Skip to main content
Log in

Correlation-driven threefold topological phase transition in monolayer OsBr2

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

Spin—orbit coupling (SOC) combined with electronic correlation can induce topological phase transition, producing novel electronic states. Here, we investigate the impact of SOC combined with correlation effects on physical properties of monolayer OsBr2, based on first-principles calculations with generalized gradient approximation plus U (GGA+U) approach. With intrinsic out-of-plane magnetic anisotropy, OsBr2 undergoes threefold topological phase transition with increasing U, and valley-polarized quantum anomalous Hall insulator (VQAHI) to half-valley-metal (HVM) to ferrovalley insulator (FVI) to HVM to VQAHI to HVM to FVI transitions can be induced. These topological phase transitions are connected with sign-reversible Berry curvature and band inversion between \({d_{xy}}/{d_{{x^2} - {y^2}}}\) and \({d_{{z^2}}}\) orbitals. Due to \(\bar 6m2\) symmetry, piezoelectric polarization of OsBr2 is confined along the in-plane armchair direction, and only one d11 is independent. For a given material, the correlation strength should be fixed, and OsBr2 may be a piezoelectric VQAHI (PVQAHI), piezoelectric HVM (PHVM) or piezoelectric FVI (PFVI). The valley polarization can be flipped by reversing the magnetization of Os atoms, and the ferrovalley (FV) and nontrivial topological properties will be suppressed by manipulating out-of-plane magnetization to in-plane one. In considered reasonable U range, the estimated Curie temperatures all are higher than room temperature. Our findings provide a comprehensive understanding on possible electronic states of OsBr2, and confirm that strong SOC combined with electronic correlation can induce multiple quantum phase transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Huang, G. Clark, E. Navarro-Moratalla, D. R. Klein, R. Cheng, K. L. Seyler, D. Zhong, E. Schmidgall, M. A. McGuire, D. H. Cobden, W. Yao, D. Xiao, P. Jarillo-Herrero, and X. Xu, Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit, Nature 546(7657), 270 (2017)

    Article  ADS  Google Scholar 

  2. M. Z. Hasan and C. L. Kane, Topological insulators, Rev. Mod. Phys. 82(4), 3045 (2010)

    Article  ADS  Google Scholar 

  3. X. L. Qi and S. C. Zhang, Topological insulators and superconductors, Rev. Mod. Phys. 83(4), 1057 (2011)

    Article  ADS  Google Scholar 

  4. R. Yu, W. Zhang, H. J. Zhang, S. C. Zhang, X. Dai, and Z. Fang, Quantized anomalous Hall effect in magnetic topological insulators, Science 329(5987), 61 (2010)

    Article  ADS  Google Scholar 

  5. X. Wan, A. M. Turner, A. Vishwanath, and S. Y. Savrasov, Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates, Phys. Rev. B 83(20), 205101 (2011)

    Article  ADS  Google Scholar 

  6. W. Y. Tong, S. J. Gong, X. Wan, and C. G. Duan, Concepts of ferrovalley material and anomalous valley Hall effect, Nat. Commun. 7(1), 13612 (2016)

    Article  ADS  Google Scholar 

  7. Y. Choi, H. Kim, Y. Peng, A. Thomson, C. Lewandowski, R. Polski, Y. Zhang, H. S. Arora, K. Watanabe, T. Taniguchi, J. Alicea, and S. Nadj-Perge, Correlation-driven topological phases in magic-angle twisted bilayer graphene, Nature 589(7843), 536 (2021)

    Article  ADS  Google Scholar 

  8. Z. Cui, A. J. Grutter, H. Zhou, H. Cao, Y. Dong, D. A. Gilbert, J. Wang, Y. S. Liu, J. Ma, Z. Hu, J. Guo, J. Xia, B. J. Kirby, P. Shafer, E. Arenholz, H. Chen, X. Zhai, and Y. Lu, Correlation-driven eightfold magnetic anisotropy in a two-dimensional oxide monolayer, Sci. Adv. 6(15), eaay0114 (2020)

    Article  ADS  Google Scholar 

  9. I. Leonov, S. L. Skornyakov, V. I. Anisimov, and D. Vollhardt, Correlation-driven topological Fermi surface transition in FeSe, Phys. Rev. Lett. 115(10), 106402 (2015)

