Skip to main content
Log in

Design of heterojunction with components in different dimensions for electrocatalysis applications

  • View & Perspective
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

Searching for high-performance and cost-effective catalysts is of particular importance for the practical electrocatalysis applications. The heterojunctions with components in different dimensions show unique physical and chemical properties, which can offer large space for rational design of electrocatalysis. In this paper, we firstly reviewed recently related works, and then proposed a few perspectives on exploring heterojunction for electrocatalysis applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Eftekhari, Electrocatalysts for hydrogen evolution reaction, Int. J. Hydrogen Energy 42(16), 11053 (2017)

    Article  Google Scholar 

  2. A. Eftekhari, Tuning the electrocatalysts for oxygen evolution reaction, Mater. Today Energy 5, 37 (2017)

    Article  Google Scholar 

  3. X. Yan, D. L. Liu, H. H. Cao, F. Hou, J. Liang, and S. X. Dou, Nitrogen reduction to ammonia on atomic-scale active sites under mild conditions, Small Methods 3(9), 1800501 (2019)

    Article  Google Scholar 

  4. X. Wang, Y. Zheng, W. Sheng, Z. J. Xu, M. Jaroniec, and S. Z. Qiao, Strategies for design of electrocatalysts for hydrogen evolution under alkaline conditions, Mater. Today 36, 125 (2020)

    Article  Google Scholar 

  5. J. Song, C. Wei, Z. F. Huang, C. Liu, L. Zeng, X. Wang, and Z. J. Xu, A review on fundamentals for designing oxygen evolution electrocatalysts, Chem. Soc. Rev. 49(7), 2196 (2020)

    Article  Google Scholar 

  6. D. Voiry, H. S. Shin, K. P. Loh, and M. Chhowalla, Low-dimensional catalysts for hydrogen evolution and CO2 reduction, Nat. Rev. Chem. 2, 0105 (2018)

    Article  Google Scholar 

  7. C. Liu, Z. Dai, J. Zhang, Y. Jin, D. Li, and C. Sun, Two-dimensional boron sheets as metal-free catalysts for hydrogen evolution reaction, J. Phys. Chem. C 122(33), 19051 (2018)

    Article  Google Scholar 

  8. Y. Shi, Y. Zhou, D. R. Yang, W. X. Xu, C. Wang, F. B. Wang, J. J. Xu, X. H. Xia, and H. Y. Chen, Energy level engineering of MoS2 by transition-metal doping for accelerating hydrogen evolution reaction, J. Am. Chem. Soc. 139(43), 15479 (2017)

    Article  Google Scholar 

  9. J. Zhang, X. Tian, M. Liu, H. Guo, J. Zhou, Q. Fang, Z. Liu, Q. Wu, and J. Lou, Cobalt modulated Mo-dinitrogen interaction in MoS2 for catalyzing ammonia synthesis, J. Am. Chem. Soc. 141(49), 19269 (2019)

    Article  Google Scholar 

  10. J. Hu, L. Yu, J. Deng, Y. Wang, K. Cheng, C. Ma, Q. Zhang, W. Wen, S. Yu, Y. Pan, J. Yang, H. Ma, F. Qi, Y. Wang, Y. Zheng, M. Chen, R. Huang, S. Zhang, Z. Zhao, J. Mao, X. Meng, Q. Ji, G. Hou, X. Han, X. Bao, Y. Wang, and D. Deng, Sulfur vacancy-rich MoS2 as a catalyst for the hydrogenation of CO2 to methanol, Nat. Catal. 4(3), 242 (2021)

    Article  Google Scholar 

  11. J. Li and G. Zheng, One-dimensional earth-abundant nanomaterials for water-splitting electrocatalysts, Adv. Sci. (Weinh.) 4(3), 1600380 (2017)

    MathSciNet  Google Scholar 

  12. Z. Zeng, Y. Yan, J. Chen, P. Zan, Q. Tian, and P. Chen, Boosting the photocatalytic ability of Cu2O nanowires for CO2 conversion by MXene quantum dots, Adv. Funct. Mater. 29(2), 1806500 (2019)

