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Abstract Mechanical manufacturing industry consumes
substantial energy with low energy efficiency. Increasing
pressures from energy price and environmental directive
force mechanical manufacturing industries to implement
energy efficient technologies for reducing energy con-
sumption and improving energy efficiency of their
machining processes. In a practical machining process,
cutting parameters are vital variables set by manufacturers
in accordance with machining requirements of workpiece
and machining condition. Proper selection of cutting
parameters with energy consideration can effectively
reduce energy consumption and improve energy efficiency
of the machining process. Over the past 10 years, many
researchers have been engaged in energy efficient cutting
parameter optimization, and a large amount of literature
have been published. This paper conducts a comprehensive
literature review of current studies on energy efficient
cutting parameter optimization to fully understand the
recent advances in this research area. The energy
consumption characteristics of machining process are
analyzed by decomposing total energy consumption into
electrical energy consumption of machine tool and
embodied energy of cutting tool and cutting fluid. Current
studies on energy efficient cutting parameter optimization
by using experimental design method and energy models
are reviewed in a comprehensive manner. Combined with

Received September 2, 2020; accepted December 14, 2020

Xingzheng CHEN, Li LI
College of Engineering and Technology, Southwest University,
Chongging 400715, China

Congbo LI ()

State Key Laboratory of Mechanical Transmission, Chongqing
University, Chongging 400044, China

E-mail: congboli@cqu.edu.cn

Ying TANG
Department of Electrical and Computer Engineering, Rowan University,
Glassboro, NJ 08028, USA

Hongcheng LI
College of Advanced Manufacturing Engineering, Chongging
University of Posts and Telecommunications, Chongqing 400065, China

the current status, future research directions of energy
efficient cutting parameter optimization are presented.
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1 Introduction

Manufacturing is a pillar industry supporting the national
economy. It creates considerable wealth but consumes
substantial energy and causes serious environmental
pollution. Taking China as an example, the manufacturing
industry accounts for approximately 30% of the gross
domestic product while it consumes more than 45% of the
total energy and is responsible for approximately 30% of
the total CO, emissions [1]. Among the various industry
sectors, mechanical manufacturing industry is extremely
energy intensive. It consumes more than 70% of the total
energy of manufacturing industry [2]. Although the
mechanical manufacturing industry consumes a huge
amount of energy, its energy efficiency is relatively low.
Numerous studies indicate that the energy efficiency of
mechanical manufacturing process is usually less than 30%
[3]. Hence, effectively reducing energy consumption and
improving energy efficiency of the mechanical manufac-
turing industry are urgent problems to be solved.

In a mechanical manufacturing workshop, machine tools
are the executors used to handle the workpieces [4]. They
are the primary energy consumers. In China, approxi-
mately 7 million machine tools are available, and their total
energy consumption is more than twice of the installed
capacity (22.5 million kW) of the Three Gorges hydro-
power station, which is the largest hydro power station in
the world [5]. To reduce energy consumption of machine
tools, there are mainly two methods. The first method is to
design energy efficient machine tools and replace the
existing ones in the mechanical manufacturing workshop.
In this area, the International Organization for
Standardization published a standard “Machine tools —
Environmental evaluation of machine tools-Part 1:
Design methodology for energy-efficient machine tools” in
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2017 to give guidelines for designing energy efficient
machine tools [6]. The detailed methods for designing
machine tool components, such as spindles, hydraulic
system, and chip conveyor, are included in this standard.
However, obsoleting all the energy intensive machine tools
in a short time is a difficult task for mechanical
manufacturers due to the investment of these facilities.
Hence, optimizing the machining process with energy
consideration becomes an alternative method.

In the work reported by Newman et al. [7], they found
that the energy consumption of a machining process can
differ by at least 6% of the total energy consumption of
machine tool in low load and is likely to grow to 40% at
high load. This condition indicates that the energy
consumption of machine tools is highly dependent on
cutting load. Inspired by this, many researchers investi-
gated the relationship between the cutting load and energy
consumption of machine tools. An interesting conclusion
shows that when the machine tool, cutting tool, and cutting
condition are determined, cutting parameters are the
dominant factors influencing the cutting load [8]. Small
cutting parameters can reduce the cutting load and decrease
the power consumption of the machine tool because power
consumption is calculated by cutting force (i.e., cutting
load) multiplied by cutting velocity.

However, the energy consumption in a machining
process is the integral of power consumption over
machining time. Small cutting parameters can decrease
power consumption but increase machining time, resulting
in an uncertainty of the energy consumption. In the work
presented by Camposeco-Negrete [9], they found that a
small cutting velocity, cutting depth, and feed rate can
reduce the power consumption of a machining process.
However, a high feed rate should be used when the cutting
velocity and cutting depth remain in small values to
minimize the energy consumption of the same machining
process. Hence, cutting parameters should be properly
selected to reduce the energy consumption of the
machining process.

Over the past 10 years, many researchers have been
engaged in cutting parameter selection for minimizing the
energy consumption of the machining process. A first line
of work focused on the cutting parameter optimization by
using experimental design method. With this method, the
relationship between cutting parameters and energy
consumption can be revealed and a set of optimal cutting
parameters for energy saving can be obtained. This method
is easy to implement but is prone of being trapped into
local optimal points [10]. To this end, another group of
work conducted cutting parameter optimization on the
basis of energy models. The optimization process of this
method is complicated, and the results are highly
dependent on the prediction accuracy of energy model
and the performance of optimization algorithm [11].

The motivation of this work is to perform a literature
review about energy efficient cutting parameter
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optimization. It can be regarded as a comprehensive
reference for readers from academy and industry. The
energy characteristics of machining process and existing
energy efficient cutting parameter optimization methods
are summarized. The advantages and deficiencies of each
method are presented, and some future research directions
are introduced. The remainder of this paper is organized as
follows. Section 2 analyzes the energy characteristics of
machining process. Section 3 presents the energy efficient
cutting parameter optimization by using experimental
design method. Section 4 shows the energy efficient
cutting parameter optimization by using energy models. In
Section 5, recommendations for future research are
presented, followed by the conclusions in Section 6.

2 Energy consumption characteristics of
machining process

As mentioned by Dahmus and Gutowski [12], any system
analysis should start with the boundary definition of the
system. In energy efficient cutting parameter optimization,
the energy boundary of machining system should be
clearly identified first because shifting the energy boundary
alters the optimal cutting parameters for the machining
process window [13]. From the current literature about
cutting parameter optimization for energy saving, the
focused energy boundary of these studies is different.
Some studies [14,15] only focus on a part of the electrical
energy consumption of machining process, and other
studies [16,17] explore the total electrical energy con-
sumption and the embodied energy of cutting tool and
cutting fluid. Hence, to gain a better understanding of the
existing works about energy efficient cutting parameter
optimization, the energy boundary and energy characteris-
tics of machining process should be analyzed.

