Skip to main content
Log in

Brain-like synaptic memristor based on lithium-doped silicate for neuromorphic computing

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

Artificial synapse is one of the potential electronics for constructing neural network hardware. In this work, Pt/LiSiOx/TiN analog artificial synapse memristor is designed and investigated. With the increase of compliance current (C. C.) under 0.6 mA, 1 mA, and 3 mA, the current in the high resistance state (HRS) presents an increasing variation, which indicates lithium ions participates in the operation process for Pt/LiSiOx/TiN memristor. Moreover, depending on the movement of lithium ions in the functional layer, the memristor illustrates excellent conduction modulation property, so the long-term potentiation (LTP) or depression (LTD) and paired-pulse facilitation (PPF) synaptic functions are successfully achieved. The neural network simulation for pattern recognition is proposed with the recognition accuracy of 91.4%. These findings suggest the potential application of the LiSiOx memristor in the neuromorphic computing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Prezioso, F. Merrikh-Bayat, B. D. Hoskins, G. C. Adam, K. K. Likharev, and D. B. Strukov, Training and operation of an integrated neuromorphic network based on metal-oxide memristors, Nature 521(7550), 61 (2015)

    Article  ADS  Google Scholar 

  2. H. Wu, M. Zhao, Y. Liu, P. Yao, Y. Xi, X. Li, W. Wu, Q. Zhang, J. Tang, B. Gao, and H. Qian, Reliability perspective on neuromorphic computing based on analog RRAM, IEEE Int. Reliab. Phys. Symp. 1–4 (2019)

  3. R. Schmitt, M. Kubicek, E. Sediva, M. Trassin, M. C. Weber, A. Rossi, H. Hutter, J. Kreisel, M. Fiebig, and J. L. Rupp, Accelerated ionic motion in amorphous memristor oxides for nonvolatile memories and neuro-morphic computing, Adv. Funct. Mater. 29(5), 1804782 (2019)

    Article  Google Scholar 

  4. P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada, F. Akopyan, B. L. Jackson, N. Imam, C. Guo, Y. Nakamura, B. Brezzo, I. K. Esser, R. Appuswamy, B. Taba, A. Amir, M. D. Flickner, W. P. Risk, R. Manohar, and D. S. Modha, A million spikingneuron integrated circuit with a scalable communication network and interface, Science 345(6197), 668 (2014)

    Article  ADS  Google Scholar 

  5. C. Zhang, J. Shang, W. Xue, H. Tan, L. Pan, X. Yang, S. Guo, J. Hao, G. Liu, and R. W. Li, Convertible resistive switching characteristics between memory switching and threshold switching in a single ferritin-based memristor, Chem. Commun. 52(26), 4828 (2016)

    Article  Google Scholar 

  6. Z. Wang, S. Joshi, S. E. Savel’ev, H. Jiang, R. Midya, P. Lin, M. Hu, N. Ge, J. P. Strachan, Z. Li, Q. Wu, M. Barnell, G. L. Li, H. L. Xin, R. Williams, Q. F. Xia, and J. J. Yang, Memristors with diffusive dynamics as synaptic emulators for neuromorphic computing, Nat. Mater. 16(1), 101 (2017)

    Article  ADS  Google Scholar 

  7. L. Du, Z. Wang, and G. Zhao, Novel intelligent devices: Two-dimensional materials based memristors, Front. Phys. 17(2), 23602 (2022)

    Article  ADS  Google Scholar 

  8. P. Yao, H. Wu, B. Gao, S. B. Eryilmaz, X. Huang, W. Zhang, Q. Zhang, N. Deng, L. Shi, H. S. P. Wong, and H. Qian, Face classification using electronic synapses, Nat. Commun. 8(1), 15199 (2017)

    Article  ADS  Google Scholar 

  9. P. N. Belhumeur, J. P. Hespanha, and D. J. Kriegman, Eigenfaces vs. Fisherfaces: Recognition using class specific linear projection, IEEE. T. Pattern Anal. 19(7), 711 (1997)

    Article  Google Scholar 

  10. H. L. Park, M. H. Kim, and S. H. Lee, Reliable organic memristors for neuromorphic computing by predefining a localized ion-migration path in crosslinkable polymer, Nanoscale 12(44), 22502 (2020)

    Article  Google Scholar 

  11. Y. Li, Z. Wang, R. Midya, Q. Xia, and J. J. Yang, Review of memristor devices in neuromorphic computing: Materials sciences and device challenges, J. Phys. D Appl. Phys. 51(50), 503002 (2018)

