Skip to main content
Log in

Two dimensional GeO2/MoSi2N4 van der Waals heterostructures with robust type-II band alignment

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

Constructing two-dimensional (2D) van der Waals heterostructures (vdWHs) can expand the electronic and optoelectronic applications of 2D semiconductors. However, the work on the 2D vdWHs with robust band alignment is still scarce. Here, we employ a global structure search approach to construct the vdWHs with monolayer MoSi2N4 and wide-bandgap GeO2. The studies show that the GeO2/MoSi2N4 vdWHs have the characteristics of direct structures with the band gap of 0.946 eV and type-II band alignment with GeO2 and MoSi2N4 layers as the conduction band minimum (CBM) and valence band maximum (VBM), respectively. Also, the direct-to-indirect band gap transition can be achieved by applying biaxial strain. In particular, the 2D GeO2/MoSi2N4 vdWHs show a robust type-II band alignment under the effects of biaxial strain, interlayer distance and external electric field. The results provide a route to realize the robust type-II band alignment vdWHs, which is helpful for the implementation of optoelectronic nanodevices with stable characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Wang, C. Si, W. Lei, F. Xiao, Y. Liu, C. Autieri, and X. Ming, Stacking order and Coulomb correlation effect in the layered charge density wave phase of 1T-NbS2, Phys. Rev. B 105(3), 035119 (2022)

    Article  ADS  Google Scholar 

  2. A. Aharon-Steinberg, A. Marguerite, D. J. Perello, K. Bagani, T. Holder, Y. Myasoedov, L. S. Levitov, A. K. Geim, and E. Zeldov, Long-range nontopological edge currents in charge-neutral graphene, Nature 593(7860), 528 (2021)

    Article  ADS  Google Scholar 

  3. X. Li, P. Yuan, L. Li, M. He, J. Li, and C. Xia, Sub-5-nm monolayer GaSe MOSFET with ultralow subthreshold swing and high on-state current: Dielectric layer effect, Phys. Rev. Appl. 18(4), 044012 (2022)

    Article  ADS  Google Scholar 

  4. T. Wang, A. Dong, X. Zhang, R. K. Hocking, and C. Sun, Theoretical study of K3Sb/graphene heterostructure for electrochemical nitrogen reduction reaction, Front. Phys. 17(2), 23501 (2022)

    Article  ADS  Google Scholar 

  5. Q. Q. Kong, X. G. An, J. Zhang, W. T. Yao, and C. H. Sun, Design of heterojunction with components in different dimensions for electrocatalysis applications, Front. Phys. 17(4), 43601 (2022)

    Article  ADS  Google Scholar 

  6. C. Long, Y. Dai, Z. R. Gong, and H. Jin, Robust type-II band alignment in Janus-MoSSe bilayer with extremely long carrier lifetime induced by the intrinsic electric field, Phys. Rev. B 99(11), 115316 (2019)

    Article  ADS  Google Scholar 

  7. N. Ubrig, E. Ponomarev, J. Zultak, D. Domaretskiy, V. Zolyomi, D. Terry, J. Howarth, I. Gutierrez-Lezama, A. Zhukov, Z. R. Kudrynskyi, Z. D. Kovalyuk, A. Patane, T. Taniguchi, K. Watanabe, R. V. Gorbachev, V. I. Fal’ko, and A. F. Morpurgo, Design of van der Waals interfaces for broad-spectrum optoelectronics, Nat. Mater. 19(3), 299 (2020)

    Article  ADS  Google Scholar 

  8. J. G. Azadani, S. Lee, H. R. Kim, H. Alsalman, Y. K. Kwon, J. Tersoff, and T. Low, Simple linear response model for predicting energy band alignment of two-dimensional vertical heterostructures, Phys. Rev. B 103(20), 205129 (2021)