Machining is a process in which a material is removed
from a workpiece with a cutting tool to shape it into a
desired form. As shown in Fig. 1, a large amount of
electrical energy is needed by a machine tool to keep the
movement of machine tool components and to overcome
the deformation force of material and the friction between
the cutting tool and workpiece. In some machining
processes, the friction between the cutting tool and
workpiece is extremely severe, and cutting fluid is usually
used for lubrication. However, this method can only
decrease the friction rather than eliminating it. The cutting
tool is worn due to continual inevitable abrasion, and the
cutting fluid is invalid due to the pollution of rusted chips
of workpiece and cutting tool. This condition leads to an
inevitable consumption of the embodied energy of cutting
tool and cutting fluid, which is the energy used to produce
the material of cutting tool and cutting fluid. Hence, from
the machining system point of view, the energy consump-
tion boundary of the machining process includes the
electrical energy of machine tool and the embodied energy
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of consumable materials, such as cutting tool and cutting
fluid. The workpiece material and its shape are determined
on the basis of process requirements. The machining
process have minimal chance to reduce the embodied
energy consumption of workpiece material. Hence, in
energy efficient cutting parameter optimization, the main
focuses are the electrical energy of machine tool and the
embodied energy of cutting tool and cutting fluid [18-20].

2.1 Electrical energy consumption of machine tool

In a machining process, the electrical energy consumption
of a machine tool caused by the temporal power demand is
complicated with dynamic change [21]. This condition is
because the machine tool components are not all running
throughout the whole machining process but activated in
accordance with the processing requirements. To study the
energy characteristics of the machining process, the
electrical energy consumption is usually classified in
terms of composition system, machine tool components,
and machining states [22]. As shown in Fig. 2, the methods
to classify electrical energy consumption based on
machine tool components and machining states are the
most widely used among the energy analysis methods. The
energy analysis method based on machine tool compo-
nents divides the energy consumption of a machine tool
into several parts. Each part is related to the power
consumption of the activated machine tool components
and their running time throughout the machining process.
Similarly, the energy analysis method based on machining
states classifies the total energy consumption into different
segments on the basis of machining states (i.e., startup
state, standby state, spindle acceleration/deceleration state,

air cutting state, and cutting state, as shown in Fig. 2). The
energy consumption of each segment is calculated on the
basis of the activated machine tool components in each
machining state and the duration time of each machining
state. The research perspectives of the two methods are
fairly the same. However, after a perusal of current
literature, it is found that most of the existing studies about
energy efficient cutting parameter optimization are based
on machining states. This condition is because this method
is convenient for analyzing the energy characteristics of the
machining process and modeling the energy consumption
with respect to cutting parameters. Hence, this work
mainly concentrates on the energy analysis method based
on machining states. Interested readers can refer to the
work reported by Zhou et al. [22] and Zhao et al. [23] for
other energy analysis methods.

As stated previously, the machining states of a
machining process are usually divided into startup state,
standby state, spindle acceleration/deceleration state, air
cutting state, and cutting state, as shown in Fig. 2.
Accordingly, the research community decomposes the
machining process into six parts to analyze its electrical
energy consumption characteristics. Energy efficient cut-
ting parameter optimization is conducted. The detailed
energy breakdown is as follows:

1) Startup energy Earup. When a machine tool is turned
on, the machine tool components, such as inverters, servos,
and computer numerical control system, are warmed up
[24]. The energy consumption of these components is
usually complex with dynamic changes, but the total
startup energy Earwp 1S fixed and can be measured through
experiments.

2) Standby energy Eganaby- The standby energy is
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composed of two parts. The first part is used to bring the
workpiece and cutting tool to the about-to cut position
and to set up the numerical control (NC) program
before machining [25], which is usually defined as
Etandby-preparation- 1he second part is used to change the
worn cutting t00l, Eiqol-changing: In @ machining process,
Egtandby-preparation 15 usually regarded as a constant, and
Eiool-changing €an be reduced through cutting parameter
optimization.

3) Spindle acceleration energy F,. and spindle
deceleration energy Eg4.. Spindle acceleration energy E,.
and spindle deceleration energy E4. are related to the
desired spindle speed or cutting velocity [26]. However, as
spindle acceleration/deceleration states are momentary.
Energy consumption during these states is fairly small
compared with other machining states. Some studies
ignore spindle acceleration energy FE,. and spindle
deceleration energy Ey4. in cutting parameter optimization.

4) Air cutting energy E,;.. Air cutting state is usually set
by machine tool operators to avoid potential damage of
machine and cutting tools. The air cutting energy is usually
evaluated in terms of air cutting power P,; multiplied by
air cutting time z,;.. Air cutting power and air cutting time
are related to cutting parameters. This condition provides
an opportunity for machine tool users to reduce the air
cutting energy through proper selection of cutting para-
meters.

5) Cutting energy Ecying. Cutting energy is the energy
consumed by a machine tool to remove a workpiece
material during cutting state. Similar to air cutting energy,
cutting energy is related to cutting parameters because
cutting power Peying and cutting time f.ying are dependent
on cutting parameters. The cutting energy usually accounts
for a huge proportion of the total electrical energy
consumption of a machining process. In energy efficient
cutting parameter optimization, some studies directly take
cutting energy or cutting power as optimization objective
[27,28].

2.2 Embodied energy consumption of cutting tool and
cutting fluid

To produce the cutting tool and cutting fluid, a large
amount of energy is consumed [29]. For example, the
energy consumption to fabricate 1 cm® of high-speed steel
(HSS), which is a widely used cutting tool material, is 755—
855.9 kJ, and the energy consumption to fabricate 1 cm® of
tungsten carbide material is as much as 8590-9723.6 kJ
[30]. Hence, in energy efficient cutting parameter optimi-
zation, few researchers considered the embodied energy
consumption of cutting tool and cutting fluid and
optimized the cutting parameters in a comprehensive
manner [31].

1) Embodied energy consumption of cutting tool
Eiool-embodiea- The embodied energy consumption of
cutting tool is related to the tool life, which is highly

dependent on the cutting parameters and machining
performance of cutting tool. In a machining process, the
embodied energy consumption of cutting tool can be
reduced through proper selection of cutting parameters and
cutting tool material [32].

2) Embodied energy consumption of cutting fluid
Efuid-embodied- Similar to the cutting tool, the production
process of cutting fluid is energy intensive. In a machining
process, a reasonable cutting parameter scheme can
decrease the embodied energy consumption of cutting
fluid [33].

3 Energy efficient cutting parameter
optimization by using experimental
design method

The use of experimental design method to optimize cutting
parameters is vital for reducing the energy consumption of
the machining process. With such a method, researchers
can obtain a set of optimal cutting parameters for energy
saving and derive the relationship between cutting
parameters and energy consumption. In Fig. 3, the
flowchart of cutting parameter optimization by using
experimental design method is illustrated. The main steps
are as follows.

