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The main aspects of a gauge-invariant approach to the description of quark dynamics in the non-
perturbative regime of quantum chromodynamics (QCD) are first reviewed. The role of the parallel
transport operation in constructing gauge-invariant Green’s functions is then presented, and the
relevance of Wilson loops for the representation of the interaction is emphasized. Recent develop-
ments, based on the use of polygonal lines for the parallel transport operation, are presented. An
integro-differential equation, obtained for the quark Green’s function defined with a phase factor
along a single, straight line segment, is solved exactly and analytically in the case of two-dimensional
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quarks, with an infinite number of branch-cut singularities that are stronger than simple poles.
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1 Introduction

Quantum chromodynamics (QCD), the theory of the
strong interaction in which the fundamental fields are
the quarks (the matter fields) and the gluons (the gauge
fields), has the primary property of being asymptotically
free [1, 2]: The interaction weakens at short distances
between particles or sources, a feature that allows the use
of perturbation theory in that domain. This theoretical
prediction has been widely verified by many experimen-
tal processes and data and represents one of the major
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justifications for the advent of QCD.
The counterpart of asymptotic freedom is that the

effective coupling constant increases at large distances,
where perturbation theory ceases to be valid. The fail-
ure of perturbation theory in the infrared domain ac-
tually has a deep origin, confirmed by nature: Quarks
and gluons, the fundamental constituents of QCD, are
not observed in nature as asymptotic free particles; at
low energies or at large-distance separations, they are
confined into color singlet bound states, which are the
hadrons (mesons and baryons). Their presence there can
only be detected indirectly through spectroscopic analy-
ses. This phenomenon is a new feature that had not been
addressed in earlier known field theories.

The precise description of the confinement mechanism
requires a nonperturbative approach and still remains a
challenge on analytic grounds.

The only systematic tool that succeeds in enabling the
treatment of the large-distance regime of QCD is lattice
theory, first introduced by Wilson [3–5]. Lattice theory
is based on the discretization of spacetime and a numer-
ical calculation of the path integral. Its limitations come
from the facts that the theory is considered in Euclidean
space, rather than Minkowski space, and the continu-
ous Poincaré invariance is explicitly broken by the dis-
cretization mechanism and replaced by discrete symme-
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tries. Furthermore, limitations of computational power
also place restrictions on the precision of the calculation.
It is worthwhile noticing, to the credit of lattice QCD,
that it predicts analytically, in the strong-coupling ap-
proximation, the confinement of quarks.

Another systematic tool is provided by the Dyson–
Schwinger equations [6–9]. These are integral equations
for Green’s functions of the theory, which, however, are
infinite in number and coupled to each other. For a prac-
tical resolution, one considers mainly the equations rela-
tive to the simplest Green’s functions with a truncation
of the infinite series of coupled sectors. Numerical so-
lutions compatible with confinement have been found.
Also, solutions verifying chiral symmetry breaking have
been obtained [10]. This line of approach is still un-
der investigation. Inherent difficulties might be related
with the gauge-invariance problem in nonperturbative
approaches, where truncation of exact equations should
be done in a consistent way in order not to break gauge
invariance of physical quantities to the order of approxi-
mation that is considered. In QCD, because of the mass-
lessness of the gluon field, artificial infrared divergences
or singularities easily appear in intermediate quantities.
Ensuring infrared finiteness of physical quantities is an-
other difficult task in nonperturbative approaches.

Because of the infrared instabilities of noninvariant
quantities under gauge transformations, a line of ap-
proach based on the use from the start of gauge-invariant
quantities has been under development for a long time
[11–15]. However, because gauge-invariant Green’s func-
tions are extended composite objects, equations derived
for them have more complicated structure and this fact
has inhibited rapid and straightforward progress. Never-
theless, it turns out that the confinement problem has a
sounder formulation in this approach than in more con-
ventional approaches and provides simple criteria for its
verification [3, 16].

The remaining part of this article is devoted to a pre-
sentation of characteristic features of the corresponding
formalism and of new developments obtained in recent
years.

2 Gauge transformations

The gauge group of QCD is SU(Nc), acting in the inter-
nal space of color degrees of freedom; the physical value
of Nc is 3, but leaving Nc as a free parameter allows one
to study in more generality the properties of the theory.