    Article  ADS  Google Scholar 

  9. F. H. Davies, C. J. Price, N. T. Taylor, S. G. Davies, and S. P. Hepplestone, Band alignment of transition metal dichalcogenide heterostructures, Phys. Rev. B 103(4), 045417 (2021)

    Article  ADS  Google Scholar 

  10. P. Rivera, J. R. Schaibley, A. M. Jones, J. S. Ross, S. Wu, G. Aivazian, P. Klement, K. Seyler, G. Clark, N. J. Ghimire, J. Yan, D. G. Mandrus, W. Yao, and X. Xu, Observation of long-lived interlayer excitons in monolayer MoSe2-WSe2 heterostructures, Nat. Commun. 6(1), 6242 (2015)

    Article  ADS  Google Scholar 

  11. P. Rivera, K. L. Seyler, H. Yu, J. R. Schaibley, J. Yan, D. G. Mandrus, W. Yao, and X. Xu, Valley-polarized exciton dynamics in a 2D semiconductor heterostructure, Science 351(6274), 688 (2016)

    Article  ADS  Google Scholar 

  12. Y. Y. Wang, F. P. Li, W. Wei, B. B. Huang, and Y. Dai, Interlayer coupling effect in van der Waals heterostructures of transition metal dichalcogenides, Front. Phys. 16(1), 13501 (2020)

    Article  ADS  Google Scholar 

  13. X. Li, T. Liu, L. Li, M. He, C. Shen, J. Li, and C. Xia, Reconfifigurable band alignment of m-GaS/n-XTe2 (X = Mo, W) multilayer van der Waals heterostructures for photoelectric applications, Phys. Rev. B 106(12), 125306 (2022)

    Article  ADS  Google Scholar 

  14. D. Wijethunge, L. Zhang, C. Tang, and A. Du, Tuning band alignment and optical properties of 2D van der Waals heterostructure via ferroelectric polarization switching, Front. Phys. 15(6), 63504 (2020)

    Article  ADS  Google Scholar 

  15. S. Ghosh, A. Varghese, H. Jawa, Y. Yin, N. V. Medhekar, and S. Lodha, Polarity-tunable photocurrent through band alignment engineering in a high-speed WSe2/SnSe2 diode with large negative responsivity, ACS Nano 16(3), 4578 (2022)

    Article  Google Scholar 

  16. Y. Zhu, D. Zhang, H. Ye, D. Bai, M. Li, G. P. Zhang, J. Zhang, and J. Wang, Magnetic and electronic properties of AlN/VSe2 van der Waals heterostructures from combined first-principles and Schrödinger-Poisson simulations, Phys. Rev. Appl. 18(2), 024012 (2022)

    Article  ADS  Google Scholar 

  17. Y. L. Hong, Z. Liu, L. Wang, T. Zhou, W. Ma, C. Xu, S. Feng, L. Chen, M. L. Chen, D. M. Sun, X. Q. Chen, H. M. Cheng, and W. Ren, Chemical vapor deposition of layered two-dimensional MoSi2N4 materials, Science 369(6504), 670 (2020)

    Article  ADS  Google Scholar 

  18. R. Islam, B. Ghosh, C. Autieri, S. Chowdhury, A. Bansil, A. Agarwal, and B. Singh, Tunable spin polarization and electronic structure of bottom-up synthesized MoSi2N4 materials, Phys. Rev. B 104(20), L201112 (2021)

    Article  ADS  Google Scholar 

  19. A. Bafekry, M. Faraji, M. M. Fadlallah, A. Bagheri Khatibani, A. Abdolahzadeh Ziabari, M. Ghergherehchi, S. Nedaei, S. F. Shayesteh, and D. Gogova, Tunable electronic and magnetic properties of MoSi2N4 monolayer via vacancy defects, atomic adsorption and atomic doping, Appl. Surf. Sci. 559, 149862 (2021)

    Article  Google Scholar 

  20. Q. Wu, L. Cao, Y. S. Ang, and L. K. Ang, Semiconductor-to-metal transition in bilayer MoSi2N4 and WSi2N4 with strain and electric field, Appl. Phys. Lett. 118(11), 113102 (2021)