First, the machining type (i.e., milling, turning, grinding,
etc.) is determined in terms of the workpiece features.
Second, the lubrication condition is identified in accor-
dance with the machining requirements and the material of
workpiece and cutting tool. In some machining cases, the
lubrication conditions, such as dry, wet, and minimum
quantity lubrication (MQL) cutting, can be regarded as a
decision variable [34]. The cutting parameters that
influence the energy consumption of the machining
process and their feasible levels are identified in this
stage. Third, experimental design methods, such as
Taguchi [35], central composite design [36], and Box—
Behnken [15], are adopted for generating experimental
trials. These methods can guarantee the same results with
fewer experimental runs compared with other techniques,
such as factorial design. Fourth, a set of cutting
experiments are conducted to obtain the energy consump-
tion and/or other machining performance, such as surface
roughness and tool life under each experimental trial. With
the obtained experimental results, mono-objective para-
meter optimization or multiobjective parameter optimiza-
tion is performed to obtain the optimal cutting parameter
schemes. For mono-objective parameter optimization, the
signal-to-noise ratio (S/N) of each trial is calculated, and
the optimal cutting parameter scheme is obtained by
comparing the S/N values. For multiobjective parameter
optimization, gray relational analysis (GRA) or GRA
coupled with principal component analysis (PCA) is
adopted to generate a set of Pareto schemes. Finally, the
most influential parameter for energy consumption and
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other machining performance, such as surface roughness
and tool life, is determined through ANOVA or other
methods, such as gray relational grade ranking.

Over the past 10 years, many researchers have engaged
in energy efficient cutting parameter optimization by using
experimental design. The optimization steps of these
optimization methods, such as Taguchi and GRA, are
standardized. For clarity, the main conclusions of these
studies are revealed without diving deeply into its
mathematical details. Interested readers can refer to the
relevant studies summarized in Table 1 for its full feature.

3.1 Related literature on cutting parameter optimization for
reducing cutting power

Cutting power is the total power consumption of a machine
tool during cutting state. The energy consumption of a
machine tool during cutting state is related to cutting
power, which is highly dependent on cutting parameter
schemes. Hence, the first group of studies conducted
cutting experiments to evaluate the effect of cutting

parameters on cutting power. The cutting parameter
schemes for minimizing cutting power are obtained, and
the relationship between cutting parameters and cutting
power is revealed on the basis of the experimental results.
In the work reported by Bhattacharya et al. [37], they
performed a set of machining experiments to investigate
the effect of cutting parameters on cutting power during
high-speed dry turning of AISI 1045 steel by using
Taguchi method. The experimental results show that
cutting velocity is the most significant factor on cutting
power. A small cutting velocity can effectively reduce the
cutting power of machining process. Cutting depth and
feed rate have no significant effect on cutting power and
should be set at their most appropriate and economical
levels. Fratila and Caizar [34] investigated the influence of
face milling parameters on cutting power under wet, MQL,
and dry milling conditions when machining of AIMg; with
HSS tool. The cutting velocity and cutting depth are
significant factors influencing cutting power, whereas the
effect of feed rate and lubrication condition on cutting
power is insignificant. Small cutting velocity, cutting
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depth, and feed rate should be used to minimize the cutting
power of machining process.

When optimizing the cutting parameter for reducing
cutting power consumption, economic objectives, such as
surface quality, tool life, and machining efficiency, should
be improved or at least should not be sacrificed. Hence,
some researchers shifted their focus from mono-objective
optimization to multiobjective optimization. In the work
presented by Hanafi et al. [28], they applied Taguchi
method to optimize the cutting parameters for minimizing
the cutting power and surface roughness in turning of
PEEK-CF30 with TiN cutting tool. The experimental
results indicate that cutting depth is the most influential
parameter on cutting power. A minimum power consump-
tion can be achieved with a small cutting velocity, cutting
depth, and feed rate. GRA was used in this work to
determine the optimal cutting parameters for achieving
minimum surface roughness and minimum cutting power.
Similarly, Kant and Sangwan [38] optimized the cutting
parameters for minimizing the cutting power and surface
roughness during dry turning of AISI 1045 steel. However,
their conclusions are different from that of Hanafi et al.
[28]. The feed rate is the most significant factor influencing
power consumption. A high cutting velocity, small cutting
depth, and small feed rate should be used to minimize the
power consumption of the turning process. An approach
coupled GRA with PCA was used in their work to find the
best cutting parameter scheme for minimizing the cutting
power and surface roughness.

3.2 Related literature on cutting parameter optimization for
energy saving

In a machining process, the value of energy consumption is
calculated by considering machining time [9]. This
condition directly reflects the total energy consumed of a
machining process. To this end, another group of
researchers investigated the cutting parameter optimization
for reducing energy consumption, and numerous studies
were published. The detailed literature review is as
follows:

Camposeco-Negrete [9] conducted a study to optimize
the cutting parameters for minimizing the cutting power
and energy consumption in turning of AISI 6061 T6 with
carbide insert. A different optimization result is obtained
when the optimization objective was changed from
minimizing cutting power to minimizing energy consump-
tion. For minimizing power consumption, cutting depth is
the most significant factor, followed by feed rate. Cutting
velocity is insignificant on cutting power. A minimum
cutting power consumption can be achieved with a small
cutting velocity, cutting depth, and feed rate. However, for
minimizing the energy consumption of machining process,
feed rate is observed to be the most significant factor,
followed by cutting depth and cutting velocity. The energy
consumption can be reduced by using a small cutting
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velocity, a small cutting depth and a large feed rate. Emami
et al. [27] studied the parameter optimization in grinding of
Al,O3 ceramic under MQL. They found that feed rate is the
most significant factor on energy consumption. The energy
consumption of grinding process can be reduced with a
large feed rate and cutting depth. Zhang et al. [39] studied
the influence of turning parameters on energy consumption
under wet lubrication, MQL, and dry turning condition
when machining austenitic stainless steel. The feed rate
and cutting depth are the significant factors on energy
consumption. Camposeco-Negrete et al. [40] optimized the
turning parameters to minimize the energy consumption
during turning of AISI 1018 steel under wet, MQL, and dry
turning conditions. They found that feed rate and cutting
depth have significant effect on energy consumption,
which is similar to the findings reported by Zhang et al.
[39]. Bilga et al. [41] conducted cutting parameter
optimization to reduce the energy consumption in rough
turning of EN 353 alloy steel with multilayer-coated
tungsten carbide insert. The optimization results show that
feed rate is the most dominant factor for energy
consumption. Turning with a large cutting velocity, feed
rate but a small cutting depth can reduce the energy
consumption of the turning process. In the work presented
by Altintag et al. [42], similar studies about cutting
parameter optimization for saving energy consumption in
end milling of AISI 1050 and AISI 304 steel can be found.

