Skip to main content
Log in

Substitution effects on the hydrogen storage behavior of AB2 alloys by first principles

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

The hydrogen storage behavior of the TiCr2 and ZrCr2 alloys substituted with the third components (Zr, V, Fe, Ni) have been studied using first-principles calculations. The change of the hydrogen absorption energies caused by metal doping is arising from the charge transfer among the doped alloys interior. Zr and V atoms devoted abundant electrons, leading to a great enhancement of the H absorption energy, while Fe and Ni atoms always accepted electrons, yielding a remarkable decrease of the H absorption energy. The hydrogen diffusion energy barrier is closely correlated with the geometry effect rather than the electronic structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. F. Zhao, Y. H. Kim, A. C. Dillon, M. J. Heben, and S. B. Zhang, Phys. Rev. Lett., 2005, 94(15): 155504

    Article  ADS  Google Scholar 

  2. M. Li, Y. F. Li, Z. Zhou, P. W. Shen, and Z. F. Chen, Nano Lett., 2009, 9(5): 1944

    Article  ADS  Google Scholar 

  3. J. L. C. Rowsell and O. M. Yaghi, Angew. Chem. Int. Ed., 2005, 44(30): 4670

    Article  Google Scholar 

  4. D. J. Collins and H. C. Zhou, J. Mater. Chem., 2007, 17(30): 3154

    Article  Google Scholar 

  5. L. J. Murray, M. Dincǎ, and J. R. Long, Chem. Soc. Rev., 2009, 38(5): 1294

    Article  Google Scholar 

  6. S. S. Han, H. Furukawa, O. M. Yaghi, and Goddard, J. Am. Chem. Soc., 2008, 130(35): 11580

    Article  Google Scholar 

  7. H. Furukawa and O. M. Yaghi, J. Am. Chem. Soc., 2009, 131(25): 8875

    Article  Google Scholar 

  8. L. Zaluski and A. Zaluska, J. Alloys Comp., 1997, 253(1—2): 70

    Article  Google Scholar 

  9. L. Schlapbach and A. Züttel, Nature, 2001, 414(6861): 353

    Article  ADS  Google Scholar 

  10. D. Ohlendorf and H. E. Flotow, J. Chem. Phys., 1980, 73(6): 2937

    Article  ADS  Google Scholar 

  11. S. Srivastava and O. N. Srivastava, J. Alloys Comp., 1999, 290: 250

    Article  Google Scholar 

  12. K. Tatsumi, I. Tanaka, H. Inui, K. Tanaka, M. Yamaguchi, and H. Adachi, Phys. Rew. B, 2001, 64(18): 184105

    Article  ADS  Google Scholar 

  13. J. H. Sanders and B. J. Tatarchuk, J. Less Common Met., 1989, 147(2): 277

    Article  Google Scholar 

  14. J. H. Woo and K. S. Lee, J. Electrochem. Soc., 1999, 146(3): 819

    Article  Google Scholar 

  15. Y. H. Zhang, X. P. Dong, D. L. Zhao, S. H. Guo, Y. Qi, and X. L. Wang, Trans. Nonferrous Met. Soc., 2008, 18(4): 857

    Article  Google Scholar 

  16. Y. H. Xu, C. P. Chen, X. L. Wang, Y. Q. Lei, and Q. D. Wang, J. Alloys Comp., 2002, 337: 214

    Article  Google Scholar 

  17. N. Mani and S. Ramaprabhu, Int. J. Hydrogen Energy, 2005, 30(1): 53

    Article  Google Scholar 

  18. C. Iwakura, H. Kasuga, I. Kim, H. Inoue, and M. Matsuoka, Electrochim. Acta, 1996, 41: 2694

    Google Scholar 

  19. Y. F. Liu, H. G. Pan, M. X. Gao, Y. F. Zhu, and Y. Q. Lei, J. Alloys Comp., 2004, 365: 246

    Article  Google Scholar 

  20. S. Vivet, J. M. Joubert, B. Knosp, P. Ochin, and A. P. Guégan, J. Alloys Comp., 2008, 465: 517

    Article  Google Scholar 

  21. Y. H. Zhanga, D. L. Zhao, B.W. Li, X. L. Zhao, Z.W. Wu, and X. L. Wang, Int. J. Hydrogen Energy, 2008, 33: 1868

    Article  Google Scholar 

  22. S. L. Li, P. Wang, W. Chena, G. Luo, D. M. Chen, and K. Yang, J. Alloys Comp., 2009, 485: 867

    Article  Google Scholar 

  23. Y. Li, D. Han, S. M. Han, X. L. Zhu, L. Hu, Z. Zhang, and Y. W. Liu, Int. J. Hydrogen Energy, 2009, 34(3): 1399

    Article  Google Scholar 

  24. L. Zaluski, A. Zaluska, P. Tessier, J. O. Ström-Olsen, and R. J. Schulz, Mater. Sci., 1996, 31: 695

    Article  ADS  Google Scholar 