    Article  ADS  Google Scholar 

  21. H. Zhong, W. Xiong, P. Lv, J. Yu, and S. Yuan, Strain-induced semiconductor to metal transition in MA2Z4 bilayers (M=Ti, Cr, Mo; A=Si; Z=N, P), Phys. Rev. B 103(8), 085124 (2021)

    Article  ADS  Google Scholar 

  22. S. Li, W. Wu, X. Feng, S. Guan, W. Feng, Y. Yao, and S. A. Yang, Valley-dependent properties of monolayer MoSi2N4, WSi2N4, and MoSi2As4, Phys. Rev. B 102(23), 235435 (2020)

    Article  ADS  Google Scholar 

  23. T. Zhong, Y. Ren, Z. Zhang, J. Gao, and M. Wu, Sliding ferroelectricity in two-dimensional MoA2N4 (A = Si or Ge) bilayers: High polarizations and Moiré potentials, J. Mater. Chem. A 9(35), 19659 (2021)

    Article  Google Scholar 

  24. L. Wang, Y. Shi, M. Liu, A. Zhang, Y. L. Hong, R. Li, Q. Gao, M. Chen, W. Ren, H. M. Cheng, Y. Li, and X. Q. Chen, Intercalated architecture of MA2Z4 family layered van der Waals materials with emerging topological, magnetic and superconducting properties, Nat. Commun. 12(1), 2361 (2021)

    Article  ADS  Google Scholar 

  25. Q. Wu and L. K. Ang, Giant tunneling magnetoresistance in atomically thin VSi2N4/MoSi2N4/VSi2N4 magnetic tunnel junction, Appl. Phys. Lett. 120(2), 022401 (2022)

    Article  ADS  Google Scholar 

  26. Y. Zang, Q. Wu, W. Du, Y. Dai, B. Huang, and Y. Ma, Activating electrocatalytic hydrogen evolution performance of two-dimensional MSi2N4(M=Mo, W): A theoretical prediction, Phys. Rev. Mater. 5(4), 045801 (2021)

    Article  ADS  Google Scholar 

  27. J. Yuan, Q. Wei, M. Sun, X. Yan, Y. Cai, L. Shen, and U. Schwingenschlögl, Protected valley states and generation of valley- and spin-polarized current in monolayer MA2Z4, Phys. Rev. B 105(19), 195151 (2022)

    Article  ADS  Google Scholar 

  28. B. Mortazavi, B. Javvaji, F. Shojaei, T. Rabczuk, A. V. Shapeev, and X. Y. Zhuang, Exceptional piezoelectricity, high thermal conductivity and stiffness and promising photocatalysis in two-dimensional MoSi2N4 family confirmed by first-principles, Nano Energy 82, 105716 (2021)

    Article  Google Scholar 

  29. Y. Yin, M. Yi, and W. Guo, High and anomalous thermal conductivity in monolayer MSi2Z4 semiconductors, ACS Appl. Mater. Interfaces 13(38), 45907 (2021)

    Article  Google Scholar 

  30. C. C. Jian, X. C. Ma, J. Q. Zhang, and X. Yong, Strained MoSi2N4 monolayers with excellent solar energy absorption and carrier transport properties, J. Phys. Chem. C 125(28), 15185 (2021)

    Article  Google Scholar 

  31. A. Bafekry, C. Stampfl, M. Naseri, M. M. Fadlallah, M. Faraji, M. Ghergherehchi, D. Gogova, and S. A. H. Feghhi, Effect of electric field and vertical strain on the electro—optical properties of the MoSi2N4 bilayer: A first-principles calculation, J. Appl. Phys. 129(15), 155103 (2021)

    Article  ADS  Google Scholar 

  32. L. Cao, G. Zhou, Q. Wang, L. K. Ang, and Y. S. Ang, Two-dimensional van der Waals electrical contact to monolayer MoSi2N4, Appl. Phys. Lett. 118(1), 013106 (2021)

