Skip to main content
Log in

Reconfigurable memristor based on SrTiO3 thin-film for neuromorphic computing

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

Neuromorphic computing aims to achieve artificial intelligence by mimicking the mechanisms of biological neurons and synapses that make up the human brain. However, the possibility of using one reconfigurable memristor as both artificial neuron and synapse still requires intensive research in detail. In this work, Ag/SrTiO3(STO)/Pt memristor with low operating voltage is manufactured and reconfigurable as both neuron and synapse for neuromorphic computing chip. By modulating the compliance current, two types of resistance switching, volatile and nonvolatile, can be obtained in amorphous STO thin film. This is attributed to the manipulation of the Ag conductive filament. Furthermore, through regulating electrical pulses and designing bionic circuits, the neuronal functions of leaky integrate and fire, as well as synaptic biomimicry with spike-timing-dependent plasticity and paired-pulse facilitation neural regulation, are successfully realized. This study shows that the reconfigurable devices based on STO thin film are promising for the application of neuromorphic computing systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X. Yan, H. He, G. Liu, Z. Zhao, Y. Pei, P. Liu, J. Zhao, Z. Zhou, K. Wang, and H. Yan, A robust memristor based on epitaxial vertically aligned nanostructured BaTiO3–CeO2 films on silicon, Adv. Mater. 34(23), 2110343 (2022)

    Article  Google Scholar 

  2. X. Zhang, Y. Zhuo, Q. Luo, Z. Wu, R. Midya, Z. Wang, W. Song, R. Wang, N. K. Upadhyay, Y. Fang, F. Kiani, M. Rao, Y. Yang, Q. Xia, Q. Liu, M. Liu, and J. J. Yang, An artificial spiking afferent nerve based on Mott memristors for neurorobotics, Nat. Commun. 11(1), 51 (2020)

    Article  ADS  Google Scholar 

  3. P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada, F. Akopyan, B. L. Jackson, N. Imam, C. Guo, Y. Nakamura, B. Brezzo, I. Vo, S. K. Esser, R. Appuswamy, B. Taba, A. Amir, M. D. Flickner, W. P. Risk, R. Manohar, and D. S. Modha, A million spiking-neuron integrated circuit with a scalable communication network and interface, Science 345(6197), 668 (2014)

    Article  ADS  Google Scholar 

  4. X. Yan, Y. Li, J. Zhao, and Z. Zhou, Bistable capacitance performance-induced ambipolar charge injected based on Ba0.6Sr0.4TiO3 by an Inlaid Zr–Hf–O layer for novel nonvolatile memory application, IEEE Trans. Electron Dev. 64(2), 587 (2017)

    Article  ADS  Google Scholar 

  5. J. M. Nageswaran, N. Dutt, J. L. Krichmar, A. Nicolau, and A. V. Veidenbaum, A configurable simulation environment for the efficient simulation of large-scale spiking neural networks on graphics processors, Neural Netw. 22(5–6), 791 (2009)

    Article  Google Scholar 

  6. R. Guo, W. Lin, X. Yan, T. Venkatesan, and J. Chen, Ferroic tunnel junctions and their application in neuro-morphic networks, Appl. Phys. Rev. 7(1), 011304 (2020)

    Article  Google Scholar 

  7. H. Ling, D. A. Koutsouras, S. Kazemzadeh, Y. Van De Burgt, F. Yan, and P. Gkoupidenis, Electrolyte-gated transistors for synaptic electronics, neuromorphic computing, and adaptable biointerfacing, Appl. Phys. Rev. 7(1), 011307 (2020)

    Article  ADS  Google Scholar 

  8. Y. Zhang, Z. Wang, J. Zhu, Y. Yang, M. Rao, W. Song, Y. Zhuo, X. Zhang, M. Cui, L. Shen, R. Huang, and J. Joshua Yang, Brain-inspired computing with memristors: Challenges in devices, circuits, and systems, Appl. Phys. Rev. 7(1), 011308 (2020)

    Article  ADS  Google Scholar 

  9. Z. Zhou, F. Yang, S. Wang, L. Wang, X. Wang, C. Wang, Y. Xie, and Q. Liu, Emerging of two-dimensional materials in novel memristor, Front. Phys. 17(2), 23204 (2022)

    Article  ADS  Google Scholar 

  10. H. T. Zhang, T. J. Park, A. Islam, D. S. J. Tran, S. Manna, Q. Wang, S. Mondal, H. Yu, S. Banik, S. Cheng, H. Zhou, S. Gamage, S. Mahapatra, Y. Zhu, Y. Abate, N. Jiang, S. Sankaranarayanan, A. Sengupta, C. Teuscher, and S. Ramanathan, Reconfigurable perovskite nickelate electronics for artificial intelligence, Science 375(6580), 533 (2022)

