listed.

The broad spectrum of data types and multi-modules
of input data dictates that material science models need
to learn to integrate multi-modal data to produce mean-
ingful  research  results.  This  trend  also  means  that  the

 
Fig. 7  Depending on the degree  of  freedom (DOF) involved,  the machine learning methodologies  of  the photonic  design
vary. The analytical methods that are suitable for DOF of order unity are replaced by the discriminative model of ML. As
DOF increases, generative model is leveraged to bring down the dimensionality. Reproduced with permission from Ref. [178].
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material science community needs to embrace the software
and  statistical  revolution  that  will  propel  the  field
forward.

In order to use computer systems to process material
information,  material-related  nomenclatures  have  to
adapt  to  computer  processing  norms,  like  string.  Both
atomic and structure of molecules should be evident by
parsing strings, e.g. Simplified molecular-input line-entry
(SMILES), BigSMILES [197], Self-referencing embedded
strings (SELFIES) [198], Physical Information File (PIF)
[199].  Material  Science  datasets  are  often  implemented
in neural network data loaders like Deep Graph Library
[200].  The  ML  community’s  Datasets  have  codebases
that  organize  information  that  eases  software  engineers
to call and process with a library. Most quantum chemistry
software  is  softwareengineering  based  Application
Programming  Interface  (API)  to  share  and  process
Quantum Chemistrydata; it is written to store quantum

calculation  data  with  well-tested  and  scalable  database
norms  (like  schema)  and  eases  or  speedup  data  batch
processing. The basis for quantum chemistry libraries is
standardized;  typical  ones  include  Gaussian  Orbital
Basis (GTO), Plane Wave Basis (PW), and Numerically
Tabulated Atom-centered Orbitals (NAO). Table 5 lists
softwares  which  might  be  useful.  The  first  portion  lists
general  deep  learning  libraries  (APIs),  second  portion
lists  useful  libraries  for  machine  learning  tasks,  third
portion  lists  tools  that  might  be  useful  to  material
science.

 6   Machine learning descriptors for
material science

The  material  science  datasets  are  often  comprised  of
atomistic information with the coordinates of atoms, the

Table  4  Typical material science databases.

Data type Database
Computational data OQMD: Materials properties calculated from DFT [179,180], Materials project [181], Joint automated

repository for various integrated simulations (JARVIS) [182], AFLOW [183], MatCloud [184], MPDS [185],
NOMAD [186], C2DB [187], 2DMatPedia [188]

Crystallographic data ICSD [189], Crystallography open database (COD) [190], The NIST surface structure database (SSD4) [41],
Aspherical electron scattering factors [191], AlphaFold [192]

Imaging/spectra data MatBench [193], TEMImageNet [194], Single-atom library [195]
Other types Knowledge graph, e.g., propnet [196]

Table  5  Machine learning libraries. All descriptions were adapted from the references therein.

Library Library Description
General deep
learning libraries
(APIs)

Deepmind Jax [201] Open ML codebase by Deepmind. With its updated version of Autograd, JAX can
automatically differentiate native Python and NumPy code.

Keras [202] Free open source Python library for developing and evaluating deep learning models.
PyTorch [203] PyTorch is an open source machine learning framework based on the Torch library.
TensorFlow [204] Created by the Google Brain team, TensorFlow is an open source library for numerical

computation and large-scale machine learning.
Useful libraries for
machine learning
tasks

HuggingFace [205] Open NLP Library with Trained Models, API and Dataset Loaders.
OpenRefine [206] OpenRefine is an open-source desktop application for data cleanup and transformation to

other formats, an activity commonly known as data wrangling.
PyTorch Geometric
[207]

PyG (PyTorch Geometric) is a library built upon PyTorch to easily write and train Graph
Neural Networks (GNNs) for a wide range of applications related to structured data.

PyTorch lightning
[208]

PyTorch lightning is the deep learning framework for professional AI researchers and
machine learning engineers who need maximal flexibility without sacrificing performance at
scale.

VectorFlow [209] Optimized for sparse data in single machine environment.
Weights & Biases
[210]

W&B for experiment tracking, dataset versioning, and collaborating on ML projects.

Tools that might be
useful to material
science

Dscribe [211] Provides popular feature transformations (“descriptors”) for atomistic materials simulations,
including Coulomb matrix, Ewald sum matrix, sine matrix, Many-body tensor representation
(MBTR), Atom-centered symmetry funsction (ACSF) and Smooth overlap of atomic
positions (SOAP).

Open graph
database [212]

The open graph benchmark (OGB) is a collection of realistic, large-scale, and diverse
benchmark datasets for machine learning on graphs. OGB datasets are automatically
downloaded, processed, and split using the OGB Data Loader.

RDKit [213] Opensource library for converting molecules to SMILES string.
Spektral [214] Spektral is a Python library for graph deep learning, based on the Keras API and

TensorFlow 2.
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charges  on  the  atoms,  and  their  compositions.  To
capture  the  spatially  invariant  information,  the  local
environment  on  atomic  scale  is  oftenly  extracted,  such
as  the  list  of  neighbouring  atoms  and  their  relative
spatial positions. They are then compactified and propa-
gated as descriptors in the form of a vector, in a neural
network which maps this information to their properties
that  are  of  interests:  total  energy,  mass  density,  bulk
moduli, etc. In general, a good descriptor needs to have
the following qualities:

i)  Invariant  under  spatial  transformation  (arbitrary
translations, rotations, and reflections)

ii) Invariant under permutation/exchange of atoms of
identical  species,  i.e.,  only  a  unique  representation  for
each arrangement of atoms.

iii) Computationally cheap and easy to implement.
iv)  Minor  deviation  under  small  perturbations  in  the

atomic structure.
Clearly, the Cartesian coordinates of the atoms do not

satisfy the points i) and ii), even though it is the easiest
imaginable method. There are many different descriptors
that  have  been  tried  and  tested  in  material  science,
which  we  will  attempt  to  briefly  summarize  in  this
section,  but  it  is  by  no  means  exhaustive.  For  further
information and use examples on descriptors, the reader
is  recommended  to  the  articles  of  Li et  al.  [215]  and
Schmidt et al. [216].

 6.1   Pair-wise descriptor

Pair-wise descriptor is a type of descriptor that considers
each  and  every  possible  pair  of  atoms  in  the  system.
Examples  include Z-matrices,  Weyl  matrices,  and  more
recently,  the  Coulomb  matrices  [216].  A  figure  briefly
describing the Weyl matrices and Coulomb matrices are
shown  in Fig.  8(a).  In  the  work  of  Rupp et  al. [217],
Coulomb matrices were constructed for a set of organic
molecules  that  are  numerically  extracted  and  sorted
descendingly, then the Euclidean difference between the
vectors  of  eigenvalues  are  computed and defined as  the
distance between two molecules (with different dimensions
accounted  for  by  adding  trailing  zeroes  to  vectors).
Using  this  as  the  sole  descriptor,  they  developed  a  ML

approach  for  fast  and  accurate  prediction  of  molecular
atomization energy.  The same eigenvalue-based method
has  also  been  used  in  a  number  of  recent  studies  [218,
219]. The downsides of this method are the inabilility to
differentiate enantiometer [220] and the loss of informa-
tion, as the dimensions are reduced from N2 to N, which
can sometimes be an advantage [219].

As described, the Coulomb matrices methods are only
viable for finite system. To extend the pairwise descriptor
to  infinite  periodic  system,  Faber et  al.  [220]  proposed
three  different  methods:  Ewald  sum  matrices,  Sine
matrices,  and  Extended  coulomb-like  matrix,  and  their
results  show that  Sine  matrix  is  the  most  efficient  and
outputs the smallest error.

dαβ

Another  alternative,  the  partial  radial  distribution
function  (PRDF)  was  proposed  by  Schütt et  al. [221]
and  used  in  their  work  to  perform  fast  prediction  of
density  of  states  at  Fermi  level  for  different  types  of
solids.  The  pairwise  distances  between  two  atoms
type are considered, in the following equation for PRDF:

gαβ (r)=
1

NαVr

Nα∑
i=1

Nβ∑
j=1

θ
(
dαiβj− r

)
θ
(
r + dr − dαiβj

)
,

(6.1)

θ (x) Vr

Nα Nβ

α β

αi

where  is the step function,  is the volume of the
primitive cell, while  and  are the number of atoms
of  types  and .  Only  the  atoms  in  the  primitive  cell
are considered as the shell center, i.e., the atoms , see
Fig.  8(b).  This  function  is  invariant  under  translation,
rotation, and different choice of the unit cell.