The quark fields belong to the defining (Nc-
dimensional) fundamental representation of the gauge
group. They are denoted ψa

α(x), where a, the color in-

dex, runs from 1 to Nc; α is the spinor index; and x

is the spacetime coordinate, which we shall consider in
Minkowski space. Antiquark fields are denoted ψb,β(x);
they belong to the conjugate (Nc-dimensional) funda-
mental representation. Actually, there are six different
types of quark, with different masses and appropriate
electric charges, classified according to a global index,
called flavor; however, for simplicity, we shall consider in
the following only one type of quark, without specifying
its flavor. (In QCD, the interaction does not couple dif-
ferent flavor states.) Under a local gauge transformation,
the quark and antiquark fields transform as

ψa
α(x) −→ ψ

′a
α (x) = Ωa

c(x)ψ
c
α(x),

ψb,β(x) −→ ψ
′

b,β(x) = ψc,β(x)Ω†c
b(x), (1)

where Ω is an element of the group SU(Nc), whose pa-
rameters are in general x dependent (unless specified
otherwise, repeated indices are assumed to be summed
over).

Because of the x dependence of the parameters of the
group transformations, the derivatives of the quark and
antiquark fields do not transform as members of the fun-
damental representations, as in Eqs. (1). Fields or func-
tions of fields that transform as being members of irre-
ducible representations will be said to be transforming
covariantly, although here the term covariance is not re-
lated to the position of the color index (upper or lower).

To define a covariant derivative operator one intro-
duces a connection, represented by the gluon gauge field,
that belongs, for x-independent gauge transformations,
to the adjoint representation of the group; since the latter
can be obtained from the composition of the fundamental
representation with its conjugate, the gluon field can be
represented as depending on two color indices, related to
the two previous representations: Aa

b,μ [17]. One also has
the properties A†a

b,μ = Ab
a,μ and Aa

a,μ = 0. The more
conventional notation represents the gluon field with a
single index B running from 1 to (N2

c − 1). The rela-
tionship between the two notations can be obtained in
the following way. If TB are the generators of the group
transformations in the fundamental representation, then
we have (TBAB

μ )a
b = Aa

b,μ/
√

2. (The factor 1/
√

2 comes
from a normalization convention.)

The covariant derivative acting on the quark field is

Da
b,μ = δa

b∂μ + i
g√
2
Aa

b,μ, (2)

where g is the (dimensionless) coupling constant of the
theory.

As is the case of connections, the gluon field does not
transform covariantly under gauge transformations; it
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obtains an inhomogeneous part that breaks covariance.
It is possible, however, to construct a new field that has
covariance properties. This is the gluon field strength F
(the analog of the curvature tensor of differential geom-
etry), given by

F a
b,μν = ∂μA

a
b,ν − ∂νA

a
b,μ

+i
g√
2
(Aa

cμA
c
bν −Aa

cνA
c
bμ). (3)

Its transformation law is

F a
b,μν(x) −→ F

′a
b,μν(x) = Ωa

c(x) F
c
d,μν(x) Ω†d

b(x).

(4)

With the aid of the covariant fields, one can easily
construct the gauge-invariant Lagrangian density of the
theory:

L = −1
4
F a

b,μνF
b,μν
a + ψaiγμDa

b,μψ
b −mψaψ

a, (5)

where m is the mass parameter of the quark fields and
γμ are the Dirac matrices (the spinor indices being omit-
ted).

3 Parallel transport

Let us consider the ordinary two-point Green’s function
of a quark field:

Ga
b,αβ(x− y) = 〈0|T

(
ψa

α(x)ψb,β(y)
)
|0〉

= 〈ψa
α(x)ψb,β(y)〉, (6)

where the first expression in the right-hand-side repre-
sents the vacuum expectation value of the chronological
product of the two quark fields, while the second expres-
sion corresponds to the notation used in the path-integral
formalism; we recall that, in the latter formalism, ordi-
nary products of functions actually represent chronolog-
ical products of the operator formalism.

Considering the gauge transformation law of the quark
fields as given in Eqs. (1), we immediately deduce that
the above Green’s function is not invariant under local
gauge transformations, since the vacuum state and the
Lagrangian density (5) are gauge invariant. The conse-
quence of this property can only be the vanishing of the
Green’s function for general values of the coordinates x
and y [18]. This would mean the impossibility of treat-
ing perturbatively noninvariant quantities. The resolu-
tion of this difficulty comes from adding into the La-
grangian density (5) gauge-fixing terms and ghost fields
[19]. The classical local gauge invariance is then replaced
by a quantized global invariance, the BRST symmetry

[20, 21]. However, in gauge-invariant Green’s functions
the gauge-fixing and ghost-field contributions generally
cancel each other and one may continue reasoning, at a
primary level, with the classical gauge transformations.