    Article  Google Scholar 

  13. Y. Li, L. Ding, Y. Guo, Z. Liang, H. Cui, and J. Tian, Boosting the photocatalytic ability of g-C3N4 for hydrogen production by Ti3C2 MXene quantum dots, ACS Appl. Mater. Interfaces 11(44), 41440 (2019)

    Article  Google Scholar 

  14. X. K. Kong and Z. M. Peng, Low-dimensional materials for alkaline oxygen evolution electrocatalysis, Mater. Today Chem. 11, 119 (2019)

    Article  Google Scholar 

  15. Y. Tong, H. N. Mao, Y. L. Xu, and J. Y. Liu, Oxygen vacancies confined in Co3O4 quantum dots for promoting oxygen evolution electrocatalysis, Inorg. Chem. Front. 6(8), 2055 (2019)

    Article  Google Scholar 

  16. W. A. Saidi, Oxygen reduction electrocatalysis using N-doped graphene quantum-dots, J. Phys. Chem. Lett. 4(23), 4160 (2013)

    Article  Google Scholar 

  17. Z. Jin, C. Liu, Z. Liu, J. Han, Y. Fang, Y. Han, Y. Niu, Y. Wu, C. Sun, and Y. Xu, Rational design of hydroxyl -rich Ti3C2Tx MXene quantum dots for high-performance electrochemical N2 reduction, Adv. Energy Mater. 10(22), 2000797 (2020)

    Article  Google Scholar 

  18. L. Tian, Z. Li, P. Wang, X. H. Zhai, X. Wang, and T. X. Li, Carbon quantum dots for advanced electrocatalysis, J. Energy Chem. 55, 279 (2021)

    Article  Google Scholar 

  19. C. Tsai, F. Abild-Pedersen, and J. K. Nørskov, Tuning the MoS2 edge-site activity for hydrogen evolution via support interactions, Nano Lett. 14(3), 1381 (2014)

    Article  ADS  Google Scholar 

  20. L. Ju, M. Bie, X. Zhang, X. Chen, and L. Kou, Two-dimensional Janus van der Waals heterojunctions: A review of recent research progresses, Front. Phys. 16(1), 13201 (2021)

    Article  ADS  Google Scholar 

  21. Y. Y. Wang, F. P. Li, W. Wei, B. B. Huang, and Y. Dai, Interlayer coupling effect in van der Waals heterostructures of transition metal dichalcogenides, Front. Phys. 16(1), 13501 (2021)

    Article  ADS  Google Scholar 

  22. S. Xiao, X. Li, W. Zhang, Y. Xiang, T. Li, X. Niu, J. S. Chen, and Q. Yan, Bilateral interfaces in In2Se3—CoIn2—CoSe2 heterostructures for high-rate reversible sodium storage, ACS Nano 15(8), 13307 (2021)

    Article  Google Scholar 

  23. M. A. Ahsan, T. W. He, J. C. Noveron, K. Reuter, A. R. Puente-Santiago, and R. Luque, Low-dimensional heterostructures for advanced electrocatalysis: An experimental and computational perspective, Chem. Soc. Rev. 15(3), 812 (2022)

    Article  Google Scholar 

  24. T. Wang, A. Dong, X. Zhang, R. K. Hocking, and C. Sun, Theoretical study of K3Sb/graphene heterostructure for electrochemical nitrogen reduction reaction, Front. Phys. 17(2), 23501 (2022)

    Article  ADS  Google Scholar 

  25. Y. Liu, P. Deng, R. Wu, R. A. Geioushy, Y. Li, Y. Liu, F. Zhou, H. Li, and C. Sun, BiVO4/TiO2 heterojunction with rich oxygen vacancies for enhanced electrocatalytic nitrogen reduction reaction, Front. Phys. 16(5), 53503 (2021)

    Article  ADS  Google Scholar 

  26. Q. Li, S. Qiu, and B. Jia, Theoretical investigation of CoTa2O6/graphene heterojunctions for oxygen evolution reaction, Front. Phys. 16(1), 13503 (2021)