 6.2   Local descriptor

The  most  intuitive  methods  to  describe  a  system  of
atoms  that  also  take  into  the  geometrical  aspect  into
account is the neighbour-based or local descriptor, as the
electron density is only weakly affected by distant atoms.
By  considering  the  neighbouring  atoms  of  a  selected
atom within a pre-determined cutoff radius, we can store
the  information  about  their  bonds,  such  as  the  bond
distance and angle.

Behler  and  Parinello  [222]  proposed  the  use  of  two

 

(r, r + dr)
Fig. 8  (a) The mathematical  description of  the Weyl  and Coulomb matrices. (b) The construction of  the PRDF sums,
where atoms covered by the yellow strip covering the radius  are considered. (b) Reproduced with permission from
Ref. [221].
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G1
i

G2
i

symmetry  functions,  the  radial  symmetry  function 
and angular symmetry function :

G1
i =

all∑
j ̸=i

e−η(Rij−Rs)
2

fc (Rij) , (6.2)

G2
i =21−ζ

all∑
j,k ̸=i

(1 + λcosθijk)ζ

× e−η(R2
ij+R2

ik+R2
jk)fc (Rij) fc (Rik) fc (Rjk) ,

(6.3)

Rij i j θijk
i, j, k

λ(=  + 1,−1) η ζ

Rc fc

where  is  the  distance  between  atom  and ,  is
the angle between the three atoms . There are four
free  parameters  in  total, , , ,  and  the
implicit  in , defined as

fc (Rij) =

 0.5×
[

cos
(
πRij

Rc

)
+ 1

]
forRij ≤ Rc;

0 forRij > Rc.

(6.4)

The  symmetry  functions  capture  the  local  environment
of  an  atoms,  are  invariant  to  permutation,  translation,
rotation,  and  changes  in  coordination  number.  They
have  been  used  in  reproducing  potential  energy  surface
(PES)  at  DFT  accuracy.  This  formalism  was  extended
and  studied  in  extensive  details  in  Behler  [223],  where
the  set  of  symmetry  functions  are  coined  the  “Atom-
centered  Symmetry  Functions  (ACSFs)”.  A  further
generalization  was  done  by  Seko et  al. [224],  which
included  basis  functions  other  than  the  Gaussian  in
Eq. (2), such as Neumann functions and Bessel functions.
They  also  introduced  the  use  of  the  Least  Absolute
Shrinkage and Selection Operator (LASSO) technique to
optimize the basis set and find the sparsest representation
to speed up computation. This was successfully used to
reproduce  almost  DFT-accuracy  phonon  dispersion  and
specific heat for hcp Mg. A more recent work to reduce
the undesirable scaling in ASCF has also been discussed
[225].

Another  approach  using  bispectrum,  a  three-point
correlation  function,  was  introduced  by  Bartók et  al.
[226]. In this approach, they first construct local atomic
density function for each atom i, as

ρi (r) = δ (r) +
∑
j

δ (r − rij) fc (|rij |) , (6.5)

δ (r)

U j
m′m i

where  the ’s  are  the  Dirac  Delta  function.  This
atomic density is then projected onto the surface of a 4D
sphere, by expanding the atomic density using 4D spherical
harmonics,  (index  omitted):

cj
′
m′m = ⟨U j

m′m|ρ⟩, (6.6)

and the bispectrum is then built from these coefficients,
defined as

Bj1,j2,j3 =

j1∑
m′

1,m1=−j1

j2∑
m′

2,m2=−j2

j1∑
m′,m=−j

(
cjm′m

)∗
· Cjm

j1m1j2m2
Cjm′

j1m′
1j2m

′
2
cj1m′

1m1
cj2m′

2m2
,

(6.7)

Cjm
j1m1j2m2

where  the ’s  are  the  ordinary  Clebsch–Gordan
coefficients of the SO(4) group.

The  Smooth  Overlap  of  Atomic  Positions  (SOAP)
descriptor  [226]  uses  the  atomic  density  defined  in  Eq.
(5),  but  with  the  Dirac  Delta  function  replaced  by  the
Gaussians, expanded in terms of spherical harmonics:

exp
(
−α|r − ri|2

)
= 4πexp

[
−α

(
r2 + r2i

)]
·
∑
lm

hl (2αrri)Ylm (r̂)Y ∗
lm (r̂i) ,

(6.8)

hl

Ylm

k (ρ, ρ′) ≡
∫

dR̂
∣∣∣∫ ρ (r) ρ′

(
R̂r
)

dr
∣∣∣n

n = 2

where ’s are the modified spherical Bessel functions of
the first kind and  is the spherical harmonics. A simi-
larity  kernel  was  intro-
duced  to  compare  two  different  atomic  environments,
where  is  used  in  their  study.  The  normalized
kernel or SOAP kernel

K (ρ, ρ′) =

(
k (ρ, ρ′)√

k (ρ, ρ) k (ρ′, ρ′)

)ξ

, (6.9)

ξwhere  is  any  positive  integer,  chosen  to  control  the
sensitivity, goes into the PES of the form

ε (q) =
N∑

k=1

αkK
(
q, q(k)

)
, (6.10)

q(k)where  the  is  the  training  set  configurations.  The
SOAP  descriptor  is  now  widely  adopted,  especially  in
the machine-learning of potentials [227–230].

Based  on  the  SOAP  approach,  Artrith et  al.  [216]
introduced another descriptor for machine-learnt poten-
tials, which does not scale with the number of chemical
species,  a  feature  that  SOAP lacks.  This  is  carried  out
by  taking  the  union  of  a  set  of  invariant  coordinates
which maps  the  atomic  structure  and another  one  that
maps  the  chemical  composition,  which  are  both
described  by  the  radial  and  angular  distribution  func-
tions:

RDFi (r) =
∑
α

c(2)a ϕα (r) , 0 ≤ r ≤ Rc, (6.11)

ADFi (r) =
∑
α

c(3)a ϕα (θ) , 0 ≤ θ ≤ π, (6.12)

Rc ϕαwhere  is  the  cutoff  radius  and  the  is  a  complete
basis set, which in their work is the Chebyshev polynomials
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of the first kind.

 6.3   Graph-based descriptor

By  converting  the  atoms  and  bonds  in  a  molecule  into
vertices  and  edges,  we  can  turn  the  molecule  into  a
graph  as  depicted  in Fig.  9(a).  The  information  about
the  edges  and  the  edge  distance  between  vertices  can
then be encoded into the adjacency and distance matrices
[231], shown in Fig. 9(b). This graph-theoretic approach
is  known  as  structure  graph,  which  has  been  devised
long  ago  in  1863.  Despite  the  simplicity  and  apparent
loss  of  3D  information,  structure  graphs  have  seen
widespread uses in comparing the structure of molecules.

The  generalization  of  structure  graph  to  periodic
systems  is  the  Universal  Fragment  Descriptor  (UFD)
[232], which uses the Voronoi tessellation [see Fig. 9(c)]
to determine the connectivity of atoms, in the following
two steps:

i)  The  crystal  is  partitioned  into  atom-centered
Vornoi–Dirichlet polyhedral;

ii) Atoms that share a perpendicular-bisecting Voronoi
face with interatomic distance smaller than the Cordero
covalent  radii  (with  0.25  Å tolerance)  is  determined  to
be connected. Periodic atoms are considered.

A

(Dij = 1/r2ij)

which  defines  the  graph.  Subgraphs  are  also
constructed  corresponding  to  the  individual  fragments,
which  include  linear  paths  connecting  at  most  4  atoms
and  circular  fragments,  representing  the  coordination
polyhedral of an atom. Then, an adjacency matrix  is
constructed based on the determined connectivity, along
with  a  reciprocal  distance  matrix ,  which

M ≡ A ·D
q

q

when  multiplied  together  gives  the  Galvez  matrix
. The information about the atomic/elemental

reference  property  (could  be  Mendeleev  group  and
period  number,  number  of  valence  electron,  electronic
affinity, covalent radii, etc.) is then incorporated in the
pair of descriptors for a particular property ,

TE =
n−1∑
i=1

n∑
j=i+1

|qi − qj |Mij , (6.13)

TE
bond =

∑
{i,j}∈bonds

|qi − qj |Mij , (6.14)

where the former runs over all pairs of atoms while the
latter only considers bonded pairs of atoms.

Xie et al. [233] proposed a framework, the generalized
crystal  graph  convolutional  neural  networks  (CGCNN)
which introduced another graph-based descriptor that is
inspired  by  the  UFD.  Their  construction  of  the  crystal
graph  is  illustrated  in Fig.  10,  where  the  connectivity
determination is the same as in UFD, but they used the
one-hot encoding to encode the atom and bond properties
in two separate feature vectors: node feature vectors and
edge feature vectors. They are the descriptors, which are
then  sent  through  convolutional  layer,  which  further
extracts  critical  features  while  reducing the dimensions.
Convolutional neural network is discussed in Section 7.