Apart from the above studies, other researches focused
on multiobjective optimization of cutting parameters with
traditional objectives, such as surface roughness and tool
life, because energy efficient sustainable machining should
not sacrifice machining economic targets. Bhushan [43]
optimized the turning parameters to minimize energy
consumption and maximize tool life during machining of
7075 Al alloy. Cutting velocity is observed to be the most
influential factor on energy consumption. A small cutting
velocity, feed rate, and cutting depth can reduce the energy
consumption of the machining process. The influence of
cutting parameters on tool life is different from that of
energy consumption. Desirability function analysis (DFA)
was used in this study for multiobjective optimization of
cutting parameters to reduce energy consumption and
increase tool life. Yan and Li [44] studied the multi-
objective optimization of face milling parameters to
maximize material removal rate (MRR) and minimize
energy consumption and surface roughness. The experi-
mental results indicate that cutting width is the most
influential parameter on energy consumption. Milling with
a large cutting width, feed rate, and cutting depth but a
small cutting velocity can reduce the energy consumption
of the milling process. The optimization results for
minimum energy consumption does not necessarily satisfy
the optimization criterion of minimum surface roughness
and maximum MRR. GRA combined sequential quadratic
programming (SQP) was used in their study to strike a
balance between the three objectives. Arriaza et al. [45]
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conducted a set of experiments for multiobjective
optimization of milling parameters to reduce machining
time and energy consumption. The experimental results
show that cutting velocity is the most significant factor on
energy consumption. DFA was used to find the trade-off
solutions for minimizing machining time and energy
consumption. Bagaber and Yusoff [46] investigated the
multiobjective optimization of cutting parameters to
minimize energy consumption, surface roughness, and
tool wear in dry turning of AISI 316 steel. Feed rate is
concluded to be the most significant factor influencing
energy consumption. Turning with a large feed rate, cutting
depth but a small cutting velocity can reduce the energy
consumption of the machining process. DFA was used in
their work to determine the trade-off solution for
minimizing energy consumption, surface roughness, and
tool wear. In the work presented by Suneesh and
Sivapragash [47], they studied multiobjective parameter
optimization for energy saving, surface quality improve-
ment, cutting force, and cutting temperature reduction in
turning of Mg/Al,O; hybrid composites. Feed rate is
concluded to be the dominant contributor for energy
consumption followed by cutting velocity and cutting
depth. Minimum energy consumption of the turning
process can be achieved with a small feed rate, cutting
velocity, and cutting depth. GRA and the technique for
order of preference by similarity to ideal solution
(TOPSIS) were used to perform multi-objective optimiza-
tion. The results show that the solution obtained using the
TOPSIS is better than that of GRA.

3.3 Remarks

On the basis of the literature reviewed in Table 1, the
following remarks are summarized.

e The experimental results of these studies are highly
dependent on specific machining conditions (i.e., machine
tool, workpiece material, tool material, lubrication, etc.).
The influence of cutting parameters on energy consump-
tion varies with different machining conditions. A cutting
parameter that is a dominant factor on energy consumption
in a machining condition may be an insignificant one in
another machining condition.

e Minimum power consumption can be achieved by
decreasing the value of cutting parameters because the
cutting force can be decreased with small cutting
parameters. However, the strategy for selecting cutting
parameter to reduce energy consumption may vary with
different machining conditions. This condition is because
energy consumption is the integral of power consumption
over machining time. Small cutting parameters reduce
power consumption but increase machining time, and the
decrement or increment of energy consumption is
uncertain. The measure for selecting cutting parameter to
reduce energy consumption should consider the specific
machining conditions.

e The relationship between cutting parameters and
energy consumption is not always the same due to the
relationship between cutting parameters and economic
objectives (surface roughness, tool life, MRR, etc.). The
optimal cutting parameter schemes for minimizing energy
consumption does not necessarily satisfy the optimization
criterions of minimizing surface roughness, maximizing
tool life, and MRR. Multiobjective optimization is an
effective method used to solve this problem.

e The optimal cutting parameters are either directly
selected from existing experimental combinations or
obtained by using GRA, DFA or other methods. The
optimization results are dependent on the experimental
settings of the cutting parameters. A risk of being trapped
into local optimal points may occur [10], and the obtained
cutting parameters may not be the optimal ones from the
view of global optimization.

4 Energy efficient cutting parameter
optimization by using energy models

In addition to energy efficient cutting parameter optimiza-
tion by using experimental design method, another group
of researchers established energy models with respect to
cutting parameters and conducted cutting parameter
optimization by using the established energy models.
Cutting parameter optimization is formulated as a
constrained problem within feasible parameter ranges.
Evolutionary or metaheuristic algorithms are usually used
in the optimization process to solve the optimization
model.

Figure 4 gives the flowchart of cutting parameter
optimization by using energy models. Similar to cutting
parameter optimization by using experimental design
method, the first step is to select a suitable machining
type for machining the workpiece in accordance with its
features. The second step is to identify the energy
boundary and model energy consumption with respect to
cutting parameters. If the optimization is a multiobjective
one, the relationships between machining performance
(surface roughness, machining time, etc.) and cutting
parameters are modeled. A mono-objective optimization
model with the only objective of energy consumption or a
multiobjective optimization model with energy consump-
tion and machining performance is established, with the
constraints of machine tool, cutting tool, and surface
roughness requirements. Evolutionary or metaheuristic
technique, such as particle swarm optimization (PSO) or
genetic algorithm (GA) is used to solve the proposed
model. Note that the optimization algorithms for mono-
objective optimization and multiobjective optimization
models are different. An optimal solution can be obtained
using the mono-objective optimization model and algo-
rithm, whereas only Pareto solutions can be obtained with
multiobjective optimization ones.
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Machining type
(milling, turning, grinding, etc.)

i

Establishment of energy model of
the machining process

!

Determination machining constraints

Energy consumption,
machining time, etc.

Energy consumption

Mono-objective
optimization model

Multiobjective
optimization?

Multiobjective
optimization model

Solving the optimization model

!

Output optimal cutting parameters

Fig. 4 Flowchart of cutting parameter optimization by using energy models.

Table 2 summarizes the recent studies about cutting
parameter optimization based on energy models. The
details of the main steps shown in Fig. 4 are given below to
understand these studies in a comprehensive manner.

4.1 Modeling of energy consumption with respect to cutting
parameters

The methods for modeling the relationship between energy
consumption and cutting parameters can be mainly
classified into two categories. The first category models
energy consumption with respect to cutting parameters by
using experimental design and mathematical models, such
as artificial neural network (ANN) [48], response surface
methodology (RSM) [14,35], and Kriging model [15].
The accuracy of these energy models can be extremely
high because they are close to the specific machining
conditions. The second category analyzes the energy
characteristics of the machining process and then models
the relationship between energy consumption and cutting
parameters by using empirical models, such as cutting
force and cutting power models. These energy models are
general and can be used in many machining scenes if the
main machining condition remains unchanged. As shown
in Table 2, most of the existing studies about energy
efficient cutting parameter optimization are conducted on
the basis of empirical models. This section mainly focuses
on the modeling process of these empirical models. Other

models established using standard mathematical models,
such as ANN, RSM, and Kriging model, can be found in
Refs. [14,15,35,48]. The methods in Table 2 are classified
into two categories, namely, energy modeling method
based on machine tool component (EMMBMTC) and
energy modeling method based on machining state
(EMMBMS). EMMBMS is the most widely used, as
mentioned in Section 2.