    Article  ADS  Google Scholar 

  12. G. Liu, C. Wang, W. Zhang, L. Pan, C. Zhang, X. Yang, F. Fan, Y. Chen, and R. W. Li, Organic biomimicking memristor for information storage and processing applications, Adv. Electron. Mater. 2(2), 1500298 (2016)

    Article  Google Scholar 

  13. J. Yin, F. Zeng, Q. Wan, F. Li, Y. Sun, Y. Hu, J. L. Liu, G. Q. Li, and F. Pan, Adaptive crystallite kinetics in homogenous bilayer oxide memristor for emulating diverse synaptic plasticity, Adv. Funct. Mater. 28(19), 1706927 (2018)

    Article  Google Scholar 

  14. S. Kim, C. Du, P. Sheridan, W. Ma, S. Choi, and W. D. Lu, Experimental demonstration of a second-order memristor and its ability to biorealistically implement synaptic plasticity, Nano Lett. 15(3), 2203 (2015)

    Article  ADS  Google Scholar 

  15. Y. Park and J. S. Lee, Artificial synapses with short-and long-term memory for spiking neural networks based on renewable materials, ACS Nano 11(9), 8962 (2017)

    Article  Google Scholar 

  16. M. N. Kozicki, and H. J. Barnaby, Conductive bridging random access memory-materials, devices and applications, Semicond. Sci. Technol. 31(11), 113001 (2016)

    Article  ADS  Google Scholar 

  17. T. V. P. Bliss and G. L. Collingridge, G. L. A synaptic model of memory: Long-term potentiation in the hippocampus, Nature 361(6407), 31 (1993)

    Article  ADS  Google Scholar 

  18. X. M. Zhang, S. Liu, X. L. Zhao, F. C. Wu, Q. T. Wu, W. Wang, and M. Liu, Emulating short-term and long-term plasticity of bio-synapse based on Cu/a-Si/Pt memristor, IEEE Electron Device Lett. 38(9), 1208 (2017)

    Article  ADS  Google Scholar 

  19. K. C. Chang, T. M. Tsai, and T. C. Chang, Dual ion effect of the lithium silicate resistance random access memory, IEEE Electron Device Lett. 35(5), 530 (2014)

    Article  ADS  Google Scholar 

  20. J. Chen, C. Y. Lin, Y. Li, C. Qin, K. Lu, J. M. Wang, C. K. Chen, Y. H. He, T. C. Chang, and X. S. Miao, LiSiOx-based analog memristive synapse for neuromorphic computing, IEEE Electron Device Lett. 40(4), 542 (2019)

    Article  ADS  Google Scholar 

  21. Y. L. Hsieh, W. H. Su, C. C. Huang, and C. Y. Su, Solution-processed black phosphorus nanoflakes for integrating nonvolatile resistive random-access memory and the mechanism unveiled, Nanotechnology 30(44), 445702 (2019)

    Article  Google Scholar 

  22. L. Liu, W. Xiong, Y. Liu, K. Chen, Z. Xu, Y. Zhou, J. Han, C. Ye, X. Chen, Z. T. Song, and M. Zhu, Designing high-performance storage in HfO2/BiFeO3 memristor for artificial synapse applications, Adv. Electron. Mater. 6(2), 1901012 (2020)

    Article  Google Scholar 

  23. Y. C. Qiu, K. Y. Yan, S. H. Yang, L. M. Jin, H. Deng, and W. S. Li, Synthesis of size-tunable anatase TiO2 nanospindles and their assembly into anatase@ titanium oxynitride/titanium nitride graphene nanocomposites for rechargeable lithium-ion batteries with high cycling performance, ACS Nano 4(11), 6515 (2010)

    Article  Google Scholar 

  24. Y. H. Yue, P. X. Han, S. M. Dong, K. J. Zhang, C. J. Zhang, C. Q. Shang, and G. L. Cui, Nanostructured transition metal nitride composites as energy storage material, Chin. Sci. Bull. 57(32), 4111 (2012)

    Article  Google Scholar 

  25. M. Q. Snyder, S. A. Trebukhova, B. Ravdel, M. C. Wheeler, J. DiCarlo, C. P. Tripp, and W. J. DeSisto, Synthesis and characterization of atomic layer deposited titanium nitride thin films on lithium titanate spinel powder as a lithium-ion battery anode, J. Power Sources 165(1), 379 (2007)

    Article  ADS  Google Scholar 

  26. C. Y. Lin, J. Chen, P. H. Chen, T. C. Chang, Y. Wu, J. K. Eshraghian, J. Moon, S. Yoo, Y. H. Wang, W. C. Chen, Z. Y. Wang, H. C. Huang, Y. Li, X. Miao, W. D. Lu, and S. M. Sze, Adaptive synaptic memory via lithium ion modulation in RRAM devices, Small 16(42), 2003964 (2020)