 6.4   Topological descriptor

Topology  famously  does  not  differentiate  between  a
donut and a coffee mug, as they both have a hole. This

 
Fig. 9  (a) Structure graph for 2,3,4-trimethylhexane and (b) the related adjacency and distance matrix. Reproduced with
permission from Ref. [231]. (c) The Universal fragment descriptors. The crystal structure is analysed for atomic neighbours
via Voronoi tessellation with the infinite periodicity taken into account. Reproduced with permission from Ref. [232].
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is because in topology, most of the geometrical features
are  stripped  away,  leaving  only  quantities  that  are
invariant under continuous deformation. This seemingly
bizarre concept has had deep impacts in physics and was
the  main  theme of  the  works  that  won the  2014 Nobel
Prize.  A  branch  of  topology,  persistence  homology,
measures  the  topological  features  which  persist  across
different  scales  or  granularity,  and  encodes  them  into
diagrams.  This  idea  has  already  been  used  to  classify
and  describe  proteins  [234, 235],  and  used  as  ML
descriptor  for  crystalline  [236]  and  armophous  solids
[237].  However,  it  has  not  been  widely  used  due  to  its
mathematically  complicated  nature,  and  the  lack  of
physical  and chemical intuition also further hinders the
ability  to  interpret  the  results  [216].  Here,  we  will
attempt  to  provide  a  simplified  and  non-rigorous
overview of persistent homology and the crystal topological
descriptor  of  Jiang et  al.  [236].  For  a  rigorous  and
detailed  introduction  to  persistent  homology,  Ref.  [238]
is  recommended  along  with  other  works  cited  in  this
paragraph, especially Ref. [235].

K

The  basic  building  blocks  of  persistent  homology  are
the simplices (see Fig.  11):  a  0-simplex is  a  point,  a  1-
simplex  is  two  connected  points,  a  2-simplex  is  a  filled
triangle,  and a 3-simplex is  a filled tetrahedron. A face
can be a point, a line, or a 2D surface, depending on the
number of points. A simplicial complex  is a collection
of simplices which satisfies two conditions:

K Ki) Faces of a simplex in  are also in .
Kii) Any intersection of two simplices in  is a face of

both the simplices.

βi (K) β0

β1 β2

β0 = 1

In a simplicial complex, holes are considered as voids
that are bounded by simplices of different dimensions. In
dimension  0,  a  connected  component  is  counted  as  a
hole;  in  dimension  1,  a  hole  is  a  loop  bounded  by  1-
simplices or edges; in dimension 2, hole is bounded by 2-
simplices or triangles. The number of i-dimensional holes
or voids in a simplicial complex is basically described by
the i-th Betti numbers, , e.g.,  is the number of
connected components,  is the number of loops, and 
is  the number of  cavities.  An example is  shown in Fig.
11(b), where there are five 0-simplices or vertices, forming
six 1-simplices, and one 2-simplices. Since all the points
are  connected, ;  there  is  a  square-shaped  hole

β1 = 1enclosed by the 1-simplices A, B, C, and F, giving .
Note that the face of the triangle is filled, thus it is not
counted as a hole.

d

d

d

To generate simplicial complex from the crystal data,
we use the Vietoris–Rips (VR) filtration process, giving
VR complex. This is carried out by increasing a filtration
parameter,  commonly  the  Euclidean  distance  cutoff
between  points,  where  points  that  are  within  cutoff
distance  of  each  other  are  connected.  The  filtration
parameter  used  in  the  crystal  descriptor  is  the  radius
measured from each atom, , which is increased from 0
to  8  Å.  As  increases,  the  simplicial  complex  also
undergoes  changes,  where  the  Betti  numbers  of  “holes”
change. This can be quantitatively plotted using persis-
tence barcodes for each of the Betti numbers, as can be
seen  in Fig.  12,  where  each  barcode  represents  each  of
the “hole” for each Betti number. As  reaches 4 Å, all
the  Betti  0  barcodes  except  one  suddenly  terminate,
indicating that the points  are  now all  connected as  the
Na  atoms  are  separated  by  4  Å.  There  is  no  Betti  1
barcode  because  the  distances  between  any  two  Na
atoms are the same, reflecting the structure symmetry.

To embed different elemental compositions, atom-wise
chemical  information  is  used,  where  a  chosen  atom  is
surrounded by atoms of a chosen type, such as in Figs.
12(a) and (b), where the selected Na atom is surrounded
by only Na atoms and Cl atoms, respectively. The birth,
death,  and  the  persistent  length  of  the  Betti  barcodes
are  then  encoded  in  a  vector  known  as  ASPH  feature
vector.

 6.5   Reciprocal space-based descriptor

The  reciprocal  space  is  linked  to  the  real  space  by  the
means of Fourier transform and can be mapped using X-
ray  diffraction  (XRD)  into  2D  diffraction  pattern  [see
Fig. 13(a)], either experimentally or computationally. 2D
XRD data has first been applied as descriptor by Ziletti
et  al. [239]  to  automatically  classify  crystal  structures.
In their work, they rotated the crystal 45o clockwise and
counterclockwise about a chosen axis and superimposed
the obtained XRD patterns. This is then carried out for
the  other  two  axes,  with  different  colours  of  the  RGB

 
Fig. 10  Crystal  graph  construction  proposed  used  in  the
generalized  crystal  graph  convolutional  neural  networks.
Reproduced with permission from Ref. [233].

 

β0 = β1 = 1

Fig. 11  (a) Left  to  right:  0-,  1-,  2-,  3-simplex. (b) An
example of a simplicial complex, with five vertices: a, b, c, d,
and  e,  six  1-simplices:  A,  B,  C,  D,  E,  and  F,  and  one  2-
simplex T.  The  Betti  numbers  for  this  complex  are

. Reproduced with permission from Ref. [238].
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palette chosen for the patterns obtained from the rotation
of different axis [e.g., red for x-axis, green for y-axis, and
blue  for z-axis,  see Fig.  13(b)].  The  final  obtained
pattern is then used as the descriptor, fed into a convo-
lutional network, similar to image-based object recogni-
tion.  The  benefits  of  the  XRD  descriptor  are  that  the
dimension  is  independent  of  the  system  size  and  very
robust to defects [compare Fig. 13(b) and Fig. 13(c)].

The  more  conventional  XRD is  the  1D  XRD,  shown
in Fig.  13(d)  for  different  crystals,  which  is  obtained
based  on  Bragg’s  law,  mapping  the  3D  structures  into
1D fingerprints. 1D XRD based descriptor has been used
to classify crystal structure [240] and predict their prop-
erties [241]. In the latter, the group used modified XRD,
where  only  the  anions  sublattice  is  considerd  with  the
cations  removed,  and  the pymatgen package  is  used  to

generate  the  XRD  computationally.  They  successfully
distinguished solid-state lithium-ion conductors with this
descriptor using unsupervised learning.

 6.6   Reduction of descriptor dimension

In materials science, there are many possible combinations
of various properties that can be used as descriptors. It
is  often  difficult  to  select  and  fine-tune  the  descriptor
space manually.  This is  a common problem in the field
of  ML,  and  several  methods  have  been  developed  to
tackle  this  issue:  principal  component  analysis  (PCA)
[242, 243], least absolute shrinkage and selection operator
(LASSO)  [244],  and  sure  independence  screening  and
sparsifying  operator  (SISSO)  [245].  However,  they
mainly  work  for  models  that  are  linear,  hence  not

 
Fig. 12  Persistence barcode plot for the selected Na atom inside a NaCl crystal, surrounded by only (a) Na atoms and (b)
Cl atoms. (c) Construction of crystal topological descriptor, taking into account different chemical environmen t. Reproduced
with permission from Ref. [236].
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directly  applicable  for  neural  network-based  models
[239].

 7   Machine learning algorithms for
material science

In  this  section,  we  collate  the  recently  developed  ML-
based tools and frameworks in materials science, grouping

them  together  by  the  ML  algorithms  used.  We  then
briefly describe the commonly used algorithms and also
introduces some of the emerging algorithms, which could
further  unlock  the  potential  of  materials  science  ML
applications.

