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Abstract Legged robots have potential advantages in
mobility compared with wheeled robots in outdoor
environments. The knowledge of various ground proper-
ties and adaptive locomotion based on different surface
materials plays an important role in improving the stability
of legged robots. A terrain classification and adaptive
locomotion method for a hexapod robot named Qingzhui is
proposed in this paper. First, a force-based terrain
classification method is suggested. Ground contact force
is calculated by collecting joint torques and inertial
measurement unit information. Ground substrates are
classified with the feature vector extracted from the
collected data using the support vector machine algorithm.
Then, an adaptive locomotion on different ground proper-
ties is proposed. The dynamic alternating tripod trotting
gait is developed to control the robot, and the parameters of
active compliance control change with the terrain. Finally,
the method is integrated on a hexapod robot and tested by
real experiments. Our method is shown effective for the
hexapod robot to walk on concrete, wood, grass, and foam.
The strategies and experimental results can be a valuable
reference for other legged robots applied in outdoor
environments.

Keywords terrain classification, hexapod robot, legged
robot, adaptive locomotion, gait control

1 Introduction

The current decade has seen robots stepping into people’s
lives. Many mobile robots have been used to accomplish

patrol and disaster relief operations instead of human
beings. The DARPA Robotics Challenge program con-
ducted a series of competition events to develop and
demonstrate technology for disaster response [1]. The
Argos Challenge is a robotic challenge in the oil and gas
industry sponsored by TOTAL [2]. Although many robots
perform well in these kinds of competitions, most of them
are wheeled or tracked robots.
In contrast to traditional wheeled or tracked robots,

legged robots have potential advantages in mobility.
Legged robots can walk on rough, highly unstructured
terrains by selecting appropriate foothold positions. With
respect to the control strategies of legged robots, many
methods have been proposed in the past decades. Raibert
et al. [3] developed BigDog that can travel on many
outdoor terrains including rocks, gravel, and ice. SpotMini
is an electric agile robot developed by Boston Dynamics
and has a capable face-arm to accomplish operations such
as opening doors [4]. Hutter et al. [5,6] developed
StarlETH that utilizes a series elastic actuator to accom-
plish the precise control of leg forces. Hutter et al. [7–9]
split the locomotion control of ANYmal into five key
components, namely, state estimation, localization and
mapping, navigation, foothold, and motion planning as
well as whole body control. Bledt et al. [10–13] used an
event-based finite state machine to define the Cheetah’s
gait. Semini et al. [14] used active compliance via torque
control in HyQ to achieve dynamic locomotion. In contrast
to quadruped robots, six-legged robots have a larger
supporting polygon, which adds stability. Belter and
Skrzypczyński [15,16] presented a real-time motion
planning method for a hexapod robot walking on rugged
terrain. Wang et al. [17,18] analyzed in detail the mobility
of three statically stable ways of walking (insect-wave gait,
mammal-kick gait, and mixed gait). Peng et al. [19]
proposed a method of motion planning and implementa-
tion for the self-recovery of an overturned six-legged
robot. Chen et al. [20,21] proposed a time-optimal
trajectory planning method for a hexapod robot under
actuator constraints. Tian et al. [22–24] decomposed
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motion planning on irregular terrain into foothold selection
and whole body configuration planner.
Although many legged robots have walked from the

laboratory to natural environments, the study of environ-
mental adaptability is still necessary, especially detailed
knowledge about terrain. For example, low friction may
lead to slipping, and small compliance may result in
vibration. With respect to terrain recognition and classifi-
cation, much research was proposed in the past decades. In
earlier research, visual features were often used to classify
terrain. Filitchkin and Byl [25] used a bag of visual words
created from speeded up robust features with a support
vector machine (SVM) classifier to classify terrain. Milella
et al. [26] proposed a self-learning framework for ground
classification using radar and monocular vision. Christie
and Kottege [27] provided a unique method to perceive
terrain–robot interactions by listening to sounds generated
during locomotion. However, vision can be sensitive to
lighting variations and other effects. Brooks and Iagnemma
[28] proposed a method to classify terrain based on
vibrations measured by an accelerometer. Hoepflinger
et al. [29] presented a haptic terrain classification for
legged robots by measuring ground contact force. Giguere
et al. [30] used inertial and actuator information to identify
the environment of an amphibious robot RHex accurately.
Shill et al. [31] and Wu et al. [32] used dynamic ground
pressure data to classify terrain. Many researchers used the
SVM algorithm as the machine learning method [25,27,
33–36]. Shao et al. [37] used a multilevel weighted k-
nearest neighbor algorithm. Dutta and Dasgupta [38] used
multiple weak classifiers together to improve the perfor-
mance of terrain classification. Ordonez et al. [39] trained
data by using a probabilistic neural network. Valada and
Burgard [40] proposed deep spatiotemporal models for
robust terrain classification. The model consists of a new
convolution neural network architecture that learns deep
spatial features, complemented with long short term
memory units that learn complex temporal dynamics.
More research about adaptive locomotion based on the
terrain type is needed. Kottege et al. [41] improved energy
utilization by switching gait. Walas [35] achieved a good
balance between speed of movement and vibration.
A terrain classification method and adaptive locomotion