    Article  ADS  Google Scholar 

  10. Y. Wang, Z. Wang, Z. Fang, and X. Dai, Interaction-induced quantum anomalous Hall phase in (111) bilayer of LaCoO3, Phys. Rev. B Condens. Matter Mater. Phys. 91(12), 125139 (2015)

    Article  ADS  Google Scholar 

  11. J. Y. Li, Q. S. Yao, L. Wu, Z. X. Hu, B. Y. Gao, X. G. Wan, and Q. H. Liu, Designing light-element materials with large effective spin—orbit coupling, Nat. Commun. 13(1), 919 (2022)

    Article  ADS  Google Scholar 

  12. H. Hu, W. Y. Tong, Y. H. Shen, X. Wan, and C. G. Duan, Concepts of the half-valley-metal and quantum anomalous valley Hall effect, npj Comput. Mater. 6, 129 (2020)

    Article  ADS  Google Scholar 

  13. S. Li, Q. Q. Wang, C. M. Zhang, P. Guo, and S. A. Yang, Correlation-driven topological and valley states in monolayer VSi2P4, Phys. Rev. B 104(8), 085149 (2021)

    Article  ADS  Google Scholar 

  14. S. D. Guo, J. X. Zhu, M. Y. Yin, and B. G. Liu, Substantial electronic correlation effects on the electronic properties in a Janus FeClF monolayer, Phys. Rev. B 105(10), 104416 (2022)

    Article  ADS  Google Scholar 

  15. S. D. Guo, W. Q. Mu and B. G. Liu, Valley-polarized quantum anomalous Hall insulator in monolayer RuBr2, 2D Mater. 9, 035011 (2022)

    Article  Google Scholar 

  16. J. Zhou, Q. Sun, and P. Jena, Valley-polarized quantum anomalous Hall effect in ferrimagnetic honeycomb lattices, Phys. Rev. Lett. 119(4), 046403 (2017)

    Article  ADS  Google Scholar 

  17. T. Zhou, J. Y. Zhang, Y. Xue, B. Zhao, H. S. Zhang, H. Jiang, and Z. Q. Yang, Quantum spin—quantum anomalous Hall effect with tunable edge states in Sb monolayer-based heterostructures, Phys. Rev. B 94(23), 235449 (2016)

    Article  ADS  Google Scholar 

  18. T. Zhou, S. Cheng, M. Schleenvoigt, P. Schüffelgen, H. Jiang, Z. Yang, and I. Žutić, Quantum spin-valley Hall kink states: From concept to materials design, Phys. Rev. Lett. 127(11), 116402 (2021)

    Article  ADS  Google Scholar 

  19. S. D. Guo, W. Q. Mu, J. H. Wang, Y. X. Yang, B. Wang, and Y. S. Ang, Strain effects on the topological and valley properties of the Janus monolayer VSiGeN4, Phys. Rev. B 106(6), 064416 (2022)

    Article  ADS  Google Scholar 

  20. H. Huan, Y. Xue, B. Zhao, G. Y. Gao, H. R. Bao, and Z. Q. Yang, Strain-induced half-valley metals and topological phase transitions in MBr2 monolayers (M = Ru, Os), Phys. Rev. B 104(16), 165427 (2021)

    Article  ADS  Google Scholar 

  21. Y. J. Wang, F. F. Li, H. L. Zheng, X. F. Han, and Y. Yan, Large magnetic anisotropy and its strain modulation in two-dimensional intrinsic ferromagnetic monolayer RuO2 and OsO2, Phys. Chem. Chem. Phys. 20(44), 28162 (2018)

    Article  Google Scholar 

  22. M. Zhang, H. M. Guo, J. Lv, and H. S. Wu, Electronic and magnetic properties of 5d transition metal substitution doping monolayer antimonene: Within GGA and GGA + U framework, Appl. Surf. Sci. 508, 145197 (2020)

    Article  Google Scholar 

  23. P. Hohenberg and W. Kohn, Inhomogeneous electron gas, Phys. Rev. 136(3B), B864 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  24. W. Kohn and L. J. Sham, Self-consistent equations including exchange and correlation effects, Phys. Rev. 140(4A), A1133 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  25. G. Kresse, Ab initio molecular dynamics for liquid metals, J. Non-Cryst. Solids 192–193, 222 (1995)