 7.1   Currently utilized algorithms

Table 6 enumerates the ML algorithms used in relatively

 
Fig. 13  (a) Experimental XRD method, where X-ray plane wave incidents on a crystal, resulting in diffraction fingerprints.
(b, c) XRD-based image descriptor for a crystal where each RGB colour corresponds to rotation about the x, y, z axes. The
robustness of the descriptor against defects can be observed by comparing (b) to (c). (d) Examples of 1D XRD. (a–c) Reproduced
with permission from Ref. [239], (d) Reproduced with permission from Ref. [241].

Table  6  List of Machine Learning (ML) algorithms used by various tools or framework developed in materials science.

ML algorithms Tool
Support vector machine (SVM) Refs. [260, 261, 262, 246]
Kernel ridge regression (KRR) Refs. [237, 263, 247, 264]
Deep neural network VampNet [257], DTNN [265], ElemNet [266],

IrNet [267], PhysNet [268], DeepMolNet [269],
SIPFENN [270], SpookyNet [250]

Convolutional neural network (CNN) SchNet [271], Refs. [239, 240, 272, 273]
Graph neural network (GNN) CGCNN [274], MEGNet [275], GATGNN [276],

OrbNet [277], DimeNET [278], ALIGNN [279], MXMNet [280],
GraphVAMPNet [281], GdyNets [282], NequIP [283],
PaiNN [284], CCCGN [285, 286], FFiNet [287]

Generative adversarial networks (GAN) Ref. [288], CrystalGAN [246], MatGAN [289]
Variational auto encoder (VAE) FTCP [290], CDVAE [291], Refs. [292, 263]
Random forest/ decision tree Refs. [236, 293, 294, 251, 295, 296]
Unsupervised clustering Refs. [241, 282, 252, 297, 298]

Transfer learning Roost [299], AtomSets [288], XenonPy.MDL [289],
TDL [290], Refs. [256, 291, 292, 300, 301]
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recent developed tools or framework in materials science.
It  can be seen that the convolutional  and graph neural
networks are the popular algorithms, with transfer learning
also picking up pace. We will briefly introduce the algo-
rithms,  drawing  examples  from  the  materials  science
implementation.

 7.1.1   Kernel-based linear algorithms

K(x,x′)

Support vector machine (SVM) and kernel ridge regression
(KRR)  are  kernel-based  ML  algorithms,  which  utilize
kernel  functions  that  allow  high-dimensional
feature to be used implicitly, without actually computing
the  feature  coordinates  explicitly,  hence  speeding  up
computation. Furthermore, it allows non-linear problem
to  be  solved  using  linear  algorithms  by  mapping  the
problem  into  a  higher-dimensional  space.  Examples  of
commonly used kernel functions include

Linear kernel:

K (x,x′) = (xi · xj + θ) ; (7.1)

Polynomial kernel:

K (x,x′) = (xi · xj + θ)
d
; (7.2)

Gaussian kernel/radial basis function (RBF):

K (x,x′) = exp

(
−||xi − xj ||2

σ2

)
, (7.3)

x θ σwhere  is the input data, while  and  are adjustable
parameters.  SVM  is  used  for  both  classification  and
regression  problem,  denoted  as  SVC  and  SVR,  respec-
tively. On the other hand, KKR is used only for regression
problems  and  it  is  very  similar  to  SVR,  except  for  the
different loss functions.

Applications of  both types of  SVM are demonstrated
in the work of Lu et al. [246]. Using atomic parameters
such  as  electronegativity,  atomic  radius,  atomic  mass,
valence,  and  functions  of  these  parameters,  they
constructed  classifier  for  the  formability  of  perovskite

d = 2 θ = 1

structure,  and  regression  models  to  predict  the  band
gaps  of  binary compounds,  using  the  polynomial  kernel
[Eq. (7.2)] with  and .

Wu et  al. [247]  used  KRR to  assist  in  non-adiabatic
molecular  dynamics  (NA-MD)  simulations,  particularly
in  the  prediction  of  excitation  energy  and  interpolate
nonadiabatic  coupling.  KRR  was  chosen  over  neural
networks  because  of  the  fewer  hyperparameters  KRR
possessed,  and  KRR  requires  only  the  use  of  simple
matrix  operation  to  find  the  global  minimum.  By  only
providing a small fraction (4%) of sampled points, KKR
gives a reliable estimate while saving MD computational
effort of over an order of magnitude.

 7.1.2   Neural network

m x

Artificial Neural Networks (ANNs, shortened to NNs) is
a type of ML architecture that aims to mimic the neural
structure  of  the  brain.  In  NNs,  there  are  3  types  of
layers  consists  of  interconnected  nodes:  input  layer,
hidden layer(s), and output layer, as shown in Fig. 14(a).
The  input  layer  receives  the  input  raw  data,  which  is
then propagated to the hidden layer(s), where the nodes
are functions of the backward-connected nodes and each
connection  is  weighted.  The  function  of  a  hidden  layer
node  with  being the node values of previous layer,
takes the form:

hm = σ

(
b+

n∑
i

ωi · xi

)
, (7.4)

σ (z)

σ (z) = 1/(1 + e−z)

b

σ (z) = max(0, z)

where  is known as the activation function, where a
common choice is the sigmoid function 
and  is bias term, and the ReLU (Rectified Linear Unit)
function,  simply  defined  as .  After  the
hidden  layer(s),  the  information  is  then  passed  toward
to  the  output  layer,  which  is  another  function  of  the
nodes  of  the  final  hidden  layer.  The  outputs  are
measured  against  true  value  using  a  pre-defined  cost
function, with the simplest example for regression problem
being the sum of squared error

 
Fig. 14  (a) Neural network (NN) with 3 layers: input, hidden, and output. (b) Deep NN with 3 hidden layers. Reproduced
with permission from Ref. [257].
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J (ω) =
1

n

n∑
i=1

1

2
(yi − ŷi)

2
,

yi ŷi

n

where  and  are the true and predicted values respec-
tively, and the sum is taken over the whole training set
with  being the size of the training set. The weights are
then  optimized  iteratively  using  the  backpropagation
method,  which is  a function of  the gradient of  the cost
function.  For  a  detailed  discussion,  the  book  [248]  is
recommended.

Deep NNs are NNs with more than one hidden layer
[see Fig.  14(b)].  By  having  more  hidden  layers,  the
model  is  better  positioned  to  capture  the  nonlinearities
in  the  data.  However,  having  too  many  hidden  layers
can  cause  the  convergence  or  learning  to  be  slow  and
difficult,  because the gradients used in backpropagation
will tend to become vanishingly small. To overcome this
issue, residual block has been devised [249], which intro-
duces shortcut between layers.

silu (x) = αx
1+e−βx α β

SpookyNet  [250]  is  a  DNN-based  model  built  to
construct  force  fields  that  explicitly  include  nonlocal
effects.  In  their  DNN  architecture,  the  generalized
sigmoid  linear  unit  (SiLU)  activation  function  is  used,
which  is  given  by ,  where  both  and 
are  learneable  parameters.  They  noted  that  a  smooth
activation function is crucial for the prediction of potential
energies, as discontinuities in the atomic forces would be
introduced  otherwise.  They  introduced  a  loss  function
that  has  3  components:  energy,  forces,  and  dipole
moments, which is minimized by optimizing the weights
using mini-batch gradient descent. They also incorporated
residual block which allowed them to use a large number
of hidden layers.

Convolutional NNs (CNNs) is primarily used in image
pattern  recognition,  and  is  different  from deep  NNs  by
having  a  few  extra  layers,  which  are  the  convolutional
and pooling layers. The extra layers filter and convolute
the data to capture crucial features in the data and also
reduce  the  input  dimension,  which  scales  quickly  with
resolution  in  image  recognition  problems.  The  work  of

Ziletti et al. [239] used CNN architecture, as depicted in
Fig.  15.  The  convolution  layers  capture  elements  that
are discriminative and discard unimportant details.

Graph NNs is specifically designed for input data that
are structured as graph, which contains nodes and edges,
and  can  handle  inputs  of  different  sizes.  There  are
several  differrent  types  of  graphs  NNs,  such  as  graph
convolutional  network  (GCNNs),  graph  attention
network, and Message Passing Neural Network.

 7.1.3   Decision tree and ensembles

Decision  tree  is  a  supervised  method  for  solving  both
classification and regression problems, which resembles a
tree.  A  typical  decision  tree  is  shown  in Fig.  16(a),
where  each  internal  node  represents  a  feature  or
attribute, each branch contains a decision rule, and each
leaf node is a class label or a numerical value, depending
on  the  type  of  problem  solved.  The  number  of  node
layers a decision tree contains is known as depth, which
needs to be tuned. An important metric used in measuring
the performance of a decision tree in classification is the
information  gain,  which  is  defined  as  the  difference  of
the  information  entropy  between  the  parent  and  child
node; while for regression problem, the variance reduction
is the performance evaluation metric for a decision tree.
Decision  tree  is  advantageous  when  it  comes  to  inter-
pretability,  but  it  suffers  from  overfitting,  especially
when  the  tree  is  too  deep  and  complex.  It  can  also  be
overly-sensitive to data changes.