To construct gauge-invariant Green’s functions, one
should relate in some way gauge transformations at the
point x with those at the point y. This is generally done
by devising an operation of parallel transport, for in-
stance from point x to point y. This operation is usually
realized with the aid of the connection. By considering
the parallel transport along an oriented curve Cyx, its
representative function, which we denote U(Cyx; y, x),
takes the form of a path-ordered phase factor of the gluon
field:

Ua
b(Cyx; y, x) =

(
P e−ig

R
y
x

dzµ T BAB
µ(z)

)a

b
, (7)

where P represents the path-ordering operation, mean-
ing that the gluon fields are ordered according to their
position on the curve Cyx. The above exponential can
also be decomposed into products of other exponentials,
each defined successively on a smaller part of the curve
Cyx. A more explicit expression of U can be obtained by
a series expansion of the exponential in terms of the cou-
pling constant, in which path ordering is taken into ac-
count. Parametrizing the function z on the curve with a
parameter λ varying between 0 and 1, such that z(0) = x

and z(1) = y, and defining z′(λ) = ∂z(λ)
∂λ , one obtains

Ua
b(Cyx; y, x) = δa

b +
−ig√

2

∫ 1

0

dλ1z
′μ1(λ1)Aa

b,μ1
(λ1)

+
∞∑

n=2

(−ig√
2

)n
∫ 1

0

dλ1 · · · dλn θ(λ1 − λ2) · · ·

×θ(λn−1 − λn)z′μ1(λ1) · · · z′μn(λn) Aa
c1,μ1

(λ1)

×Ac1
c2,μ2

(λ2) · · ·Acn−1
b,μn

(λn), (8)

where the abbreviation A(z(λ)) = A(λ) has been used.
Under a gauge transformation, U behaves as a covari-

ant bilocal field, the transformation depending only on
its end points x and y, independently of the form of the
curve Cyx [22]:

Ua
b(Cyx; y, x) −→ Ωa

c(y) U
c
d(Cyx; y, x) Ω†d

b(x). (9)

By applying the operator U on a quark field at point x,
its variation at x cancels the one coming from the quark
field and the whole object transforms as belonging to the
fundamental representation at point y:

Ua
b(Cyx; y, x) ψb(x) −→ Ωa

c(y) U
c
b(Cyx; y, x) ψb(x).

(10)

Finally, by applying the previous object from the left on
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an antiquark field, the y-dependent variation of the lat-
ter is canceled and the whole quantity becomes invariant
under gauge transformations:

ψa(y) Ua
b(Cyx; y, x) ψb(x)

−→ ψa(y) Ua
b(Cyx; y, x) ψb(x). (11)

Considering this object in the path-integral formalism,
or taking the chronological product of the fields once
their color indices are fixed, allows one to define, up to
a normalization factor, a gauge-invariant quark Green’s
function. The latter depends, in addition to the coordi-
nates of the quark fields, on the line Cyx that appears
in the definition of the parallel transport operation from
point x to point y. We shall denote the resulting Green’s
function S(x, y;Cyx); it no longer depends on color in-
dices and is given by

Sαβ(x, y;Cyx) = − 1
Nc

〈ψa,β(y)Ua
b(Cyx; y, x)ψb

α(x)〉.
(12)

4 Wilson loops

Another gauge-invariant useful object is constructed
with the sole parallel transport operator (7). Consider-
ing in the latter the case of a closed line Cxx, obtained
from Cyx by the limit y → x along a nontrivial curve, and
then taking the trace of the color indices at the matching
point, one clearly obtains from Eq. (9) a gauge-invariant
result:

Ua
a(Cxx;x, x) −→ Ua

a(Cxx;x, x). (13)

The line Cxx being closed and the trace having been
taken, the point x no longer plays a particular role in
that object and hence can be removed from the repre-
sentation of the operator, where only the closed contour
may appear. The resulting object is called a Wilson loop:

Φ(C) =
1
Nc

tr
(
P e−ig

H
C

dzµ T BAB
µ(z)

)
=

1
Nc

U(C)a
a.

(14)

Its vacuum expectation value [3] will be denoted by

W (C) = 〈Φ(C)〉. (15)

The Wilson loop provides a simple criterion for the
confinement of quarks. In the case of a static pair of
a quark and an antiquark, considered as the extreme
limit of heavy quarks, which remain fixed in position
space and which are observed at equal times, the whole
dynamics of the system in the color singlet state can
be described by means of a Wilson loop average (15)

Fig. 1 Rectangular contour of a Wilson loop representing the
evolution of a static quark-antiquark system.

along a rectangular contour in a plane, where one of the
sides represents the fixed distance R between the quark
and the antiquark and the other side the interval T of the
evolved time (see Fig. 1). For large separation distances
and large time intervals, the following relationship can
be shown [16]:

W (Crect.) ∼ e−iV (R)T , (16)

where V (R) is the static potential energy correspond-
ing to the force that is exerted between the quark and
the antiquark. However, W (Crect.) can be analytically
calculated in lattice QCD [3–5] in the strong-coupling
approximation, yielding

W (Crect.) ∼ e−iσRT , (17)

where σ is a positive constant with dimension en-
ergy/length. Comparing the two expressions (16) and
(17), one deduces

V (R) = σR, (18)

which shows that the interquark static potential energy is
a linearly increasing function of the distance. This is suf-
ficient to bind the quark and the antiquark together and
to prevent their separation to infinite distances. Since
the product RT represents the area of the rectangular
contour, the above result is called the area law of con-
finement. Assuming that the previous result remains in
general true in the continuum limit of lattice QCD, one
ends up with the conclusion that QCD in the continuum
should confine quarks, in accordance with the observa-
tional facts. The constant σ is called the string tension;
the numerical value of

√
σ lies within the bounds 420–480

MeV (with units where � = c = 1) [23].
The large-time behavior in the static limit of the Wil-

son loop average determines therefore the interquark po-
tential energy. Because the latter is a quantity defined
mainly in nonrelativistic theories, it appears that the
Wilson loop itself should be the quantity that would play
the role of potentials in the general case. Being gauge
invariant, the information coming from it about the dy-
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namics of quarks would have an unambiguous interpreta-
tion. In the case of general simple contours, the area law
obtained for the rectangular contour would be replaced
by the area of the surface, supported by the contour,
having a minimal value (called a minimal surface) [3].
Wilson loops are often used in relativistic approaches to
bound state problems [24–28].

Wilson loop averages can be considered as function-
als of the contour C from which they are defined. They
may therefore receive a geometric interpretation or be
subjected to a geometric analysis. Properties of Wilson
loops have been thoroughly studied, starting with works
by Polyakov [29] and Makeenko and Migdal [30–33].

The analysis is based upon functional derivations act-
ing on the path-ordered phase factor (the parallel trans-
port operator), which may be submitted to local defor-
mations of its line. Two main equations are obtained,
the Bianchi identity and the loop equation, the latter
resulting from the equation of motion operator of the
gluon field. Owing to the complexity of the loop equa-
tion, obtaining an exact nonperturbative solution of it
displaying confinement has not been possible. However,
Makeenko and Migdal showed that, for large simple con-
tours, the loop equations have asymptotic solutions that
satisfy the area law of confinement [31], obtained inde-
pendently in lattice QCD [3–5]. In perturbation theory,
renormalization of Wilson loops was shown in Refs. [34,
35].

The loop equation was also analyzed in two spacetime
dimensions by Kazakov and Kostov [36, 37], who could
exactly solve the equation for many kinds of contour.
In particular, for simple contours, the solution is given
by the exponential of the area of the surface enclosed
by them: The area law is thus explicitly satisfied. The
same results were also obtained by Bralić [38], who used
the non-Abelian version of the Stokes theorem for the
calculation of the Wilson loops. Actually, the main sim-
plification in two dimensions arises from the fact that
the QCD coupling constant g has now a dimension of
mass (� = c = 1) and its square has the dimension of the
string tension that appears in the area law; this feature
naturally drags the solutions to the area law, which is
also obtained in perturbation theory in the axial gauge.

A general survey of questions related to loop equations
and gauge theories can be found in Ref. [39]. Properties of
Wilson loops saturated with minimal surfaces are studied
in Ref. [40]. It has been shown that the minimal surface
is the only type of surface that satisfies the Bianchi iden-
tity. This implies that fluctuations of surfaces around a
minimal surface violate in general the Bianchi identity
[32, 40]. The violation of the Bianchi identity is a signal
of the presence of a color monopole current. However,

the Bianchi identity plays an important role in the ver-
ification of some consistency conditions of the loop for-
malism, in particular for ensuring the commutativity of
two successive functional derivatives [40]. It has also been
shown that, by neglecting the short-distance (i.e., pertur-
bative) interactions and renormalizing the coupling con-
stant g2Nc quadratically with respect to a short-distance
regulator, one ends up, for simple contours, with a so-
lution to the loop equation that is identical to a min-
imal surface [40]. This provides another verification of
the asymptotic solution obtained in Ref. [31]. (In per-
turbation theory, g2Nc vanishes with the short-distance
regulator as the inverse of a logarithm.)