    Article  ADS  Google Scholar 

  33. J. Zhao, X. H. Jin, H. Zeng, C. Yao, and G. Yan, Spinvalley coupling and valley splitting in the MoSi2N4/CrCl3 van der Waals heterostructure, Appl. Phys. Lett. 119(21), 213101 (2021)

    Article  ADS  Google Scholar 

  34. Y. Ding and Y. Wang, First-principles study of two-dimensional MoN2X2Y2 (X = B∼In, Y = N∼Te) nanosheets: The III–VI analogues of MoSi2N4 with peculiar electronic and magnetic properties, Appl. Surf. Sci. 593, 153317 (2022)

    Article  Google Scholar 

  35. C. Nguyen, N. V. Hoang, H. V. Phuc, A. Y. Sin, and C. V. Nguyen, Two-dimensional boron phosphide/MoGe2N4 van der Waals heterostructure: A promising tunable optoelectronic material, J. Phys. Chem. Lett. 12(21), 5076 (2021)

    Article  Google Scholar 

  36. Y. Guo, Y. Dong, X. Cai, L. Liu, and Y. Jia, Controllable Schottky barriers and contact types of BN intercalation layers in graphene/MoSi2As4 vdW heterostructures via applying an external electrical field, Phys. Chem. Chem. Phys. 24(30), 18331 (2022)

    Article  Google Scholar 

  37. Z. Zhang, G. Chen, A. Song, X. Cai, W. Yu, X. Jia, and Y. Jia, Optoelectronic properties of bilayer van der Waals WSe2/MoSi2N4 heterostructure: A first-principles study, Physica E 144, 115429 (2022)

    Article  Google Scholar 

  38. C. Q. Nguyen, Y. S. Ang, S. T. Nguyen, N. V. Hoang, N. M. Hung, and C. V. Nguyen, Tunable type-II band alignment and electronic structure of C3N4/MoSi2N4 heterostructure: Interlayer coupling and electric field, Phys. Rev. B 105(4), 045303 (2022)

    Article  ADS  Google Scholar 

  39. Y. T. Ren, L. Hu, Y. T. Chen, Y. J. Hu, J. L. Wang, P. L. Gong, H. Zhang, L. Huang, and X. Q. Shi, Two-dimensional MSi2N4 monolayers and van der Waals heterostructures: Promising spintronic properties and band alignments, Phys. Rev. Mater. 6(6), 064006 (2022)

    Article  Google Scholar 

  40. X. Cai, Z. Zhang, Y. Zhu, L. Lin, W. Yu, Q. Wang, X. Yang, X. Jia, and Y. Jia, A two-dimensional MoSe2/MoSi2N4 van der Waals heterostructure with high carrier mobility and diversified regulation of its electronic properties, J. Mater. Chem. C 9(31), 10073 (2021)

    Article  Google Scholar 

  41. A. Bafekry, M. Faraji, A. Abdollahzadeh Ziabari, M. M. Fadlallah, C. V. Nguyen, M. Ghergherehchi, and S. A. H. Feghhi, A van der Waals heterostructure of MoS2/MoSi2N4: a first-principles study, New J. Chem. 45(18), 8291 (2021)

    Article  Google Scholar 

  42. J. Q. Ng, Q. Wu, L. K. Ang, and Y. S. Ang, Tunable electronic properties and band alignments of MoSi2N4/GaN and MoSi2N4/ZnO van der Waals heterostructures, Appl. Phys. Lett. 120(10), 103101 (2022)

    Article  ADS  Google Scholar 

  43. Y. Sozen, M. Yagmurcukardes, and H. Sahin, Vibrational and optical identification of GeO2 and GeO single layers: A first-principles study, Phys. Chem. Chem. Phys. 23(37), 21307 (2021)