Random forest is an algorithm that combines multiple
decision tree,  with each of them trained on randomized
subsets  of  samples,  where  both  training  data  and
features  are  chosen  random  with  replacement  in  a
process  known  as  bootstrapping.  The  final  decision  is
then made by aggregating the results from each decision
tree and taking the majority vote for classification or the
average for regression. The steps taken above are collec-
tively  known  as  bagging,  which  help  ensure  that  the
random  forest  algorithm  is  less  sensitive  to  changes  in

 
Fig. 15  The CNN architecture used in the work of Ziletti et al. [239]. (a) A kernel or learnable filter is applied all over the
image,  taking  scalar  product  between  the  filter  and  the  image  data  at  every  point,  resulting  in  an  activation  map.  This
process is repeated in (b), which is then coarse grained in (c), reducing the dimension. The map is then transferred to regular
NNs hidden layers (d) before it is used to classify the crystal structure (e). Reproduced with permission from Ref. [239].
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the dataset and more robust to overfitting.
Gradient  Boosting  Decision  Tree  (GDBT)  is  another

method  that  uses  ensembles  of  decision  trees  but  in
sequence rather than in parallel. GBDT works by adding
decision  trees  iteratively,  with  each  one  attempts  to
improve upon the errors  of  the previous tree.  The final
output from the trees ensembles is then taken by using
weighted average of the decision trees outputs.

Random forest models are used in the work of Zheng
et  al. [251],  which  predicts  the  atomic  environment
labels  from  the  X-ray  absorption  near-edge  structure
(XANES).  Using  the  random  forest  classifier  of  scikit-
learn  package,  they  found  that  50  trees  ensemble  gave
the best performance, even better than other classifiers,
such as CNN and SVC. On the other hand, GBDT has
been used for regression in the topology-based formation
energy predictor  [236].  Also using the scikit-learn pack-
age, they added a tree to their model one at a time and
used bootstrapping to reduce overfitting. This topology-
based model is able to achieve a high accuracy in cross-
validation,  with  mean  absolute  error  of  only  61  meV/
atom,  outperforming  previous  works  that  uses  Voronoi
tessellations and Coulomb matrix method.

 7.1.4   Unsupervised clustering

K-Means clustering is a popular unsupervised classification
algorithm  which  aims  to  group  similar  data  points
together  in K different  clusters. K numbers  of  points
that  are  known  as  cluster  centroids  are  initialized

J

randomly,  and  each  data  point  is  assigned  to  a  cluster
centroid that is closest in Euclidean distance to the data
point.  The  centroids  are  then moved to  a  new location
that is the arithmetic mean of the assigned data points.
This  repeats  until  convergence,  i.e.,  there  is  no  more
movement among the centroids. The number K determines
the number of classes in the data, which can be known
before  hand  if  the  dataset  has  clear  distinction,  e.g.,
metal  vs.  non-metal,  or  can  be  optimized  using  the
elbow method,  which has an associated cost  function 
that  is  optimized  by  the  best  choice  of K.  Despite  its
popularity,  K-Means  clustering  has  some  limitations,
such  as  sensitivity  to  outliers,  dependence  on  the
centroids  position  initialization,  ineffective  for  dataset
with uneven distribution, and predetermined number of
clusters.

Several  alternatives  have  been:  proposed  which
improves  upon  the  limitations  of  K-Means  clustering.
Agglomerative  hierarchical  clustering  (AHC),  used  in
the  work  of  Zhang et  al.  [241],  is  initialized  by  using
each  data  point  as  a  single  cluster,  then  iteratively
merged  the  clusters  of  the  closest  points  until  one  big
cluster is left.  Then, a dendogram or a bottom-up hier-
archical tree diagram, as show in Fig. 16(b), which can
be cut at  a  desired precision,  as  indicated in the figure
via a dashed line, where 7 groups are obtained. To verify
the  results,  they  performed  spectral  clustering,  which
splits  the  samples  into  chosen K groups,  based  on  the
eigenvalues of the similarity matrix constructed from the
data.  This  process  is  recursively  applied  bisectionally,

 
Fig. 16  (a) An example of a decision tree, where each square represents internal node or feature, each arrow represents
branch or decision rule, and the green circles are leafs representing class labels or numerical values. (b) Dendogram obtained
via agglomerative hierarchical clustering (AHC) where the dashed line indicates the optimal clustering. (a) Reproduced with
permission from Ref. [258], (b) Reproduced with permission from Ref. [241].
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and they obtained similar clusters as the AHC. There is
also the mean-shift algorithm, utilized in Ref. [252].

 7.1.5   Generative models (GAN and VAE)

Generative  models  attempt  to  learn  the  underlying
distribution of a training dataset, and use that to generate
new samples that resemble the original data. Two popular
types  of  generative  models  are  Generative  Adversarial
Networks (GAN) and Variational Autoencoders (VAE).
As  can  be  seen  from Fig.  17,  there  are  two  different
neural networks in both of the models: GAN contains a
discriminator  and  generator  network,  while  VAE has  a
decoder and encoder network. In GAN, random noise is
injected  into  the  generator  network  and  subsequently
outputs  a  sample  that  is  then  fed  to  the  discriminator
network,  which  is  then  classified  as  real  or  generated
sample.  The  networks  are  trained  together  until  the
generated samples are able to convince the discriminator
that  the  samples  are  real  and  not  generated.  On  the
other hand, VAE tries to learn the latent representations
from the training data and generate new samples based
on them using probabilistic approach.

Z

A  variant  of  GAN,  Wasserstein  GAN,  has  been
applied in the work of Kim et al.  [253],  which generate
Mg–Mn–O  ternary  materials  which  can  potentially  be
used as potential photoanode materials. The overview of
their  GAN  architecture  is  shown  in Fig.  18(a),  which
after training, takes in random Gaussian noise vector 
and  encoded  composition  vector,  and  spits  out  new
unseen  crystals.  The  new crystals  are  then  passed  to  a
critic  and  a  classifier,  where  the  former  computes  the
Wasserstein  distance  that  measures  the  dissimilarity
between  the  generated  and  true  data  distributions,
which are used to improve the realism of the generated
materials,  while  the  latter  ensure  that  the  generated
materials  meet  the  composition  condition.  Using  this
model,  they  found  23  previously  unknown new crystals
with suitable stability and band gap.

An example of inverse design using VAE was demon-
strated  in  the  work  of  Noh et  al.  [254],  where  their

proposed  a  two-step  VAE-based  generator  is  shown  in
Fig. 18(b). In the first step, the materials data is passed
to a convolutional autoencoder, which contains 4 convo-
lutional  layers,  outputting  a  compressed  intermediate
vector, which is then fed to a decoder that aims to maps
the vector back to the input. The intermediate vector is
fed into the VAE in 2nd step to learn about the latent
materials  space.  To  generate  completely  novel  poly-
morphs, the materials space around known stable structure
is  sampled  using  random  Gaussian  distributed  vectors
and the  resulting  latent  vectors  are  decoded in  a  series
of  steps  to  output  new  stable  structures.  The  model  is
able  to  recover  25  out  of  31  known structures  that  are
not included in the training, and 47 new valid compositions
are discovered that have eluded genetic algorithms.

 7.1.6   Transfer learning

In materials science, high quality data for a specific type
of materials is usually scarce, which severely impedes the
applications of ML in generating high quality predictions
[255].  Transfer  learning  (TL)  is  a  method  that  can  be
applied to overcome this data scarcity issue. In transfer
learning,  the  parameters  of  a  model  that  has  been pre-
trained  on  a  large  data  set  but  with  different  task/
purpose, are used to initialize training on another data-
scarce  task,  such as  the  parameters  of  the  models  used
for  predicting  formation  energy  is  later  used  to  train
another task of predicting band gaps.