5 Polygonal lines for parallel transport

Although loop equations have not been solved exactly
or analytically in four spacetime dimensions, the past
investigations provide us with a general idea about the
main features of Wilson loop vacuum averages. For sim-
ple large contours, minimal surfaces are asymptotic so-
lutions, in accordance with the area law obtained in lat-
tice QCD in the strong-coupling regime. For small con-
tours, ordinary perturbation theory should be applicable
for their evaluation. Adopting this qualitative basis, one
can go further, using Wilson loops in dynamical equa-
tions where they play the role of gauge-invariant poten-
tials or kernels. Since most experimental observations re-
lated with QCD concern hadrons, which involve quarks
as main degrees of freedom, the study of the properties
of gauge-invariant quark Green’s functions appears as a
natural step for such an investigation. We already defined
in Eq. (12) the two-point gauge-invariant quark Green’s
function (2PGIQGF), which is a functional of the line
defining the parallel transport from the quark field to
the antiquark field.

At this point the question arises as to the impact of
the type of phase factor line on physical quantities: Do
the latter depend on the choice made of the line followed
by the parallel transport operation? A general answer to
this question has been given in Ref. [40] (end of Appendix
A), in the simplified case of a static quark-antiquark sys-
tem evolving in time, within the framework of the satu-
ration of Wilson loop averages by minimal surfaces. One
compares the evolution law of a system defined with a
straight line segment for the phase factor line with that
of a system defined with an arbitrary (continuous) line.
The physical observable is represented here by the energy
content of the system. The latter is explicitly exhibited
through an exponential factor when the evolution time
interval T tends to infinity [see Eq. (16)]. The equations
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of the minimal surfaces allow us to study in detail this
limit: Both minimal surfaces yield the same energy de-
pendence, governed actually by that of the straight line
segment and the rectangular Wilson loop (Fig. 1). The
line dependencies are factored out within the wave func-
tional of each system. The above analysis displays the
effect the choice of the phase factor line may have on a
physical system under study: It affects the wave func-
tional of the system, but it has no influence on physical
quantities. The case of nonstatic quarks does not seem to
modify in general the previous conclusion and we adopt
the latter in the forthcoming part of our investigation.

Since the simplest choice for a phase factor line is the
straight line segment, one would be tempted to stick to
Green’s functions defined with such lines. This is, how-
ever, not possible as a single stage, because the equations
of motion couple, through interaction terms, Green’s
functions with different lines. A single choice of a rigid
line does not lead to a closed system of equations. The
situation here is very similar to what happens with the
Dyson–Schwinger equations, which consist of an infinite
number of coupled equations. In the present case, in view
of the complexity of all types of line, it is natural to seek
classes of line that might form a closed system under the
equations of motion. This problem actually has a pos-
itive answer: Polygonal lines, made of a succession of
straight line segments, joined to each other, do form a
closed set, at least for studies related to quark Green’s
functions [41].

Polygonal lines have several advantages worth men-
tioning: (i) They can be classified according to the num-
ber of segments they contain; accordingly, the same clas-
sification appears also at the level of the correspond-
ing Green’s functions. (ii) Their basic ingredients, which
are the straight line segments, are Lorentz invariant in
form, which also reflects itself on the previous classifica-
tion scheme. (iii) The straight line segment has a well-
defined, unambiguous limit when its two end points ap-
proach each other: It shrinks to a point. (iv) Polygonal
lines form a complete set for the present problem, in the
sense that all equations that are derived will be closed
within the category of polygonal line; no other types of
line will be needed to complete the description. We shall
henceforth consider for the parallel transport operator

the class of line having a polygonal structure in space-
time.

One of the key ingredients in our study is a functional
variation formula, first established by Mandelstam [14],
which results when local deformations of the line Cyx are
considered. If the line Cyx is deformed at all its points by
infinitesimal variations δz(λ), including displacements of
its end points, then the parallel transport operator un-
dergoes the variation [14, 15, 22, 29, 42]

δUa
b(1, 0) = −i

g√
2
δzα(1)Aa

c,α(1)U c
b(1, 0)

+i
g√
2
Ua

c(1, 0)Ac
b,α(0)δzα(0)

+i
g√
2

∫ 1

0

dλ Ua
c(1, λ)z′β(λ)

×F c
d,βα(λ)δzα(λ)Ud

b(λ, 0), (19)

where the abbreviation U(λ2, λ1) has been used to desig-
nate the operator U corresponding to the line going from
z(λ1) to z(λ2) along the curve Cyx, with z(0) = x and
z(1) = y. This formula exhibits the relationship between
dynamical operations, such as the insertion of the gluon
field strength inside the phase factor, and geometric op-
erations, such as line deformations.