    Article  ADS  Google Scholar 

  27. W. J. Yin, X. L. Zeng, B. Wen, Q. X. Ge, Y. Xu, G. Teobaldi, and L. M. Liu, The unique carrier mobility of Janus MoSSe/GaN heterostructures, Front. Phys. 16(3), 33501 (2021)

    Article  ADS  Google Scholar 

  28. Y. Luo, L. Tang, U. Khan, Q. Yu, H. M. Cheng, X. Zou, and B. Liu, Morphology and surface chemistry engineering toward pH-universal catalysts for hydrogen evolution at high current density, Nat. Commun. 10(1), 269 (2019)

    Article  ADS  Google Scholar 

  29. Z. Cui, W. Du, C. Xiao, Q. Li, R. Sa, C. Sun, and Z. Ma, Enhancing hydrogen evolution of MoS2 basal planes by combining single-boron catalyst and compressive strain, Front. Phys. 15(6), 63502 (2020)

    Article  ADS  Google Scholar 

  30. Q. Yu, Y. Luo, S. Qiu, Q. Li, Z. Cai, Z. Zhang, J. Liu, C. Sun, and B. Liu, Tuning the hydrogen evolution performance of metallic 2D tantalum disulfide by interfacial engineering, ACS Nano 13(10), 11874 (2019)

    Article  Google Scholar 

  31. K. Chu, Y. Liu, Y. Li, H. Zhang, and Y. Tian, Efficient electrocatalytic N2 reduction on CoO quantum dots, J. Mater. Chem. A 7(9), 4389 (2019)

    Article  Google Scholar 

  32. H. Liu, X. Zhang, Y. Zhu, B. Cao, Q. Zhu, P. Zhang, B. Xu, F. Wu, and R. Chen, Electrostatic self-assembly of 0D—2D SnO2 quantum dots/Ti3C2Tx MXene hybrids as anode for lithium-ion batteries, Nano-Micro Lett. 11(1), 65 (2019)

    Article  ADS  Google Scholar 

  33. X. Y. Zhang, W. W. Fu, W. Tian, J. Wan, H. Zhang, and Y. Wang, Distorted quantum dots enhance the efficiency of alkaline oxygen electrocatalysis, J. Mater. Chem. A 8(40), 21173 (2020)

    Article  Google Scholar 

  34. Q. Kong, X. An, L. Huang, X. Wang, W. Feng, S. Qiu, Q. Wang, and C. Sun, A DFT study of Ti3C2O2 MXenes quantum dots supported on single layer graphene: Electronic structure and hydrogen evolution performance, Front. Phys. 16(5), 53506 (2021)

    Article  ADS  Google Scholar 

  35. J. Zhang, T. Zhu, Y. Wang, J. Cui, J. Sun, J. Yan, Y. Qin, X. Shu, Y. Zhang, J. Wu, C. S. Tiwary, P. M. Ajayan, and Y. Wu, Self-assembly of 0D/2D homostructure for enhanced hydrogen evolution, Mater. Today 36, 83 (2020)

    Article  Google Scholar 

  36. L. Fu, Y. Sun, N. Wu, R. G. Mendes, L. Chen, Z. Xu, T. Zhang, M. H. Rümmeli, B. Rellinghaus, D. Pohl, L. Zhuang, and L. Fu, Direct growth of MoS2/h-BN heterostructures via a sulfide-resistant alloy, ACS Nano 10(2), 2063 (2016)

    Article  Google Scholar 

  37. A. R. Puente Santiago, T. He, O. Eraso, M. A. Ahsan, A. N. Nair, V. S. N. Chava, T. Zheng, S. Pilla, O. Fernandez-Delgado, A. Du, S. T. Sreenivasan, and L. Echegoyen, Tailoring the interfacial interactions of van der Waals 1T-MoS2/C60 heterostructures for high-performance hydrogen evolution reaction electrocatalysis, J. Am. Chem. Soc. 142(42), 17923 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chenghua Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kong, Q., An, X., Zhang, J. et al. Design of heterojunction with components in different dimensions for electrocatalysis applications. Front. Phys. 17, 43601 (2022). https://doi.org/10.1007/s11467-022-1183-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-022-1183-0

Keywords

Navigation