As shown in Fig. 1, the energy consumption of a
machining process includes the electrical energy of
machine tool and the embodied energy of consumable
material. The electrical energy of a machine tool can be
divided into standby energy Egnaby, spindle acceleration
energy F,., spindle deceleration energy Eq., air cutting
energy E,, and cutting energy Ecuuing. The embodied
energy of consumable material is composed of the
embodied energy of cutting tool Eioolembodica @nd the
embodied energy of cutting fluid Egyig-embodied- COnse-
quently, the general expression of the energy consumption
of a machining process can be expressed as follows:

Efootprint = Eetectrical + Eembodied

= Lstandby + Eac + Edc + Eair + Ecutting

+ Eiool-embodied T Efiuid-embodicds (1)

where Eejectrical aNd Eempodied are the electrical energy of
machine tool and the embodied energy of consumable
material, respectively.
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4.1.1 Modeling of standby energy Egndaby

As mentioned in Section 2.1.1, the standby energy is

composed of two parts, namely, the standby energy used

for the preparation of workpiece, cutting tool, and NC

program before machining, Egandby-preparation, and the

energy used for changing worn cutting tool, Eioel-changing:
E

standby — Lstandby-preparation + Etool—changing' (2)

1) Standby energy used for the preparation of work-
piece, cutting tool, and NC program, Endby-preparation

During the standby state for the preparation of work-
piece, cutting tool, and NC program, the activated
components of the machine tool are the inverters, servos,
and computer NC system [63]. The rated power consump-
tion of each component is usually fixed in the standby
state. The energy consumption during standby state is only
dependent on standby time ‘g andby-preparation and total
power Pganany Of these machine tool components and is
usually modeled, as shown in Eq. (3):

E standby-preparation — 4 standby Z standby-preparation (3 )

where fsandby-preparation 15 the standby time related to the
operating skills of workers.

2) Standby energy used for changing worn cutting tool,
Etool—changing

During a machining process, the worn cutting tool is
replaced with a sharp tool in standby state. However, the
tool changing operation may not occur in each machining
process because a sharp tool can be usually used for
machining several parts [32]. Hence, the standby energy
used for changing worn cutting tool of each part is
evaluated in terms of the actual cutting time per tool life
multiplied by standby power, which is expressed as shown
in Egs. (4) and (5):

Etool-changing = standbyttool-changing7 (4)

t
cutting
ttool—changing linsert- changingZ T > (5 )
tool

Where #,o1-changing 15 the tool changing time, finsert-changing 15
the time to change each cutting insert, z is the total inserts
in a cutting tool, and Ti,, is the tool life. Taking the
cylindrical turning process as an example, fcyging and Tioo1
are calculated as shown in Egs. (6) and (7) [64]:

D, .l
tcutting = f:lvg (6)
c
Cr
Tiool :Wa (7)

where D,,, is the average diameter of workpiece, / is the

cutting length of workpiece, ar, f1, yr and Cr are tool life
coefficients, and a, is cutting depth.

4.1.2 Modeling of spindle acceleration energy FE,. and
spindle deceleration energy g

Spindle acceleration energy E,. is related to spindle speed.
In the work presented by Huang et al. [65], they modeled
spindle acceleration energy F,. with respect to spindle
speed, as shown in Eq. (8):

fend

Eac = Eloss-motor+Em + 2717M0m(”s) f

tSl

n(t)dt

fend
+4nzB(ns)f n*

It

(£)dt + 21T, (ng)n*(2)

+P, standby facs (8)

where Ejyss-motor 1 the additional load loss energy of main
motor, £, is the changed energy of electromagnetic field,
Mm(ng) represents the load torque of electric motor in the
main transmission system, B(ng) represents the viscous
damping coefficient of main transmission system equiva-
lently transformed to motor shaft, J,(n,) is the rotational
inertia of main transmission system equivalently trans-
formed to motor shaft, n(f) denotes the spindle speed
varying with time, #; represents the spindle acceleration
starting at this time point and ending at z.,4, and ¢,. is the
time duration of spindle acceleration.

Similar to the work reported by Huang et al. [65], Hu
et al. [26] studied spindle acceleration energy E,. and
modeled it, as shown in Egs. (9) and (10):

t'? q
Eqe :f( standby+Pp ) (9)

0

PP =By ( 2 30:At> +Csa+Tsa (%juow) , (10)
where P/ and # are the power consumptions of spindle
system and time duration during the jth speed change of the
spindle rotation in noncutting operations from feature F), to
feature F7,, g/ is the initial spindle speed for the jth speed
change in spmdle rotation, and Bga, Csa, 0a, and Tgu are
the coefficients of the spindle system.

For spindle deceleration energy Eq4., Hu et al. [26] found
that Pp 7was zero when no energy recycling device was
1nstalled on the machine tool, and the power consumption
during deceleration equaled to the standby power of the
machine tool. Otherwise, the power consumption during
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deceleration is negative because the energy was recovered
with energy recycling devices. Pfjf’ is modeled as shown in

Eq. (11):

Pi= Bsrop (115 — 1] )+Csro, (1)

where n’éj’ is the final spindle speed for the jth speed change

in spindle rotation, and Bsrp and Csrp are the coefficients
of the spindle system.

4.1.3 Modeling of air cutting energy E,;;

During air cutting state, the spindle and feed systems are
powered on, and the cutting-related auxiliary systems, such
as chip conveyor and coolant system, are simultaneously
activated to ensure the operational readiness. Conse-
quently, the energy consumption during air cutting state
is related to three types of machine tool components. The
first two types are the machine tool components activated
in standby state and the cutting-related auxiliary system
powered on in air cutting state. The power consumption of
these components is fixed. The third type is the spindle and
feed systems, and their power consumption varies with
different spindle speeds and feed rates. Air cutting energy
E;;r 1s usually modeled as follows [25]:

Eyr = (P standby +P, auxiliary +Punload ) Lairs (12)

where ¢,;; is the air cutting time related to air cutting length
and cutting parameters, Pyyyiliary 1S the power consumption
of cutting-related auxiliary system activated in air cutting
state, and P ,10aq 1S the power consumption of the spindle
and feed systems during air cutting state. It is usually
defined as unload power because the spindle and feed
systems are running without load. Pyno.q 18 usually
composed of the unload power of spindle and feed
systems, which can be expressed as shown in Eq. (13):

(13)

where Punload—spindle and Pun]oad—feed are the unload power of
spindle and feed systems, respectively.

As shown in Eq. (14), Mativenga and Rajemi [66] found
that the unload power of spindle system follows a linear
relationship with spindle speed n:

P unload — P unload-spindle +P unload-feed»

(14

where kgpingie and bgpingie are the coefficients that can be
measured through experiments.