We now consider for the line Cyx an oriented straight
line segment going from x to y and designate by U(y, x)
the corresponding parallel transport operator. A dis-
placement of one end point of the rigid segment in form,
while the other end point remains fixed, generates a dis-
placement of the interior points of the segment. This de-
fines a rigid path displacement. By parametrizing the
interior points of the segment with a linear parameter λ
varying between 0 and 1, such that z(λ) = λy+(1−λ)x,
the rigid path derivative operations with respect to y or
x yield

∂Ua
b(y, x)
∂yα

= −i
g√
2
Aa

c,α(y)U c
b(y, x)+

δ̄Ua
b(y, x)
δ̄yα+

, (20)

∂Ua
b(y, x)
∂xα

= +i
g√
2
Ua

c(y, x)A
c
b,α(x)+

δ̄Ua
b(y, x)
δ̄xα− , (21)

where the second terms on the right-hand sides represent
the contributions of the interior points of the segment
and are given by the following expressions:

δ̄Ua
b(y, x)
δ̄yα+

= i
g√
2
(y − x)β

∫ 1

0

dλλUa
c(y, z(λ))F c

d,βα(z(λ))Ud
b(z(λ), x), (22)

δ̄Ua
b(y, x)
δ̄xα− = i

g√
2
(y − x)β

∫ 1

0

dλ(1 − λ)Ua
c(y, z(λ))F c

d,βα(z(λ))Ud
b(z(λ), x). (23)

111101-6 H. Sazdjian, Front. Phys. 11(1), 111101 (2016)



REVIEW ARTICLE

Fig. 2 A Wilson loop along a polygonal contour with five sides.

The superscript + or − on the derivative variable takes
account of the orientation on the segment and specifies,
in the case of joined segments, the segment on which the
derivative acts.

In the case of a polygonal contour Cn, with n seg-
ments and n junction points x1, x2, . . ., xn, the vac-
uum average of the Wilson loop will be designated by
Wn = W (xn, xn−1, . . . , x1) (see Fig. 2).

6 Quark Green’s functions

By specializing to a polygonal line, the 2PGIQGF [Eq.
(12)] can be classified according to the number of seg-
ments contained in the line. For a polygonal line com-
posed of n segments and (n − 1) junction points, the
corresponding Green’s function will be designated by

S(n)(x, x′; tn−1, . . . , t1) = − 1
Nc

〈ψ(x′)U(x′, tn−1)

×U(tn−1, tn−2) . . . U(t1, x)ψ(x)〉, (24)

where each phase factor U is along a straight line seg-
ment indicated by its two end-point coordinates. (Spinor
indices are omitted and the color indices are implicitly
summed.) The simplest such function is S(1), having a
phase factor along a single straight line segment:

S(1)(x, x′) ≡ S(x, x′) = − 1
Nc

〈ψ(x′)U(x′, x)ψ(x)〉. (25)

(We shall generally omit the index 1 from that function.)
Figure 3 represents pictorially two different Green’s func-
tions.

For the internal parts of rigid path derivatives, we have
definitions of the type

δ̄S(n)(x, x′; tn−1, . . . , t1)
δ̄xμ− = − 1

Nc
〈ψ(x′)U(x′, tn−1)

×U(tn−1, tn−2) · · · δ̄U(t1, x)
δ̄xμ− ψ(x)〉. (26)

The Green’s functions satisfy the following equations
of motion concerning the quark field variables:

Fig. 3 Pictorial representation of the Green’s functions S(1) and
S(3). Dashed lines represent the phase factor lines. Full circles rep-
resent the position of the quark and antiquark fields, and full lines
represent the contraction operation between them.

Fig. 4 Graphical representation of the equations of motion of
S(1) and S(3). The cross on the dashed lines represents the rigid
path derivation; it is placed near the end point of the segment that
is submitted to the derivation.

(iγ.∂(x) −m)S(n)(x, x′; tn−1, . . . , t1)

= iδ4(x− x′)Wn(x, tn−1, . . . , t1)

+iγμ δ̄S(n)(x, x′; tn−1, . . . , t1)
δ̄xμ− . (27)

For n = 1, we have

(iγ.∂(x)−m) S(x, x′) = iδ4(x−x′)+ iγμ δ̄S(x, x′)
δ̄xμ− .(28)

Similar equations also hold with the variable x′. A graph-
ical representation of the equations of motion of S(1) and
S(3) is displayed in Fig. 4.

Multiplying Eq. (27) with S(t1, x) and integrating with
respect to x, one obtains functional relations between
various 2PGIQGFs. A typical such relation is

S(n)(x, x′; tn−1, . . . , t1)

= S(x, x′) Wn+1(x′, tn−1, . . . , t1, x)

+
( δ̄S(x, y1)

δ̄yα1+
1

+ S(x, y1)
δ̄

δ̄yα1−
1

)

×S(n+1)(y1, x′; tn−1, . . . , t1, x). (29)

(Integrations on intermediate variables are implicit.
Here, y1 is an integration variable.) A graphical rep-
resentation of this equation for n = 3 is given in Fig.
5.