    Article  ADS  Google Scholar 

  11. H. M. Huang, R. Yang, Z. H. Tan, H. K. He, W. Zhou, J. Xiong, and X. Guo, Quasi-hodgkin–huxley neurons with leaky integrate-and-fire functions physically realized with memristive devices, Adv. Mater. 31(3), 1803849 (2019)

    Article  Google Scholar 

  12. S. H. Sung, T. J. Kim, H. Shin, T. H. Im, and K. J. Lee, Simultaneous emulation of synaptic and intrinsic plasticity using a memristive synapse, Nat. Commun. 13, 2811 (2022)

    Article  ADS  Google Scholar 

  13. N. Ilyas, J. Wang, C. Li, H. Fu, D. Li, X. Jiang, D. Gu, Y. Jiang, and W. Li, Controllable resistive switching of STO: Ag/SiO2-based memristor synapse for neuromorphic computing, J. Mater. Sci. Technol. 97, 254 (2022)

    Article  Google Scholar 

  14. T. Tuma, A. Pantazi, M. Le Gallo, A. Sebastian, and E. Eleftheriou, Stochastic phase-change neurons, Nat. Nanotechnol. 11(8), 693 (2016)

    Article  ADS  Google Scholar 

  15. X. Yan, J. Zhao, S. Liu, Z. Zhou, Q. Liu, J. Chen, and X. Y. Liu, Memristor with Ag-cluster-doped TiO2 films as artificial synapse for neuroinspired computing, Adv. Funct. Mater. 28(1), 1705320 (2018)

    Article  Google Scholar 

  16. X. Sun, G. Li, X. Zhang, L. Ding, and W. Zhang, Coexistence of the bipolar and unipolar resistive switching behaviours in Au/SrTiO3/Pt cells, J. Phys. D Appl. Phys. 44(12), 125404 (2011)

    Article  ADS  Google Scholar 

  17. J. Ji, F. Ling, S. Zhou, D. Li, C. Luo, L. Wu, and J. Yao, Optically tuned dielectric property of ferroelectric PZT/STO/PT superlattice by THz spectroscopy, J. Alloys Compd. 703, 517 (2017)

    Article  Google Scholar 

  18. H. Jong Choi, S. Won Park, G. Deok Han, J. Na, G. T. Kim, and J. Hyung Shim, Resistive switching characteristics of polycrystalline SrTiO3 films, Appl. Phys. Lett. 104(24), 242105 (2014)

    Article  ADS  Google Scholar 

  19. X. Yan, J. Yin, Z. Liu, and X. Xia, Studies on the reset power needed for the unipolar resistive switching in amorphous SrTiO3−δ films induced by electrical pulse, Phys. Lett. A 375(41), 3599 (2011)

    Article  ADS  Google Scholar 

  20. P. Hou, Z. Gao, and K. Ni, Multilevel data storage memory based on polycrystalline SrTiO3 ultrathin film, RSC Advances 7(78), 49753 (2017)

    Article  ADS  Google Scholar 

  21. H. Hu, Y. Li, Y. Yang, W. Lv, H. Yu, W. Lu, Y. Dong, and Z. Wen, Enhanced resistance switching in ultrathin Ag/SrTiO3/(La, Sr)MnO3 memristors and their long-term plasticity for neuromorphic computing, Appl. Phys. Lett. 119(2), 023502 (2021)

    Article  ADS  Google Scholar 

  22. J. Xiong, R. Yang, J. Shaibo, H. M. Huang, H. K. He, W. Zhou, and X. Guo, Bienenstock, Cooper, and Munro learning rules realized in second-order memristors with tunable forgetting rate, Adv. Funct. Mater. 29(9), 1807316 (2019)

    Article  Google Scholar 

  23. M. A. Rahman, S. Walia, S. Naznee, M. Taha, S. Nirantar, F. Rahman, M. Bhaskaran, and S. Sriram, Artificial somatosensors: Feedback receptors for electronic skins, Adv. Intell. Syst. 2(11), 2000094 (2020)

    Article  Google Scholar 

  24. H. Tang, X. G. Tang, Y. P. Jiang, Q. X. Liu, W. H. Li, and L. Luo, Bipolar resistive switching characteristics of amorphous SrTiO3 thin films prepared by the sol–gel process, J Asian Ceram Soc. 7(3), 298 (2019)