  25. H. Miyamura, M. Takada, K. Hirose, and S. Kikuchi, J. Alloys Comp., 2003, 356–357: 755

    Article  Google Scholar 

  26. T. Kondo, K. Shindo, and Y. Sakurai, J. Alloys Comp., 2005, 404–406: 511

    Article  Google Scholar 

  27. L. Smardz, M. Jurczyk, K. Smardz, M. Nowak, M. Makowiecka, and I. Okonsk, Renew. Energy, 2008, 33(2): 201

    Article  Google Scholar 

  28. D. H. Xie, P. Li, C. X. Zeng, J. W. Sun, and X. H. Qu, J. Alloys Comp., 2009, 478: 96

    Article  Google Scholar 

  29. Y. H. Zhang, H. P. Ren, S. H. Guo, Z. G. Pang, Y. Qi, and X. L. Wang, J. Alloys Comp., 2009, 480: 750

    Article  Google Scholar 

  30. Z. M. Wang, H. Y. Zhou, Z. F. Gu, G. Cheng, and A. B. Yu, J. Alloys Comp., 2004, 381(1–2): 234

    Article  Google Scholar 

  31. X. Y. Song, Y. Chen, Z. Zhang, Y. Q. Lei, X. B. Zhang, and Q. D. Wang, Int. J. Hydrogen Energy, 2000, 25(7): 649

    Article  Google Scholar 

  32. J. L. Bobet and B. Darriet, Int. J. Hydrogen Energy, 2000, 25(8): 767

    Article  Google Scholar 

  33. W. E. Triaca, H. A. Peretti, H. L. Corso, A. Bonesi, and A. Visintin, J. Power Energy, 2003, 113: 151

    Google Scholar 

  34. T. Z. Huang, Z. Wu, B. J. Xia, and T. S. Huang, Mater. Chem. Phys., 2005, 93: 544

    Article  Google Scholar 

  35. M. Kandavel, V. V. Bhat, A. Rougier, L. Aymarda, G. A. Nazri, and J. M. Tarascon, Int. J. Hydrogen Energy, 2008, 33(14): 3754

    Article  Google Scholar 

  36. K. Young, T. Ouchi, J. Koch, and M. A. Fetcenko, J. Alloys Comp., 2009, 477: 749

    Article  Google Scholar 

  37. R. J. Zhang, Y. M. Wang, D. M. Chen, R. Yang, and K. Yang, Acta Mater., 2006, 54(2): 465

    Article  Google Scholar 

  38. Q. Li, Q. Lin, K. C. Chou, L. J. Jiang, and K. D. Xu, J. Alloys Comp., 2005, 397: 68

    Article  Google Scholar 

  39. S. S. Fang, Z. Q. Zhou, J. L. Zhang, M. Y. Yao, F. Feng, D. O. Northwood, J. Alloys Comp., 1990, 293: 10

    Article  Google Scholar 

  40. D. J. Davidson, S. S. Sai Raman, M. V. Lototskyc, and O. N. Srivastava, Int. J. Hydrogen Energy, 2003, 28(12): 1425

    Article  Google Scholar 

  41. S. S. Fang, Z. Q. Zhou, J. L. Zhang, M. Y. Yao, F. Feng, and D. O. Northwood, Int. J. Hydrogen Energy, 2000, 25(2): 143

    Article  Google Scholar 

  42. F. Li, J. J. Zhao, D. X. Tian, H. L. Zhang, X. Z. Ke, and B. Johansson, J. Appl. Phys., 2009, 105(4): 043707

    Article  ADS  Google Scholar 

  43. M. C. Payne, M. P. Teter, D. C. Alan, T. A. Arias, and J. D. Joannopoulos, Rev. Mod. Phys., 1992, 64(4): 1045

    Article  ADS  Google Scholar 

  44. S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. I. J. Probert, K. Refson, and M. C. Payne, Z. Kristallogr., 2005, 220(5–6): 567

    Article  Google Scholar 

  45. J. P. Perdew and Y. Wang, Phys. Rev. B, 1992, 45(23): 13244

    Article  ADS  Google Scholar 

  46. M. R. Johnson, K. Parlinski, I. Natkaniec, and B. S. Hudson, Chem. Phys., 2003, 291(1): 53

    Article  Google Scholar 

  47. D. Vanderbilt, Phys. Rev. B, 1990, 41(11): 7892

    Article  ADS  Google Scholar 

  48. T. Z. Huang, Z. Wu, B. J. Xia, and N. X. Xu, Mater. Sci. Eng. A, 2005, 397: 284

    Article  Google Scholar 

  49. J. L. Soubeyroux, M. Bououdina, D. Fruchart, and P. D. Range, J. Alloys Comp., 1995, 231(1–2): 760

    Article  Google Scholar 

  50. L. Pauling, General Chemistry, 3rd Ed., San Francisco: W. H. Freeman Press, 1970

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji-jun Zhao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, F., Zhao, Jj. & Sun, Lx. Substitution effects on the hydrogen storage behavior of AB2 alloys by first principles. Front. Phys. 6, 214–219 (2011). https://doi.org/10.1007/s11467-011-0172-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11467-011-0172-5

Keywords

Navigation