In the work presented by Li et al. [61], they improved the
unload power model of spindle system and approximated it
with a quadratic function in terms of spindle speed n:

Punload-spindle = Kspindle” + bspindle’

(15)

where Ogpindies Pspindles Ad Yspingle are the unload power
coefficients of spindle system.

2
P unload-spindle — @®spindle +ﬂspindlen + Vspindle”? >

Similar to the unload power of spindle system, the
unload power of feed system is modeled by researchers in a
linear [67] or in a quadratic function [68] with respect to
feed rate f:

Punload—feed = afeedf +ﬁfeed7 (16)

Punload—feed = yfeedf + Mfeedfza (17)

where Ogeed, Preed> Vieed aNd HUreeq are the unload power
coefficients of feed system.

4.1.4 Modeling of cutting energy Ecing

Generally, there is no extra machine tool component
activated in cutting state because the needed machine tool
components are activated in standby state or air cutting
state. However, the power profile in cutting state increases
obviously compared with that in air cutting state, as shown
in Fig. 2. This condition is because the tool tip needs more
energy to remove the material from the workpiece and to
overcome the additional friction of the transmission system
generated by cutting load. To this end, cutting energy
Ecutiing 18 composed of more than three parts compared
with air cutting energy, which is calculated as shown in Eq.

(18):
Ecutting = (P standby+P auxiliary+P unload+P material+P loss)

(18)

where Ppaerial and Pjogs are the material removal power
and additional load loss power.

1) Material removal power P accrial

The material removal power is highly dependent on
cutting parameters, workpiece material, cutting tool, and
machining conditions. Over the past 10 years, many
researchers have proposed a variety of methods to model
the material removal power. In the work presented by
Gutowski et al. [69,70], they found that there was a linear
relationship between material removal power Pepmovar and
MRR, which can be expressed in Eq. (19):

“Teutting»

Pmaterial = kmMRR> (19)

where &, is a constant, and MRR is calculated on the basis
of different machining types. In a milling process, MRR =
nf.apa., where f. is the feed rate per tooth and a, is the
cutting width.

The cutting force reflects the deformation of workpiece
material. Some researchers established material removal
power models in terms of on cutting force. Albertelli et al.
[51] modeled the material removal power of a milling

process, as shown in Eq. (20):
(20)

Prraterial = Khapnteethvca

where 7.4, 1S the average number of engaged tool teeth, /4
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is the deformed chip thickness, and K is the cutting
pressure. This model can be calculated considering the
effects of chip thickness on specific cutting pressure [71].
In a machining process, empirical modeling is a widely
used method to model the material removal power with
respect to cutting parameters. The established models can
be found in Refs. [72-76]. A typical material removal
power model of a milling process is expressed as shown in

Eq. 21):
Praterial = Cr dlgFnyF a? VLIZ+MF5

@n

where Cf, Xf, VF, zp, and g are the coefficients that can be
obtained through cutting experiments.

2) Additional load loss power P

During the cutting state, cutting load increases the
friction of transmission systems and causes additional
power consumption of the machine tool. In the work
presented by Hu et al. [77], they defined the additional
power consumption of machine tool as additional load loss
power P, and modeled it with a quadratic function of
material removal power, which can be expressed as Eq.
(22):

2
Ploss = Alosstaterial + glosstateriala (22)

where A, and &, are the additional load loss
coefficients.

4.1.5 Modeling of embodied energy of cutting tool
Etool—embodied

As mentioned in Section 4.1.1, a worn cutting tool is
replaced with a sharp one when the tool wear reaches the
preset criterion. Accordingly, the embodied energy of the
cutting tool is consumed. A new cutting tool usually can be
used for machining more than one part. The needed
embodied energy of a cutting tool in a machining process is
calculated on the basis of the unit embodied energy of
cutting tool, tool life, and actual cutting time [32].

__ ‘cutting
Etool—embodied - (]toola (23)

where Uy, 1s the unit embodied energy of cutting tool.
Einsert VinsertZ

N b
where Ej..x 1S the energy to fabricate the cutting insert

material, Viyer 1S the volume of one insert, V is the number
of cutting edges of each insert.

Utool = 24

4.1.6 Modeling of embodied energy of cutting fluid
Efyid-embodied

As reported by Yi et al. [19], the cutting fluid used in the
machining process is composed of two categories. The first

category is the water-based cutting fluid, and the second
category is the oil-based cutting fluid. The energy used to
produce cutting fluid varies with different categories. In a
machining process, the needed embodied energy of cutting
fluid is dependent on the unit embodied energy of cutting
fluid Upyq, replacement cycle of cutting fluid Tq,;q, and
cutting time Zcyuing, Which is expressed as Eq. (25):

tcutting
Efyid-embodied = T Utid» (25)
fluid
Uﬂuid = Eﬂuid—material(Vinitial + Vadditional)pév (26)

where Vigitiar and Viqdiional are initial and additional
volumes of cutting fluid, p is the density of the cutting
fluid, FEfuig-materiat 18 the energy used to fabricate the
material of cutting fluid, and J is the concentration of
cutting fluid. Note that the energy from water generation is
negligible [29].

4.2 Machining constraints

In a machining process, all cutting parameters must be set
within a permitted region to ensure the safety of the
machine and cutting tools and to satisfy the machining
quality and economic requirements. Therefore, some
machining constraints should be satisfied in energy
efficient cutting parameter optimization. The typical
constraints for a milling process are expressed as follows:

vc,min < Ve < Vc,max: (27)

Ap.min < ap < Ap max> (28)

fmin <f <fmaxa (29)

P unload 1 P material T P loss < 771nP m> (3 0)

_ S

Ra = 318————— < Ra,, 31
tana; + cota,

Ttool = Te . (32)

Equations (27)—(29) ensure the cutting velocity, feed
rate, and cutting depth to be within their feasible ranges for
avoiding quick tool wear and machine tool damage [78],
where vc,max/ Ve, mins ap,max/ Ap, min, and fmax/f min arc the
maximum/minimum cutting velocity, cutting depth, and
feed rate. Equation (30) controls the required power to be
less than the output power of the spindle motor, where P,,
and 7,, are nominal motor power and overall efficiency of
the spindle. Equation (31) ensures the final surface
roughness Ra to be less than the permitted Ray,.., Where
a; and a, are the lead and clearance angles of the tool tip,
respectively. Similarly, Eq. (32) controls the tool life to be
longer than the economic one, 7.
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The abovementioned constraints are typically used in
cutting parameter optimization. For a specific machining
case, other constraints are needed to be satisfied. In a
multipass machining process, the summation of all cutting
widths should be equal to the total machining stock
[79-81]. In a drilling process, the stability of the drill
should be focused because a deviation of the drill may lead
to a failure of the machine tool and drill [82].