    Article  ADS  Google Scholar 

  26. G. Kresse and J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci. 6(1), 15 (1996)

    Article  Google Scholar 

  27. G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B 59(3), 1758 (1999)

    Article  ADS  Google Scholar 

  28. J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77(18), 3865 (1996)

    Article  ADS  Google Scholar 

  29. X. Wu, D. Vanderbilt, and D. R. Hamann, Systematic treatment of displacements. strains and electric fields in density-functional perturbation theory, Phys. Rev. B 72(3), 035105 (2005)

    Article  ADS  Google Scholar 

  30. A. A. Mostofi, J. R. Yates, G. Pizzi, Y. S. Lee, I. Souza, D. Vanderbilt, and N. Marzari, An updated version of Wannier90: A tool for obtaining maximally-localized Wannier functions, Comput. Phys. Commun. 185(8), 2309 (2014)

    Article  ADS  Google Scholar 

  31. Q. Wu, S. Zhang, H. F. Song, M. Troyer, and A. A. Soluyanov, WannierTools: An open-source software package for novel topological materials, Comput. Phys. Commun. 224, 405 (2018)

    Article  ADS  Google Scholar 

  32. T. Fukui, Y. Hatsugai, and H. Suzuki, Chern numbers in discretized Brillouin zone: Efficient method of computing (spin) Hall conductances, J. Phys. Soc. Jpn. 74(6), 1674 (2005)

    Article  ADS  Google Scholar 

  33. H. J. Kim, Webpage: github.com/Infant83/VASPBERRY, 2018

  34. H. J. Kim, C. Li, J. Feng, J.-H. Cho, and Z. Zhang, Competing magnetic orderings and tunable topological states in two-dimensional hexagonal organometallic lattices, Phys. Rev. B 93, 041404(R) (2016)

    Article  ADS  Google Scholar 

  35. L. Liu, X. Ren, J. H. Xie, B. Cheng, W. K. Liu, T. Y. An, H. W. Qin, and J. F. Hu, Magnetic switches via electric field in BN nanoribbons, Appl. Surf. Sci. 480, 300 (2019)

    Article  ADS  Google Scholar 

  36. K. N. Duerloo, M. T. Ong, and E. J. Reed, Intrinsic piezoelectricity in two-dimensional materials, J. Phys. Chem. Lett. 3(19), 2871 (2012)

    Article  Google Scholar 

  37. S. D. Guo, J. X. Zhu, W. Q. Mu, and B. G. Liu, Possible way to achieve anomalous valley Hall effect by piezoelectric effect in a GdCl2 monolayer, Phys. Rev. B 104(22), 224428 (2021)

    Article  ADS  Google Scholar 

  38. E. Cadelano and L. Colombo, Effect of hydrogen coverage on the Young’s modulus of graphene, Phys. Rev. B 85(24), 245434 (2012)

    Article  ADS  Google Scholar 

  39. P. Zhao, Y. Dai, H. Wang, B. B. Huang, and Y. D. Ma, Intrinsic valley polarization and anomalous valley Hall effect in single-layer 2H-FeCl2, ChemPhysMater 1(1), 56 (2022)

    Article  Google Scholar 

  40. R. Li, J. W. Jiang, W. B. Mi, and H. L. Bai, Room temperature spontaneous valley polarization in two-dimensional FeClBr monolayer, Nanoscale 13(35), 14807 (2021)

    Article  Google Scholar 

  41. X. Zhou, R. Zhang, Z. Zhang, W. Feng, Y. Mokrousov, and Y. Yao, Sign-reversible valley-dependent Berry phase effects in 2D valley-half-semiconductors, npj Comput. Mater. 7, 160 (2021)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Basis Research Plan in Shaanxi Province of China (No. 2021JM-456), Graduate Innovation Fund Project in Xi’an University of Posts and Telecommunications (No. CXJJDL2021001), the National Natural Science Foundation of China (Grant No. 11974393) and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB33020100). We are grateful to Shaanxi Supercomputing Center of China, and the calculations were performed on TianHe-2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to San-Dong Guo.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, SD., Tao, YL., Mu, WQ. et al. Correlation-driven threefold topological phase transition in monolayer OsBr2. Front. Phys. 18, 33304 (2023). https://doi.org/10.1007/s11467-022-1243-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-022-1243-5

Keywords

Navigation