    Article  Google Scholar 

  25. K. Wang, Q. Hu, B. Gao, Q. Lin, F. W. Zhuge, D. Y. Zhang, L. Wang, Y. H. He, R. H. Scheicher, H. Tong, and X. S. Miao, Threshold switching memristor-based stochastic neurons for probabilistic computing, Mater. Horiz. 8(2), 619 (2021)

    Article  Google Scholar 

  26. K. Wang, L. Li, R. Zhao, J. Zhao, Z. Zhou, J. Wang, H. Wang, B. Tang, C. Lu, J. Lou, J. Chen, and X. Yan, A pure 2H-MoS2 nanosheet-based memristor with low power consumption and linear multilevel storage for artificial synapse emulator, Adv. Electron. Mater. 6(3), 1901342 (2020)

    Article  Google Scholar 

  27. G. Wang, X. Yan, J. Chen, and D. Ren, Memristors based on the hybrid structure of oxide and boron nitride nanosheets combining memristive and neuromorphic functionalities, Phys. Status Solidi Rapid Res. Lett. 14(1), 1900539 (2020)

    Article  ADS  Google Scholar 

  28. F. Wu, S. Si, P. Cao, W. Wei, X. Zhao, T. Shi, X. Zhang, J. Ma, R. Cao, L. Liao, T. Y. Tseng, and Q. Liu, Interface engineering via MoS2 insertion layer for improving resistive switching of conductive-bridging random access memory, Adv. Electron. Mater. 5(4), 1800747 (2019)

    Article  Google Scholar 

  29. L. A. Liu, J. Zhao, G. Cao, S. Zheng, and X. Yan, A memristor-based silicon carbide for artificial nociceptor and neuromorphic computing, Adv. Electron. Mater. 6, 2100373 (2021)

    Google Scholar 

  30. X. Mou, J. Tang, Y. Lyu, Q. Zhang, S. Yang, F. Xu, W. Liu, M. Xu, Y. Zhou, W. Sun, Y. Zhong, B. Gao, P. Yu, H. Qian, and H. Wu, Analog memristive synapse based on topotactic phase transition for high-performance neuromorphic computing and neural network pruning, Sci. Adv. 7(29), eabh0648 (2021)

    Article  ADS  Google Scholar 

  31. Y. Zhang, W. He, Y. Wu, K. Huang, Y. Shen, J. Su, Y. Wang, Z. Zhang, X. Ji, G. Li, H. Zhang, S. Song, H. Li, L. Sun, R. Zhao, and L. Shi, Highly compact artificial memristive neuron with low energy consumption, Small 14(51), 1802188 (2018)

    Article  Google Scholar 

  32. Y. Zhang, Z. Fang, and X. Yan, HfO2-based memristor-CMOS hybrid implementation of artificial neuron model, Appl. Phys. Lett. 120(21), 213502 (2022)

    Article  ADS  Google Scholar 

  33. L. Yan, Y. Pei, J. Wang, H. He, Y. Zhao, X. Li, Y. Wei, and X. Yan, High-speed Si films based threshold switching device and its artificial neuron application, Appl. Phys. Lett. 119(15), 153507 (2021)

    Article  ADS  Google Scholar 

  34. Y. Wang, X. Chen, D. Shen, M. Zhang, X. Chen, X. Chen, W. Shao, H. Gu, J. Xu, E. Hu, L. Wang, R. Xu, and Y. Tong, Artificial neurons based on Ag/V2C/W threshold switching memristors, Nanomaterials (Basel) 11(11), 2860 (2021)

    Article  Google Scholar 

  35. P. Dayan and L. F. Abbott, Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems, MIT Press, 2005

  36. R. Yang, H. M. Huang, Q. H. Hong, X. B. Yin, Z. H. Tan, T. Shi, Y. X. Zhou, X. S. Miao, X. P. Wang, S. B. Mi, C. L. Jia, and X. Guo, Synaptic suppression triplet-STDP learning rule realized in second-order memristors, Adv. Funct. Mater. 28(5), 1704455 (2018)

    Article  Google Scholar 

  37. Y. He, S. Nie, R. Liu, S. Jiang, Y. Shi, and Q. Wan, Spatiotemporal information processing emulated by multiterminal neuro-transistor networks, Adv. Mater. 31(21), 1900903 (2019)

    Article  Google Scholar 

  38. X. Zhang, W. Wang, Q. Liu, X. Zhao, J. Wei, R. Cao, Z. Yao, X. Zhu, F. Zhang, and H. Lv, An artificial neuron based on a threshold switching memristor, IEEE Electr. Device L. 39(2), 308 (2017)