4.3 Optimization solution via evolutionary or metaheuristic
algorithms

Energy efficient cutting parameter optimization is a highly
nonlinear, multidimensional, and ill-behaved engineering
problem with multiple constraints and multiple conflicting
objectives [83]. Two methods are mainly used to solve this
problem. Traditional methods include the conventional
nonlinear programming-based algorithms, such as quasi-
Newton and steepest descent methods [84]. With the
development of optimization algorithms, many noncon-
ventional methods, such as evolutionary or metaheuristic
algorithms, have been proposed by researchers in recent
years [85]. These methods include backtracking search
algorithm (BSA) [17], PSO [86], and artificial bee colony
(ABC) [87]. Particularly, for energy efficient cutting
parameter optimization with multiple conflicting objec-
tives, Pareto multiobjective optimization methods used to
search comprise solutions are proposed by researchers on
the basis of these algorithms. These methods include

Initialization
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multiobjective backtracking search algorithm (MOBSA),
multiobjective PSO (MOPSO), and multiobjective ABC.
These algorithms are inspired by nature or animal’s
behavior, and their performance is different from each
another due to their unique solution searching mechanism.
The performance of each algorithm varies with different
optimization problems. Lu et al. [17] compared the
performance of different algorithms in solving the multi-
pass energy efficient cutting parameter optimization
problem. They found that MOBSA outperforms nondo-
minated sorting genetic algorithm II (NSGA-II), MOPSO,
multiobjective evolutionary algorithm based on decom-
position (MOEA/D), and multiobjective harmony search
(MOHS) from the perspectives of the extent of spread in
the Pareto fronts, generational distance, and inverse
generational distance. In the work reported by He et al.
[55], they concluded that the convergence speed of NSGA-
II is faster than MOEA/D. However, the solutions obtained
by MOEA/D are found to be more efficient for engineering
use due to the diversity and good performance.

As shown in Fig. 5, the flowchart of a popularly used
NSGA-II [88-90] is taken as an example to demonstrate
the basic logic of nonconventional optimization methods.
From Fig. 5, four main steps are used in the algorithm,
which are initialization, determination, selection, and
reproduction. The initialization step is composed of
solution representation and solution initialization. It is
used to code the cutting parameters and generate the initial
cutting parameter solutions. The initialization solutions are

Generate initial solutions
within the permitted ranges
via an encoding scheme

l

Calculate fitness values

(i.e., energy consumption,
machining time, etc.) of each solution

Determination

Reach the

maximum iteration?

Decode and output the
Pareto-optimal
cutting parameters

No

Fitness evaluation

Select a portion of the current solution via
nondominated sorting
and crowding distance for a new generation

Reproduction

(

L Crossover and mutation ]

Fig. 5 Flowchart of an exemplary nondominated sorting genetic algorithm II.
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generated randomly within the cutting parameter ranges.
The determination step is set to calculate the fitness values
(i.e., energy consumption, machining time, etc.) of each
cutting parameter solutions and identify the termination of
the algorithm. The selection step is used to choose a
portion of the existing solution for a new generation. Each
optimization algorithm has its unique mechanism for
solution selection. For the NSGA-II, nondominated sorting
and crowding distance are usually used. The reproduction
step is used to produce new generations and varies with
different algorithm. In NSGA-II, crossover and mutation
are adopted to realize the production of new generation.

4.4 Remarks

The following remarks based on the reviewed studies are
summarized:

e The established energy models involve many para-
meters, such as coefficients of unload power, material
removal power, and tool changing power. These coeffi-
cients are usually determined by a variety of machining
conditions, including machining type, machine tool
specification, material of workpiece, and cutting tool.
This condition indicates that although the established
energy models are general, they should not be directly used
for a specific machining case before identifying these
coefficients.

e The results of the studies listed in Table 2 are
relatively similar to that shown in Table 1. The most
influential cutting parameter on energy consumption
differs with machining conditions. The optimal cutting
parameters for energy saving should be selected under
restriction of these machining conditions. A minor change
in the machining conditions may cause the entire
optimization process to start all over again.

e The optimal cutting parameters vary with different
energy boundaries of the machining system. Current
research is concentrated on reducing the electrical energy
consumption of the machine tool because it can be easily
measured with a power meter. Only a few studies extend
their focus to the embodied energy of cutting tool and
cutting fluid. This condition is mainly because the
production process of the material is extremely compli-
cated, and an effective method to obtain the energy
consumption is lacking for producing the material [91].
However, from the machining system point of view,
cutting parameter optimization with a comprehensive
consideration of all energy consumption reduces the total
energy consumption. A reasonable estimation of the
embodied energy of material is better rather than
disregarding it.

o The optimal cutting parameters for minimizing energy
consumption should be within the permitted region
restricted by machining constraints. Setting up reasonable
constraints is usually a difficult task. This is because these

constraints are affected by many machining conditions,
and obtaining the parameters in these constraints may be
extremely difficult. Furthermore, insufficient constraint
may lead to impractical cutting parameters, whereas
excessive constraints may result in a few limited solutions
or no solution.

5 Recommendations

On the basis of the above review of current studies about
energy efficient cutting parameter optimization, the authors
provide some recommendations on this topic for future
research.

1) The energy consumption of the machining process
includes the electrical energy consumption of machine tool
and the embodied energy of cutting tool and cutting fluid.
Energy efficient cutting parameter optimization should
start with the definition of the system boundary because the
optimal cutting parameters vary with different energy
boundaries. Current studies are concentrated on reducing
the electrical energy consumption of the machine tool.
Only a few studies extend their focus to the embodied
energy of cutting tool and cutting fluid. Future work can be
concentrated on cutting parameter optimization with a
comprehensive consideration of electrical energy and
embodied energy.

2) For a specific energy efficient cutting parameter
optimization problem, researchers exert their best effort to
find the most suitable method to solve it or modify some
existing algorithms to make them applicable for the
optimization cases. However, a method or guideline is
lacking for the proper selection of suitable method in
solving energy efficient cutting parameter optimization
problem. Furthermore, for some optimization problems
with multiple conflicting objectives, the optimal cutting
parameter schemes for minimizing energy consumption do
not necessarily satisfy the optimization criteria of mini-
mizing surface roughness, maximizing tool life, and MRR.
Multiobjective optimization is an effective method used to
solve this problem. However, the decision rules for
selecting the Pareto-optimal solutions should be further
studied to strike a balance between these objectives and
meet various engineering applications.

3) Although the influence of cutting parameters on
energy consumption varies with different machining
conditions, it shows similarities under some machining
conditions. For example, Yan and Li [44] found that the
energy consumption of milling process can be reduced
with a large MRR. Li et al. [49] and Moreira et al. [14]
found that machining with a large feed rate can reduce the
energy consumption of their milling process. This is
because the main machining conditions of these studies are
relatively similar, and the main conclusions are consistent.
It gives us an inspiration that we can conduct energy
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efficient cutting parameter optimization by mining the
knowledge included in the machining data [92], which are
easy to acquire by monitoring [4] the cutting parameters,
machining conditions, and the corresponding energy
consumption. In our prior work, we analyzed the
machining data to find the optimal cutting parameters for
energy saving in a turning process, as shown in Fig. 6 [93].
However, this is only a beginning of this research direction
and deserves further study.