Chang et al. [256] combined pairwise transfer learning
and mixture of experts (MoEs) framework in their model.
In pairwise transfer learning, a model is pre-trained on a
source  task  (task  designed  for  the  large  dataset)  and  a
subset  of  the  pre-trained  model  parameters  is  used  to
produce  generalizable  features  of  an  atomic  structure,
defined as a feature extractor. This extractor extracts a
feature  vector  from  an  atomic  structure,  which  can  be
used to predict a scalar property after passing thorugh a
neural network. On the other hand, MoE contains multiple
neural  network  models  that  specialize  in  different
regions of the input space, known as “experts”, and each

 
Fig. 17  The  architectures  of  the  two  generative  models,  Generative  adversarial  networks  (GAN)  and  Variational  auto
encoders (VAE). Reproduced with permission from Ref. [259].
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of  them are  activated  and  controlled  by  a  gating  func-
tion.  The outputs  of  the “experts” are then aggregated
through an aggregation function. Using this architecture,
the  authors  have  performed  many  downstream,  data-
scarce tasks, such as predicting band gap, poisson ratio,
2D  materials  exfoliation  energy,  and  experimental
formation energies.

 7.2   Emerging ML methods

 7.2.1   Explainable AI (XAI) methods

The  DNNs-based  approaches  discussed  have  proved  to
be  of  great  help  in  assisting  and  speeding  up  materials
research,  but  their  black-box  nature  has  made  under-
standing  and  explaining  the  results  difficult,  which  has
also  plagued  the  general  ML  community  [302].  In
systems that trust, fairness, and moral are highly critical,
such as in healthcare, finance, and autonomous driving,
the  decisions  made  by  AI  cannot  be  blindly  trusted
without  understanding  the  motivation  and  reasoning
behind  the  choice.  Furthermore,  when  the  black  box
returns results that are erroneous and puzzling, it can be
difficult  to  diagnose  and correct  without  knowing  what
exactly went wrong. To overcome these issues, the XAI
techniques  were  introduced,  which  try  to  explain  the
reasonings and connections behind a prediction or classi-
fication.

There  are  many  post-hoc  (i.e.,  applied  after  model
fitting)  XAI  methods  proposed  for  the  general  ML
community  [303],  including  gradient-based  attribution
(Gradients,  Integrated  gradients,  and  DeepLIFT),
deconvolution-based  methods  (Guided  backpropagation,
Deconvolution,  Class  activation  maps  (CAM),  Grad-
CAM),  model-agnostic  techniques  (Shapley  additive
explanations (SHAP), local interpretable model-agnostic
explanations (LIME), Ancors).

Another  type  of  XAI  is  the  use  of  models  that  are
inherently  interpretable  or  explainable,  which  have  one

or  more  of  these  features  [304]:  sparsity,  simulatability,
and  modularity.  A  model  that  has  limited  number  of
nonzero parameters is known as sparse, and this can be
obtained by the LASSO method, whereas if a model can
be  easily  comprehend  and  mentally  simulate  by  the
human user  is  simulatable,  such as  decision trees-based
model.  A  modular  model  is  a  model  that  combines
several modules which can be interpreted independently.
In  the  field  of  materials  science,  the  understanding  of
the  physical  and  chemical  intuition  is  paramount  as  it
opens the door to understanding hidden connection and
physics,  and improve the efficiency of future studies by
providing  insights  from previous  work.  The  importance
and implementation of XAI in materials ML tools (refer
to Table 6) have been discussed in the review of Oviedo
et  al. [58]  and  Zhong et al. [302].  Zhong et  al. [302]
presented an overview of DNNs-based XAI as shown in
Fig. 19(a), which highlight two fundamental motivations
for XAI, which is the need for explaining how the results
are  obtained  from  the  input  (model  processing),  and
what  information  is  contained  in  the  network  (model
representations). The design of an intrinsically explainable
DNNs  will  prove  important  in  answering  the  questions
posed, but is itself a highly difficult task. In the follow-
ing, we will illustrate some of the materials science XAI
implementation, which is still in its infancy.

Kondo et  al. [305]  used  heat  maps  to  highlight  the
feature importance, particularly in identifying the positive
and  negative  features  that  affect  ionic  conductivity  in
ceramics,  using  scanning  electron  microscope  (SEM)
images. Their CNN-based model used feature visualization
method that is very similar to the deconvolution method
used  in  CAM and  Grad-CAM.  By  defining  mask  map,
they obtained masked SEM images [see Fig. 19(b)] that
show features that determine low and high ionic conduc-
tivities.

A  recent  implementation  of  XAI  for  crystals  is  the
CrysXPP  [306]  which  is  built  upon  an  auto-encoder-
based architure, CrysAE, that containing deep encoding

 
Fig. 18  (a) Composition-conditioned  crystal  GAN,  designed  to  generate  crystals  that  can  be  applied  in  photodiode.
(b) Simplified  VAE architecture  used  in  the  inverse  design  of  VxOy materials.  (a)  Reproduced  with  permission  from Ref.
[253], (b) Reproduced with permission from Ref. [254].
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module  which  is  capable  of  capturing  the  important
structural and composition information in crystal graph.
The information learnt is then transferred to the GCNN
contained within CrysXPP [shown in Fig. 20(a)], which
takes in feature selected from crystal graph. The feature
selector contains trainable weights that selects weighted
subset  of  important  features,  which  is  fine-tuned  with

LASSO  to  improve  the  sparsity  of  the  features.  An
example of the explainable results obtained is shown in
Fig.  20(b),  where  features  that  affect  the  band  gap  of
GaP crystal are weighted and compared.

Compositionally  restricted  attention-based  network
(CrabNet) [307, 308] is an example of explainable DNN
in  materials  science  that  is  based  on  the  Transformer-

 
Fig. 19  (a) Overview of explainable DNNs approaches. (b) Feature visualization in the form of heat map used in determining
the ionic conductivity from SEM images. (a) Reproduced with permission from Ref. [302], (b) Reproduced with permission
from Ref. [305].

 
Fig. 20  (a) The architecture of CrysXPP, which is capable of producing explainable results, as seen in (b) the bar chart
of features affecting the band gap of GaP crystal. Reproduced with permission from Ref. [306].
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based self-attention mechanism [69], a type of algorithm
initially intended for NLP, but has exploded in popularity
recently. Briefly, the transformer self-attention mechanism
allows  the  model  to  focus  on  the  different  parts  of  the
input  and  relate  them with  weights  to  encode  a  repre-
sentation.  In  this  way,  the  dependencies  between  the
elements  are  better  captured,  even  when  some  of  the
elements are present in very small amount, e.g., dopants,
which even in small quantity can have tremendous effect
on the properties of the materials.

 7.2.2   Few-shot learning (FSL)

As  mentioned  above,  high-quality  data  in  materials
science which are complete with proper labels are scarce.
This issue is exarcebated when we look at experimental
data,  which  unlike  computationally-produced  data,  is
plagued with issues stemming from the different experi-
mental  equipments  and  variable  environments.  There-
fore,  the  few-shot  learning  (FSL),  which  specifically
targets  situation  where  data  is  limited,  has  enticed
materials  scientists,  especially  the  experimentalists.
There  are  several  approaches  to  FSL,  as  discussed  in
Refs.  [309, 310],  such  as  metric-based,  optimization-
based, and model-based approach. FSL is still a relatively
young  and  unrefined  method,  but  it  has  already
attracted a lot of attentions. FSL has been implemented
in the prediction of molecular properties [311, 312], clas-
sification  of  space  group  from  electron  backscatter
diffraction  (EBSD)  data  [313],  and  segmenting  electron
microscopy data [314].

 8   Machine learning tasks for material
science

This  section  will  discuss  the  coverage  of  materials
science tasks that ML tools have been utilized to assists
in  tackling.  The  common  ML  tasks  in  material  science
often coincide with the traditional ML tasks, which have
been  extensively  studied  and  optimized.  The  tasks  of
inference  of  material  property  given  structural  and
compositional  data,  generative  modelling  from  a  latent
representation  of  desired  properties,  and the  generation
of DFT functionals, are analogous to the tasks that ML
has traditionally performed well, including object classi-
fication, image and text generation using text cues, and
natural language processing (NLP).

 8.1   Potentials, functionals, and parameters generation

Traditionally,  the  XC  functionals  used  in  DFT  are
generated  through  mathematical  approaches,  guided  by
empirical  data,  such  as  the  Perdew–Zunger  exchange,
with  the  exact  XC  functional  remains  elusive.  The
search  for  an  improved  XC  functional  above  the

currently popular GGA on the Jacob’s ladder of Perdew
[315]  is  desirable.  The  techniques  of  ML  have  been
started to be utilized in the generation of new XC func-
tionals [316–320], with the aim of improving the calculated
accuracy while maintaining the efficiency. Transferability
remains  a  huge  challenge,  which  will  need  a  huge  and
diverse dataset to achieve.