    Article  Google Scholar 

  44. S. Chuang, C. Battaglia, A. Azcatl, S. McDonnell, J. S. Kang, X. Yin, M. Tosun, R. Kapadia, H. Fang, R. M. Wallace, and A. Javey, MoS2 p-type transistors and diodes enabled by high work function MoOx contacts, Nano Lett. 14(3), 1337 (2014)

    Article  ADS  Google Scholar 

  45. H. Kim and H. J. Choi, Thickness dependence of work function, ionization energy, and electron affinity of Mo and W dichalcogenides from DFT and GW calculations, Phys. Rev. B 103(8), 085404 (2021)

    Article  ADS  Google Scholar 

  46. B. Y. Zhang, K. Xu, Q. Yao, A. Jannat, G. Ren, M. R. Field, X. Wen, C. Zhou, A. Zavabeti, and J. Z. Ou, Hexagonal metal oxide monolayers derived from the metal-gas interface, Nat. Mater. 20(8), 1073 (2021)

    Article  ADS  Google Scholar 

  47. G. Kresse and J. Furthmuller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54(16), 11169 (1996)

    Article  ADS  Google Scholar 

  48. J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77(18), 3865 (1996)

    Article  ADS  Google Scholar 

  49. J. Heyd, G. E. Scuseria, and M. Ernzerhof, Hybrid functionals based on a screened Coulomb potential, J. Chem. Phys. 118(18), 8207 (2003)

    Article  ADS  Google Scholar 

  50. G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B 59(3), 1758 (1999)

    Article  ADS  Google Scholar 

  51. Y. Mogulkoc, R. Caglayan, and Y. O. Ciftci, Band alignment in monolayer boron phosphide with Janus MoSSe heterobilayers under strain and electric field, Phys. Rev. Appl. 16(2), 024001 (2021)

    Article  ADS  Google Scholar 

  52. Y. L. Liu, Y. Shi, H. Yin, and C. L. Yang, Two-dimensional BP/β-AsP van der Waals heterostructures as promising photocatalyst for water splitting, Appl. Phys. Lett. 117(6), 063901 (2020)

    Article  ADS  Google Scholar 

  53. S. Patel, U. Dey, N. P. Adhikari, and A. Taraphder, Electric field and strain-induced band-gap engineering and manipulation of the Rashba spin splitting in Janus van der Waals heterostructures, Phys. Rev. B 106(3), 035125 (2022)

    Article  ADS  Google Scholar 

  54. M. Yagmurcukardes, E. Torun, R. T. Senger, F. M. Peeters, and H. Sahin, Mg(OH)2-WS2 van der Waals heterobilayer: Electric field tunable band-gap crossover, Phys. Rev. B 94(19), 195403 (2016)

    Article  ADS  Google Scholar 

  55. K. Iordanidou and J. Wiktor, Two-dimensional MoTe2/SnSe2 van der Waals heterostructures for tunnel-FET applications, Phys. Rev. Mater. 6(8), 084001 (2022)

    Article  Google Scholar 

  56. K. Liang, T. Huang, K. Yang, Y. Si, H. Y. Wu, J. C. Lian, W. Q. Huang, W. Y. Hu, and G. F. Huang, Dipole engineering of two-dimensional van der Waals heterostructures for enhanced power-conversion efficiency: The case of Janus Ga2SeTe/InS, Phys. Rev. Appl. 16(5), 054043 (2021)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant Nos. 11904085 and 12074103. Program for Outstanding Youth of Henan Province under Grant No. 202300410221. Henan Normal University Innovative Science and Technology Team under Grant No. 20200185. The calculations were also supported by the High Performance Computing Center of Henan Normal University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Congxin Xia.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Yuan, P., Li, L. et al. Two dimensional GeO2/MoSi2N4 van der Waals heterostructures with robust type-II band alignment. Front. Phys. 18, 13305 (2023). https://doi.org/10.1007/s11467-022-1216-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-022-1216-8

Keywords

Navigation