    Article  Google Scholar 

  27. H. J. Zhang, C. T. Cheng, H. Zhang, R. Chen, B. J. Huang, H. D. Chen, and W. H. Pei, Physical mechanism for the synapse behaviour of WTiOx-based memristors, Phys. Chem. Chem. Phys. 21(42), 23758 (2019)

    Article  Google Scholar 

  28. Y. Li, K. S. Yin, M. Y. Zhang, L. Cheng, K. Lu, S. B. Long, and X. S. Miao, Correlation analysis between the current fluctuation characteristics and the conductive filament morphology of HfO2-based memristor, Appl. Phys. Lett. 111(21), 213505 (2017)

    Article  ADS  Google Scholar 

  29. Y. Fu, B. Dong, W. C. Su, C. Y. Lin, K. J. Zhou, T. C. Chang, and X. S. Miao, Enhancing LiAlOx synaptic performance by reducing the Schottky barrier height for deep neural network applications, Nanoscale 12(45), 22970 (2020)

    Article  Google Scholar 

  30. E. Sivonxay, M. Aykol, and K. A. Persson, The lithiation process and Li diffusion in amorphous SiO2 and Si from first-principles, Electrochim. Acta 331, 135344 (2020)

    Article  Google Scholar 

  31. Y. Zhang, Y. Li, Z. Wang, and K. Zhao, Lithiation of SiO2 in Li-ion batteries: in situ transmission electron microscopy experiments and theoretical studies, Nano Lett. 14(12), 7161 (2014)

    Article  ADS  Google Scholar 

  32. J. Moon, Tailoring the oxygen content in lithiated silicon oxide for lithium-ion batteries, Int. J. Energy Res. 45(5), 7315 (2021)

    Article  Google Scholar 

  33. Z. Zhou, F. Yang, S. Wang, L. Wang, X. Wang, C. Wang, and Q. Liu, Emerging of two-dimensional materials in novel memristor, Front. Phys. 17(2), 1 (2022)

    Article  Google Scholar 

  34. R. S. Zucker and W. G. Regehr, Short-term synaptic plasticity, Annu. Rev. Physiol. 64(1), 355 (2002)

    Article  Google Scholar 

  35. A. J. Smith, S. Owens, and I. D. Forsythe, Characterisation of inhibitory and excitatory postsynaptic currents of the rat medial superior olive, J. Physiol. 529(3), 681 (2000)

    Article  Google Scholar 

  36. P. Li, Z. M. Gao, X. S. Huang, L. F. Wang, W. F. Zhang, and H. Z. Guo, Ferroelectric polarization reversal tuned by magnetic field in a ferroelectric BiFeO3/Nb-doped SrTiO3 heterojunction, Front. Phys. 13(5), 1 (2018)

    Article  ADS  Google Scholar 

  37. P. Y. Chen, B. Lin, I. T. Wang, T. H. Hou, J. Ye, S. Vrudhula, and S. Yu, Mitigating effects of non-ideal synaptic device characteristics for on-chip learning, in: Proc. IEEE/ACM Int. Conf. Comput. Aided Design (ICCAD), 194–199 (2015)

  38. P. P. Atluri and W. G. Regehr, Determinants of the time course of facilitation at the granule cell to Purkinje cell synapse, J. Neurosci. 16(18), 5661 (1996)

    Article  Google Scholar 

  39. W. Q. Pan, J. Chen, R. Kuang, Y. Li, Y. H. He, G. R. Feng, and X. S. Miao, Strategies to improve the accuracy of memristor-based convolutional neural networks, IEEE Trans. Electron Dev. 67(3), 895 (2020)

    Article  ADS  Google Scholar 

  40. H. Sun, Z. Luo, C. Liu, C. Ma, Z. Wang, Y. Yin, and X. Li, A flexible BiFeO3-based ferroelectric tunnel junction memristor for neuromorphic computing, Journal of Materiomics 8(1), 144 (2022)

    Article  Google Scholar 

  41. J. Lee, J. H. Ryu, B. Kim, F. Hussain, C. Mahata, E. Sim, and S. Kim, Synaptic characteristics of amorphous boron nitride-based memristors on a highly doped silicon substrate for neuromorphic engineering, ACS Appl. Mater. Interfaces 12(30), 33908 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences under Grant No. XDB44000000 and the National Natural Science Foundation of China (No. 61774057).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bei Jiang or Min Zhu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ke, S., Jiang, L., Zhao, Y. et al. Brain-like synaptic memristor based on lithium-doped silicate for neuromorphic computing. Front. Phys. 17, 53508 (2022). https://doi.org/10.1007/s11467-022-1173-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-022-1173-2

Keywords

Navigation