Mathematic model

® Variables: X

® Constraints g;
min F{X|mt, wp, ct}
s.t. gdX|mit, wp, ct} <0 (j=1,2, ..., J)

- Transfer | ¢ Action 4: Process parameters
® Objectives: SEC, T, C, A
) e I:V ® Reward R: Objectives

Pre-training phase = =
v
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4) Most of the existing studies about energy efficient
cutting parameter optimization are completed before
machining, and the obtained cutting parameters are
inserted into the numerical codes. In recent years, with
the development of measurement technology, monitoring
the machining signals, such as torque, cutting power,
vibration, and temperature of the spindle system or the
whole machine tool, is convenient. As shown in Fig. 7,
on-board cutting parameter optimization by considering

MDP model
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Fig. 6 Schematic representation of metareinforcement learning of cutting parameter optimization [93].
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Fig. 7 On-board cutting parameter optimization.

the real-time machining signals may be a future research Nomenclature
area because the optimal cutting parameter can be adjusted
in accordance with the real-time machining conditions  Variables

[94].
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6 Conclusions a Lead angle of the tool tip
Energy efficient cutting parameter optimization has @ Cutting depth ‘
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an overview of the state-of-the-art energy efficient cutting B(ng) Viscous damping coefficient of main transmission system
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Electrical energy of the machining process under dry
condition

Electrical energy of the machining process under wet
condition

Electrical energy of machine tool and the embodied
energy of consumable material

Embodied energy consumption of cutting fluid
Energy used to fabricate the material of cutting fluid
Energy footprint of the machining process

Energy consumption by main machine tool functional
modules

Idle energy of auxiliary system

Energy to fabricate the cutting insert material
Energy consumption for tool leaving
Additional load loss energy of main motor
Inertia energy loss of moving components
Changed energy of electromagnetic field
Material removal energy

Energy consumption for spindle rotation changing
(non-cutting)

Standby energy
Standby energy of the ith pass

Standby energy used to bring the workpiece and cutting
tool to the about-to cut position and to set up the
numerical control program before machining

Startup energy

Standby energy used for changing the worn cutting tool
Embodied energy consumption of cutting tool

Feed rate

Maximum feed rate

Minimum feed rate

Feed rate per tooth

Cutting force

Deformed chip thickness

Rotational inertia of main transmission system
equivalently transformed to motor shaft

Constant for material removal power
Unload power coefficient of spindle system
Cutting pressure

Cutting length of workpiece

Number of machining passes

Load torque of electric motor in the main transmission
system

Spindle speed
Average number of engaged tool teeth

Final spindle speed for the jth speed change in spindle
rotation

Initial spindle speed for the jth speed change in spindle
rotation

n(?)

N

P
Pauxitiary

q
Py

Pcutting
Pfeed-fast

Pidle-auxiliary
P loss

Ploss-spindle

Py

Pmaterial

P rated-compressed
Premoval
Pspraying-cooling
Psmndby
Pstaﬂup

P, unload
Punload-feed

Punload-spindle

Ra
Ramax
tBC
Lair

tcutting

q
1

lend

Ifeed-fast
tinscn—changing
tspraying-couling
tst

tslandby-preparalion

tstarlup
ttool-changing
Thuia

TC

Tsa

Tloo]

Utuia

Utuol

Vadditional

Spindle speed varying with time
Number of cutting edges of each insert
Air cutting power

Power of auxiliary system

Power consumption of spindle system during the jth speed
change of the spindle rotation in noncutting operations
from feature F), to feature F,

Cutting power
Power for fast feeding
Idle power of auxiliary system

Additional load loss power of spindle system and feed
systems

Additional load loss power of spindle system
Nominal motor power of spindle

Material removal power

Rated power of compressed air motor
Material removal power

Power for spraying cooling fluid

Standby power

Startup power

Unload power of spindle and feed systems
Unload power of feed system

Unload power of spindle system

Surface roughness

Permitted maximum surface roughness
Time duration of spindle acceleration

Air cutting time

Cutting time

Time duration during the jth speed change of the spindle
rotation in noncutting operations from feature F, to
feature F,

Spindle acceleration ending at this time point
Time for fast feeding

Time for changing an insert

Time for spraying cooling fluid

Spindle acceleration starting at this time point

Standby time used to bring the workpiece and cutting tool
to the about-to cut position and to set up the numerical
control program before machining

Startup time

Tool changing time

Replacement cycle of cutting fluid

Economic tool life

Coefficient of the spindle acceleration energy
Tool life

Unit embodied energy of cutting fluid

Unit embodied energy of cutting tool

Additional volume of cutting fluid
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Ve Cutting velocity

Ve.max Maximum cutting velocity

Ve.min Minimum cutting velocity

Vinitial Initial volume of cutting fluid

Vinsert Volume of one insert

XE Coefficient of cutting force

VE Coefficient of cutting force

z Number of cutting inserts

Zp Coefficient of cutting force

o Coefficient of the spindle system

oF Coefficient of cutting force

Ofeed Unload power coefficient of feed system

Olspindle Unload power coefficient of spindle system

ar Coefficient of tool life

Pr Coefficient of cutting force

Breed Unload power coefficient of feed system

Pspindie Unload power coefficient of spindle system

pr Coefficient of tool life

Ycompressed Load factor of compressed air motor

Vfeed Unload power coefficient of feed system

Yspindle Unload power coefficient of spindle system

T Coefficient of tool life

0 Concentration of cutting fluid

Eloss Additional load loss coefficient

Hm Overall efficiency of spindle motor

A Coefficient of cutting force

Aloss Additional load loss coefficient

Up Coefficient of cutting force

Ufeed Unload power coefficient of feed system

P Density of the cutting fluid

WE Coefficient of cutting force

Abbreviations

ABC Artificial bee colony

ANN Artificial neural network

ANOVA Analysis of variance

BSA Backtracking search algorithm

DFA Desirability function analysis

EMMBMS Energy modeling method based on machining state

EMMBMTC Energy modeling method based on machine tool
component

GA Genetic algorithm

GRA Gray relational analysis

GRG Gray relational grade

HSS High-speed steel

MOBSA Multiobjective backtracking search algorithm

MOEA/D Multiobjective evolutionary algorithm based on
decomposition

MOHS Multiobjective harmony search

MOPSO Multiobjective particle swarm optimization

MQL Minimum quantity lubrication

MRR Material removal rate

MRV Material removal volume

NC Numerical control

NSGA-II Nondominated sorting genetic algorithm II

RSM Response surface methodology

PCA Principal component analysis

PSO Particle swarm optimization

SEC Specific cutting energy, the amount of energy required to
cut a unit volume of a workpiece

SQP Sequential quadratic programming

S/N Signal-to-noise ratio

TOPSIS Technique for order of preference by similarity to ideal
solution
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