The  potentials  and  force  fields  used  in  molecular
dynamics (MD) are critical in determining the reliability
and  accuracy  of  the  output  [321].  MD  that  does  not
involve first-principles approach but rather fixed potentials
are  in  general  less  accurate  the ab  initio MD (AIMD),
but they can be applied on a large system and long time
scale,  where  AIMD  is  too  costly.  As  such,  one  would
hope that the standard MD can bring about results similar
to AIMD. Developed in 2017, DeePMD [322] accurately
reproduced  the  water  model  obtained  from  DFT.  The
same team developed an open-source tool for the on-the-
fly  generation  of  MD  potentials,  known  as  DP-GEN
[323],  available  on  available  on  URL:  github.com/deep-
modeling/dpgen.  In  2020,  the  team  won  the  ACM
Gordon  Bell  Prize  for  the  DeePMD work,  as  it  can  be
scaled  efficiently  on  the  best  HPC.  Similar  works  have
also been carried out by other teams [324, 325].

Another  material  modeling  technique  is  the  Density
Functional Tight Binding (DFTB) method, which is less
computational expensive than DFT-based first principles
calculations.  Efforts  have  been  carried  out  on  applying
ML to obtain the TB parameters [252, 326].

 8.2   Screening of materials

There  are  many methods  to  compress  design  space.  To
name few, one could train a model that predicts material
property  given  material  information  or  performs  ML
guided  simulation  of  new  materials  to  predict  material

 
Fig. 21  High-throughput screening with learnt interatomic
potential embedding from Ref. [330]. With the integration of
active  learning  and  DFT  in  the  screening  pipeline,  the
throughput  efficiency  or  the  quality  of  the  output  obtained
from calculation can be improved. Reproduced with permission
from Ref. [330].
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behaviour under certain circumstances. High-throughput
screening  eliminates  most  potential  materials  without
actually  performing  actual  experiments  to  verify  their
property  and  provide  experimentalists  with  a  minimal
set  of  candidate  materials  to  try  out.  Pivoting  to  a
generative  model  perspective,  one  could  also  specify
material  properties  and  generate  stable  materials  that
are likely to fit the specified property [327–329].

There  are  many  properties  that  are  of  interests,
including  band  gaps,  bulk  and  shear  moduli,  crystal
structures,  conductivity,  and  topological  states,  as
discussed  in  details  in  Ref.  [216].  These  properties  are
usually  computed  via  DFT,  which  could  be  computa-
tionally expensive depending on the system setup. Properly
setup  and  trained  ML  models  can  produce  DFT-level
accuracy  properties  predictions,  while  at  far  lower
computational  time.  Isayev et  al.  [232]  managed  to
obtain  prediction  at  0.1  s  for  each  structure,  which
amounts to 28 million structure in a day, as pictured in
Fig.  21.  However,  a  well-trained  and  fully-transferable
ML  model  requires  the  existence  of  high-quality  large
database  and  heavy  computational  power  to  optimize
the model.

 8.3   Novel material generation

The latent representations of common desired properties
are of high interests among the community [331]. Based
on  the  learnt  latent  representation,  we  can  generate
structure with similar desired properties at will.  This is
often  carried  out  using  the  generative  models,  such  as
GAN and VAE, as demonstrated in the work of Dong et
al. [332] and Pathak et al. [333].

 8.4   Imaging data analysis

There are many imaging methods to capture the structure
and  fingerprints  of  a  material  experimentally  at  the
atomic  level,  such  as  X-ray  Diffraction  (XRD),  Fourier
Transform Infrared Spectroscopy (FTIR), Atomic Force
Microscopy  (AFM),  Transmission  Electron  Microscopy
(TEM), and many others. Typically, they require laborious
human interpretation to understand the meaning of the
signals  and  whether  they  are  due  to  noises  and  errors.
This can be remedied with the help of ML, and thus far
ML has been applied to:

•  Identify  symmetry  and  space  group  from  XRD
[334];

• Discover hidden atomic scale knowledge from XRD
[297];

•  Identify  functional  group  in  gaseous  organic
molecule [335];

•  Analyze  patterns  and  feature  in  AFM  images,
including domain wall and grain boundaries [336];

• Quantify nanoscale forces in dynamic AFM [337];
•  Perform  structural  analysis  and  reconstruction  in

TEM [338];
•  Identify  chemistry  and  processing  history  from

microstructure image [298];
•  Characterize  and  analyze  mechanical  behaviour  in

microstructure image [339].

 8.5   Natural language processing of material
science literature

Nature  language  processing  (NLP)  refers  to  the  ability
of computer algorithm to understand spoken and written
language.  This  technology  has  seen  explosive  develop-

 
Fig. 22  Schematics of generative adversarial network. Reproduced with permission from Ref. [332].
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ment, with the recent GPT-3 [340] and now GPT-4 [341]
models making strides not just academically, but used in
just  about  everywhere.  The  trained AI  models  are  able
to  hold  realistic  conversation  with  humans,  take  stan-
dardized exams [342], write codes in various programming
language, and so on.

Most of the published results on materials science are
not  stored in  a  centralized database,  which hinders  the
overall  effort  of  ML  applications.  The  NLP  techniques
can  help  this  by  scraping  information  from  published
literatures,  such  as  the  materials  structure  and  proper-
ties.  Tshitoyan et  al. [343]  demonstrated that  an unsu-
pervised  learning  modethat  can  capture  complicated
underlying knowledge from the literature and recommend
materials  for  functional  applications  before  their  actual
discovery.  NLP also  can help  hypothesis  formation and
provide  knowledge  on  the  current  trends  in  the  field
[344]. NLP methods can also serve as an efficient knowledge
extractor from vast amount of material science literature,
making  the  literature  review  process  more  efficient  and
thorough for researchers [345].

 9   Perspectives on the integration of
machine learning in materials science

In the following we will list perspectives on the integration
of  machine  learning  in  materials  science  with  materal
science point of view and with machine learning point of
view, respectively.

 9.1   Perspectives from machine learning viewpoint

As  ML techniques  and  ideals  become  ever  more  preva-
lent, we believe algorithmic templates and ML ideas will
eventually become either the target modes of computation
or the mode of guidelines which decides the permutation
to which areas of  material  science garner attention and
gain  resources.  Machine  translation  has  evolved  from a
rule-based coupled with statistical model to a very data-
driven  approach,  and  researchers  are  discussing  the
translation task with less and less reference to a specific
source and target languages, pivoting towards advancing
mode of computation for the task as a whole.

 9.1.1   More deep integrations

We might also observe the trend of attempting to learn
descriptors  for  parts  of  complex  systems  with  ML
models  to  be  either  more  computationally  efficient  or
more human interpretable or editable. Instead of scientists
attempting  to  describe  a  system  with  equations  from
first principles, ML models can help scientists discover a
better  set  of  descriptors  for  systems across  all  datasets.
For  example,  descriptors  could  be  descriptors  for  input
data  (atomistic  information/reaction  space)  or  labels

(crystal structures). These discoveries can hugely impact
physics  and  chemistry  theory  [346],  experiments  and
research  methods.  Physics-informed  neural  networks
[347] can both improve neural network performance and
physics research efficiency.

Increasingly,  it  could  be  more  and  more  about  the
mapping  of  descriptors.  We  can  imagine  that  with  the
emergence of more sophisticated models, it is possible to
advance  a  particular  segment  of  study  in  material
science,  such  as  polymer  design,  by  completing  a  well-
defined  sophisticated  task  with  a  model/model  of
computation,  where  the  lack  of  relevant  databases  will
limit  its  advancement.  Tracing  the  development  of
computer  science,  sophisticated  models  which  perform
generic tasks in material science well will again be inte-
grated  into  a  giant  multi-purpose  model  much  like  a
generic  processing  chip,  to  which  we  can  prompt  for
insights  which  was  previously  only  gained  by  human
experimentation at a much slower rate. ML models will
bring material scientists closer to the many possibilities
already inherent in big data itself, allowing us to explore
and exploit the possibilities with greater efficiency. The
task material scientist will be able to complete with the
help  of  machine  learning  will  become  more  integrated
and sophisticated, from the screening of material to the
design  of  material  as  a  complete  task.  Then  with  the
design of material as an atomic/primitivetransaction, we
will be able to come out with new science on top of the
material design as a whole.