    Article  ADS  Google Scholar 

  39. G. Cao, X. Yan, J. Wang, Z. Zhou, J. Lou, and K. Wang, Realization of fast switching speed and electronic synapse in Ta/TaOx/AlN/Pt bipolar resistive memory, AIP Adv. 10(5), 055312 (2020)

    Article  ADS  Google Scholar 

  40. X. Yan, K. Wang, J. Zhao, Z. Zhou, H. Wang, J. Wang, L. Zhang, X. Li, Z. Xiao, Q. Zhao, Y. Pei, G. Wang, C. Qin, H. Li, J. Lou, Q. Liu, and P. Zhou, A new memristor with 2D Ti3C2Tx MXene flakes as an artificial biosynapse, Small 15(25), 1900107 (2019)

    Article  Google Scholar 

  41. Z. Zhao, A. Abdelsamie, R. Guo, S. Shi, J. Zhao, W. Lin, K. Sun, J. Wang, J. Wang, X. Yan, and J. Chen, Flexible artificial synapse based on single-crystalline BiFeO3 thin film, Nano Res. 15(3), 2682 (2022)

    Article  ADS  Google Scholar 

  42. T. Shi, R. Wang, Z. Wu, Y. Sun, J. An, and Q. Liu, A review of resistive switching devices: Performance improvement, characterization, and applications, Small Struct. 2(4), 2000109 (2021)

    Article  Google Scholar 

  43. Y. Pei, Z. Zhou, A. P. Chen, J. Chen, and X. Yan, A carbon-based memristor design for associative learning activities and neuromorphic computing, Nanoscale 12(25), 13531 (2020)

    Article  Google Scholar 

  44. Y. F. Wang, Y. C. Lin, I. T. Wang, T. P. Lin, and T. H. Hou, Characterization and modeling of nonfilamentary Ta/TaOx/TiO2/Ti analog synaptic device, Sci. Rep. 5(1), 10150 (2015)

    Article  ADS  Google Scholar 

  45. Z. Zhao and X. Yan, Ferroelectric memristor based on Hf0.5Zr0.5O2 thin film combining memristive and neuro-morphic functionalities, Phys. Status Solidi Rapid Res. Lett. 14(9), 2000224 (2020)

    Article  ADS  Google Scholar 

  46. Z. Zhu, Y. Pei, C. Gao, H. Wang, and X. Yan, A Cu/HZO/GeS/Pt memristor for neuroinspired computing, Phys. Status Solidi Rapid Res. Lett. 15(10), 2100072 (2021)

    Article  ADS  Google Scholar 

  47. S. Ke, L. Jiang, Y. Zhao, Y. Xiao, B. Jiang, G. Cheng, F. Wu, G. Cao, Z. Peng, M. Zhu, and C. Ye, Brain-like synaptic memristor based on lithium-doped silicate for neuromorphic computing, Front. Phys. 17(5), 53508 (2022)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key R&D Program of China (Grant No. 2018AAA0103300), the National Key R&D Plan “Nano Frontier” Key Special Project (Grant No. 2021YFA1200502), the Cultivation Projects of National Major R&D Project (Grant No. 92164109), the National Natural Science Foundation of China (Grant Nos. 61874158, 62004056, and 62104058), the Special Project of Strategic Leading Science and Technology of Chinese Academy of Sciences (Grant No. XDB44000000-7), Hebei Basic Research Special Key Project (Grant No. F2021201045), the Support Program for the Top Young Talents of Hebei Province (Grant No. 70280011807), the Supporting Plan for 100 Excellent Innovative Talents in Colleges and Universities of Hebei Province (Grant No. SLRC2019018), the Interdisciplinary Research Program of Natural Science of Hebei University (No. DXK202101), Institute of Life Sciences and Green Development (No. 521100311), the Natural Science Foundation of Hebei Province (Nos. F2022201054 and F2021201022), the Outstanding Young Scientific Research and Innovation team of Hebei University (Grant No. 605020521001), Special Support Funds for National High Level Talents (Grant No. 041500120001), High-level Talent Research Startup Project of Hebei University (Grant No. 521000981426), the Science and Technology Project of Hebei Education Department (Grant Nos. QN2020178 and QN2021026), and Baoding Science and Technology Plan Project (Nos. 2172P011 and 2272P014).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaobing Yan or Tuo Shi.

Additional information

Conflicts of interest

There are no conflicts to declare.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, X., Han, X., Fang, Z. et al. Reconfigurable memristor based on SrTiO3 thin-film for neuromorphic computing. Front. Phys. 18, 63301 (2023). https://doi.org/10.1007/s11467-023-1308-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-023-1308-0

Keywords

Navigation