Since this equation is valid for any n � 1, one can use
it again on its right-hand side for S(n+1). One therefore
generates an iterative procedure that eliminates succes-
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Fig. 5 Graphical representation of the functional relation among S(3), S(1), and S(4).

sively the higher index 2PGIQGFs in favor of the low-
est index one, S(1). Assuming that the terms rejected to
infinity are negligible, one ends up with a series where
only S(1) appears together with Wilson loop averages
along polygonal contours with an increasing number of
sides and rigid path derivatives along the segments. This
result shows that, among the set of the 2PGIQGFs S(n),
n = 1, 2, . . ., it is only S(1), having a phase factor along
one straight line segment, that is a genuine dynamical
independent quantity. Higher index 2PGIQGFs could in
principle be eliminated in terms of S(1) and polygonal
Wilson loops and their rigid path derivatives.

The above procedure is also repeated on the right-hand
sides of the equations of motion (27) and (28) to express
the rigid path derivatives in terms of Wilson loop aver-
ages. The equation of S takes at the end the following
form:

(iγ.∂(x) −m)S(x, x′)

= iδ4(x− x′) + iγμ
{
K1μ−(x′, x)S(x, x′)

+K2μ−(x′, x, y1)S(2)(y1, x′;x)

+
∞∑

n=3

Knμ−(x′, x, y1, . . . , yn−1)

×S(n)(yn−1, x
′;x, y1, . . . , yn−2)

}
, (30)

where the kernels Kn (n = 1, 2, . . .) contain Wilson loop
averages along polygonal contours, which are at most
(n+1)-sided, and the 2PGIQGF S and its derivative. The
total number of derivatives contained in Kn is n. Once
the Wilson loop averages and the various derivatives
have been evaluated and the high-index S(n)s have been
expressed in terms of S, Eq. (30) becomes an integro-
differential equation in S, which is the primary unknown
quantity to be solved. This equation is the analog of
the self-energy Dyson–Schwinger equation for ordinary
Green’s functions. Furthermore, the fact that it has been
obtained with the sole aid of polygonal lines for the par-
allel transport operator, without the need of other types
of line, is an indication that polygonal lines form a com-
plete set for the study of the 2PGIQGFs.

The various kernels that are present on the right-hand

side of Eq. (30) can be analyzed in terms of their be-
haviors at large and short distances. It seems that the
series is globally perturbative with respect to the inverse
of the number of sides of the polygonal contours, the first
terms, having the least number of sides, being the domi-
nant ones. The kernelK1μ− is actually null for symmetry
reasons; it is therefore the kernel K2μ−, corresponding to
a triangular contour with two rigid path derivatives, that
is expected to be the dominant term of the series.

One of the mathematical difficulties of Eq. (30) comes
from the property that the kernels do not have a convo-
lutive structure; this is related to the fact that Wilson
loops act in each term on all the points that are present
in the corresponding expressions. This is actually remi-
niscent of the difficulty of obtaining functional inverses of
gauge-invariant Green’s functions because of their non-
local structure.

7 Two-dimensional QCD

The equations obtained in the previous sections also re-
main valid in two spacetime dimensions and could be
analyzed more easily in this case. Two-dimensional QCD
in the large-Nc limit [17, 43] provides a simplified frame-
work for the study of the confinement properties, which
are expected to be qualitatively similar to those of four
dimensions. Wilson loop averages were explicitly calcu-
lated in two dimensions [36–38]: For simple contours
they satisfy the area law. In that case, the second-order
derivative of the logarithm of the Wilson loop average re-
duces to a two-dimensional delta function. Higher order
derivatives give zero in Eq. (30), since they act there on
different segments of the polygonal contours. Overlap-
ping self-intersecting surfaces, which give more compli-
cated expressions, are assumed to give negligible contri-
butions, for the residual terms they produce are probably
of zero weight under the integrations that are involved.