 9.1.2   Systematic generalization

In  our  stride  towards  autonomous  general  intelligence
(AGI), researchers have drawn many parallels and inspi-
rations from neuro-sciences [348] and how humans learn
and  teach  each  other  to  develop  models  which  better
generalizes  to  novel  situations  and  objects  well.  We
expect  a  body  of  material  science  knowledge  and  ideas
to  become  generalized  and  accessible  to  other  fields,
conveyed  by  advanced  models  in  the  future,  where  we
can generalize or verbalize properties of imagined materials
or  predict  performance  of  material  in  novel  situations
with  high  accuracy  with  its  formal  deduction  process
generated  by  models.  We  can  also  observe  the  interac-
tion,  cooperation  or  contradiction  between  bodies  of
materials  science  knowledge  for  novel  materials  and
circumstances, and perform research on the intersection
of  bodies  of  knowledge with more  depth and rigor.  ML
models can also learn to identify potential directions for
exploration, come up with a comprehensive experimenta-
tion  plan  and  collaborate  with  human  researchers  as  a
navigation co-pilot. The novel direction identified will be
novel and comprehensive because models can learn from
passive observations of a large material science literature,
its  publication  trend  [349]  and  insight  analysis  of
researchers.
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 9.1.3   Huge computational models

With  the  development  of  reaction  environment  models,
one might also reasonably expect reinforcement learning
game-play learning to learn an agent policy for a mate-
rial, i.e., to first learn a material behaviour that is desirable
for  a  particular  purpose,  followed  by  an  automatic
search/generation  of  material  which  suits  the  specifica-
tion.  In  general,  the  compounding  of  learning  methods
to get a solution for an even more vaguely defined objective
but more analyzable process for that solution results in a
human-verifiable  solution  for  large  or  vague  problems.
Moreover, the increasing synthesizability or explainability
of  the  solution  to  vague  problems  will  help  material
scientists  navigate  methods  for  solving  huge  overarch-
ing/generic  problems  with  more  finesse,  evolution  of
subject through large models [350].

Model  of  computation  might  become  the  common
language  of  material  scientists  and  researchers  from
other  fields.  Task  definition  might  become  the  lingua
franca or the leading cause of concern for ML practitioners
in  material  science.  This  broader  definition  of  material
science might then,  in  turn,  propel  the advancement of
machine  learning.  In  general,  the  barrier  to  entry  to
both  advanced  material  science  and  advanced  ML  will
be  lowered,  allowing  more  experts  from  other  fields  or
individuals  to  contribute  their  efforts  and  ideas  to  the
development of both fields.

Mechanisms  in  quantum  ML  will  become  readily-
available to be integrated with quantum physics, chemistry
and subsequently material science. As classical-quantum
hybrid  infrastructure  and  architectures  [351]  become
more  available,  quantum  learning  for  material  science
might  incorporate  mechanisms  of  both  quantum
computing and quantum analysis  of  materials  as primi-
tives. This trend is expected to speed up the inter-disci-
plinary mixing of these fields from both engineering and
theoretical grounds.

The resulting phenomenon is the emergence of an ever
more integrated huge ML model, a Super Deep-Learning
Model,  which  will  tackle  most  if  not  all  of  the  most
fundamental underlying problems in material science; it
will  integrate  fundamental  engineering  ideas  from
computer  science  with  domain-invariants  of  material
science,  which  is  designed  to  perform  well  for  various
tasks  on  both  super-computing  facilities,  quantum  or
otherwise, and on limited resources devices, [352] scalable
yet  robust.  Moreover,  by  integrating  the  best  training
and  privacy  practices  from  ML  software  and  hardware
development  experience,  future  material  scientists  can
quickly  expect  robust  material  science  downstream
models running smoothly and reliably as an application
on  widely  available  and  portable  devices  like  a  cell-
phone.

 9.2   Perspectives from material science viewpoint

Currently, one of the biggest challenges is the availability
of high-quality data. The increasing number of research
groups adapting the open data approach and the growing
availability of internet of things (IoT) devices will solve
this  problem,  albeit  gradually.  We  have  also  discussed
several possible methods to overcome the issues, which is
the  advancement  of  small  training  sample  ML  algo-
rithms,  such  as  transfer  learning  and  few-shot  learning
algorithms  will  also  be  one  of  the  possible  solutions  to
this issue.

 9.2.1   Theoretical and computational materials science

The  various  computational  techniques  in  materials
science, such as DFT, molecular dynamics in its various
forms  of  molecular  dynamics  (MD),  monte-carlo  meth-
ods,  and  density  functional  tight  binding  method,  has
started  to  benefit  from  the  application  of  ML  and  will
continue to do so in a dramatic manner.

As  of  now,  the  Kohn–Sham  DFT  remains  a  reliable
and  popular  method  for  determining  various  material
properties.  However,  the  accuracy  of  DFT  calculations
heavily  relies  on  the  quality  of  the  approximations
employed,  such  as  the  exchange-correlation  (XC)  func-
tional. The search for improved approximations, including
exact  functionals,  using  ML  has  only  recently
commenced.  Another  area  for  improvement  in  DFT  is
reducing  computational  costs.  Recently,  ML-refined
numerical  techniques  have  emerged  that  offer  faster
speeds  compared  to  their  traditional  counterparts
[353–355]. It is hoped that these advancements can even-
tually be applied to accelerate DFT computations.

The integration of ML into MD, exemplified by methods
like DeePMD, has demonstrated the potential to achieve
DFT-level accuracy while maintaining the computational
efficiency  of  classical  MD.  This  breakthrough  opens  up
new possibilities  for  conducting accurate  calculations  in
ab initio molecular dynamics (AIMD) on extremely large
systems (with over 100 million atoms) or over very long
timescales  (beyond  1  nanosecond)  [333, 355].  By
enabling  adequate  sampling  of  phase  space,  these
advancements enable more comprehensive investigations
across  various applications,  including (electro-)catalysis,
sensors, fabrication, drug interactions, and more.

 9.2.2   Experimental materials science

The availability of a vast number of predicted materials
with desired properties is highly advantageous for exper-
imentalists. With a large number of possible candidates,
the experimentalist can focus on the materials that can
be  synthesized  and  tested  on  available  facilities  and
equipments. Additionally, the automated learning of the
fabrication  parameters  and  conditions  are  on  the  rise
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recently  [356–359].  The  advancement  of  MD  will  also
enable  comprehensive  simulations  of  fabrication  process
and  finds  out  the  best  experimental  conditions  for
successful  synthesizes  of  new  materials  [360, 361].
Furthermore,  the  analysis  of  the  data,  a  highly  time-
consuming  and  laborious  task  is  being  increasingly
supported by ML algorithms. The implementation of on-
the-fly  accurate  inference  mechanism  of  experimental
data  will  increase  the  producitivity  and  efficiency  of
fabrication process, enabling experimentalists to determine
if  the  samples  have  been  fabricated  successfully  and
move on to the next attempt quickly.

 9.2.3   Coupling of data-driven discovery with traditional
techniques

The art of tailoring and creating materials with desired
properties – materials  engineering,  includes  techniques
such  as  defect  engineering  [361–363],  doping  [44, 362,
364–369],  fluorinating  [370]  or  alloy  engineering  [30–34,
371]  or  salt  engineering  [35]  by  varying  composition,
strain  engineering  [11, 16, 26, 36, 170, 372–374]  by
applying mechanical load (such as hydro-static pressure
[36, 375–379] or directional stress),  and interfacial engi-
neering  [40, 42–46]  by  choosing  different  materials  for
forming interface with novel or exotic properties. These
methods  have  been  demonstrated  to  be  very  useful  for
tuning  materials  properties  or  creating  new  materials
with advantageous properties. In quantum materials [14,
28, 37, 380],  including  strongly  correlated  functional
materials and superconducting materials, the charge-spin-
orbital engineering plays a crucial role in controlling the
quantum behaviour.

The  availability  of  advanced  X-ray  scattering  and
electron  scattering  techniques  [14, 28, 191, 381, 382]
such as synchrotron radiation and electron microscropy,
and advancing nanotehnologies and simulation methods,
has led to an increasingly growing amount of high quality
experimental  or  simulated  data,  available  for  data-
driven  discovery  and  data  mining.  The  integration  of
data-driven  discovery  with  traditional  techniques  is
expected to play an increasingly important role in materials
science research at various length and time scales, ranging
from microscropic scale to macroscropic scale.

 10   Conclusion

In  conclusion,  this  review  briefly  introduced  basic
concepts and history of machine learning, and provided
detailed information of coupling between machine learning
and  materials  science  in  fundamental  and  technical
perspectives. The nuances of machine learning, from the
descriptors  to  the  various  algorithms,  have  been
discussed  in  the  context  of  materials  science.  Besides,

this review also covered the tasks or issues in materials
scicence that has been tackled with the use of  machine
learning.  We also  discussed our  vision for  the  future  of
materials science as the field matures with the integration
of  machine  learning,  which  will  be  drastically  different
from what we know today.
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