In the series of terms of Eq. (30) it is only the kernelK2

that survives and the integro-differential equation takes
the following expression [44]:

(iγ.∂ −m)S(x) = iδ2(x)− σγμ(gμαgνβ − gμβgνα)xνxβ

111101-8 H. Sazdjian, Front. Phys. 11(1), 111101 (2016)
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×
[ ∫ 1

0

dλλ2 S((1 − λ)x)γαS(λx)

+
∫ ∞

1

dξ S((1 − ξ)x)γαS(ξx)
]
, (31)

where σ is the string tension.
The above equation can be analyzed by first passing

to momentum space. Designating by S(p) the Fourier
transform of S(x), one can decompose it into Lorentz-
invariant components:

S(p) = γ.pF1(p2) + F0(p2). (32)

The solution of Eq. (31) can be searched for by using the
analyticity properties of the 2PGIQGF. It turns out that
the equation can be solved exactly and in analytic form.
The functions F1 and F0 are found to have an infinite
number of branch cuts located on the positive real axis
of p2 (timelike region), starting at thresholds M2

1 , M2
2 ,

. . ., M2
n, . . ., with fractional power singularities equal to

−3/2. Their expressions, for complex p2, are

F1(p2) = −i
π

2σ

∞∑
n=1

bn
1

(M2
n − p2)3/2

, (33)

F0(p2) = −i
π

2σ

∞∑
n=1

(−1)n+1bn
Mn

(M2
n − p2)3/2

. (34)

The Green’s function S [Eq. (32)] then takes the form

S(p) = −i
π

2σ

∞∑
n=1

bn
(γ.p+ (−1)n+1Mn)

(M2
n − p2)3/2

. (35)

The masses Mn (n = 1, 2, . . .) are positive, greater than
the free quark mass m, and ordered according to increas-
ing values. For massless quarks they remain positive. The
masses Mn and the coefficients bn, the latter also being
positive, satisfy, for generalm, an infinite set of algebraic
equations that are solved numerically. Their asymptotic
values, for large values of n such that n� m2/(πσ), are

M2
n 	 πnσ, bn 	 σ2

Mn + (−1)nm
. (36)

The functions (M2
n −p2)−3/2 are defined with cuts start-

ing from their branch points and going to +∞ on the
real axis; they are real below their branch points on the
real axis down to −∞.

Expressions (33) and (34) represent weakly converging
series. The high-energy behavior of the functions F1 and
F0 is obtained with a detailed study of the asymptotic
tails of the series and the use of the asymptotic behav-
iors of the parameters Mn and bn [Eqs. (36)]. One finds
that they behave asymptotically as in free field theories,
which is here a trivial manifestation of asymptotic free-

dom [45], since in two dimensions and in the large-Nc

limit the coupling constant does not undergo renormal-
ization.

In summary, the solution of Eq. (31) is nonpertur-
bative and infrared finite. The masses Mn are dynami-
cally generated, since they do not exist in the Lagrangian
of the theory. They could be interpreted as dynamical
masses of quarks with, however, the following particu-
lar features. First, they are infinite in number. Second,
they do not appear as poles in the Green’s function but
rather with stronger singularities. In x space the latter
do not produce finite plane waves at large distances and
therefore quarks could not be observed as free asymp-
totic states. Nevertheless, the above singularities, being
gauge invariant, should have physical significance and
would show up in the infrared regions of physical pro-
cesses involving quarks.

The fact that the singularities of the Green’s func-
tion appear only in the timelike region of real p2 is an
indication that the quark and gluon fields satisfy, even
in the nonperturbative regime, the usual spectral prop-
erties of quantum field theory [46–48]. Expression (35)
can be interpreted as fitting a generalized form of the
Källén–Lehmann representation [41, 44, 49, 50], where
the denominator of the dispersive integral now has a
fractional power, while the spectral functions are sat-
urated by an infinite series of dynamically generated sin-
gle quark states with alternating parities. The latter still
satisfy Lehmann’s positivity conditions [50].

Finally, the question may arise as to the dependence
of the predictions so far obtained on the choice of polyg-
onal lines for the phase factor paths. According to our
discussion at the beginning of Section 5, physical quanti-
ties, such as masses and momentum space singularities,
should be insensitive to changes of line type and there-
fore should be line independent.

8 Conclusion

Gauge-invariant Green’s functions are adequate tools for
a systematic investigation of the nonperturbative prop-
erties of QCD. Polygonal lines, supporting parallel trans-
port in quark Green’s functions, form a complete set of
paths for the study of the dynamical properties of the
latter. An equation playing the same role as the self-
energy Dyson–Schwinger equation for ordinary Green’s
functions has been obtained, in which the kernels are rep-
resented by Wilson loop averages along polygonal con-
tours with rigid path derivatives on their segments. It is
expected that the leading term in the series of kernels is
provided by the Wilson loop along a triangular contour
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with two derivatives.
The application of this equation to two-dimensional

QCD in the large-Nc limit provides an exact nonpertur-
bative analytic solution, not known from conventional
approaches, that displays a dynamical generation of a
series of massive quark states, with the characteristic
feature that their singularities in momentum space are
stronger than simple poles.

The consistency of the results obtained in two-
dimensional QCD is a positive test for the general ap-
proach presently developed for investigations in four
dimensions.
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