for the hexapod robot Qingzhui is proposed in this paper.
Ground substrates are classified with the feature vector
extracted from the collected data using the SVM algorithm,
and an adaptive locomotion based on ground properties is
proposed. Compared with other methods, each foothold
terrain type is identified by our method, and topographic
relief is considered. Moreover, ground type information is
used to change the parameters of the dynamic alternating
tripod trotting gait. The experimental results show that the
method is effective.
This paper makes the following contributions:
1) An online terrain classification method is proposed

for a hexapod robot called Qingzhui considering the

potential probability of different terrain types of each foot;
2) A dynamic alternating tripod trotting gait is

developed to control the robot, and the parameters can be
updated online based on terrain type to reduce the vibration
of the robot;
3) The proposed method is applied to a hexapod robot

called Qingzhui, and several experiments are carried out to
validate the methodology.
The remainder of this paper is organized as follows.

The hexapod robot Qingzhui is briefly introduced in
Section 2. The terrain classification method is presented in
Section 3. Adaptive locomotion control by using the
dynamic alternating tripod trotting gait is discussed in
Section 4. The proposed method is validated by experi-
ments in Section 5. The conclusions are presented in
Section 6.

2 Robot system overview

A terrain classification and adaptive locomotion method
for the hexapod robot Qingzhui is proposed in this paper.
The robot system is introduced in this section. This robot is
designed to accomplish exploration and transportation
missions in the field environment. First, the structure and
sensors used by the robot are introduced. Second, the
hierarchical control framework of the robot is discussed.

2.1 Structure and sensors

The six-legged walking machine called Qingzhui is used in
our experiments. The trunk of the robot is about 1.2 m long
and 0.8 m wide. Figure 1 shows that each leg has three
degrees of freedom (DOFs): Abduction–adduction degree,
rotation degree of the thigh, and rotation degree of the
shank. Six legs can be divided into two groups while
walking. One is the middle front (MF) leg, the right back
(RB) leg, and the left back (LB) leg. The other is the
middle back (MB) leg, the right front (RF) leg, and the left
front (LF) leg. Three foot positions in one group form a
supporting triangle to prevent the robot from falling.
Figure 2 shows that each driver unit in the leg joints is
composed of a servo motor, a reducer, an encoder, and a
torque sensor. The encoder can record the position and
velocity of the rotating joint, and the torque sensor can
capture the torque of the driver unit. Figure 3 shows that
the robot Qingzhui hosts an inertial measurement unit
(IMU), 18 encoders, and 18 torque sensors as propriocep-
tive sensors, and two RGBD cameras and a LiDAR as
perceptive sensors. The motion control frequency is about
1000 Hz, and the frequency of communication between
two controllers is 200 Hz. This robot weighs about 60 kg,
and the payload is about 20 kg. It can walk on a slope with
20° and on flat terrain at 1.5 m/s. The robot has walked
successfully on many terrains including concrete, foam,
wood, grassland, and sand.
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2.2 Hierarchical control framework

A hierarchical control framework is proposed to accom-
plish the terrain traversing task for the robot in our
experiments. Figure 4 shows that by decomposing the
walking mission, the control system can be divided into
three stages: Low-, middle-, and high-level control. In
high-level control, the six-legged robot receives the control
instruction from the human–machine interface. The robot
senses the surroundings and avoids obstacles by fusing
data from LiDAR and RGBD cameras. One RGBD camera
is used to detect obstacles, and another is used to establish
the robot–terrain model to avoid collisions. In addition,
terrain classification is accomplished based on the foot
force calculated with the data from torque sensors. The

Fig. 1 Robot structure and definitions of the coordinate systems of the robot Qingzhui.

Fig. 2 Components of the driver unit in the leg joint.

Fig. 3 Sensors of the robot Qingzhui. IMU: Inertial measurement unit.
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final output of the advanced-level control is the robot
trajectory. In middle-level control, a leg trajectory
generator is used to generate the leg position reference,
and a body pose stabilizer is responsible for generating the
force reference for correcting the body pose. The stability
of the robot is monitored by a stability reviewer. Leg
impedance is adjusted by a compliance modulator based on
terrain type. A gait state machine is used to coordinate
these components and connected with the robot trajectory.
The low-level control is the leg-level impedance, which
requires a position reference and a force reference as input.
Each leg has its own impedance controller, and adaptive
locomotion is based on this. Details of the leg-level
impedance are introduced in Section 4.

3 Terrain classification system

Details of the terrain classification system are introduced in
this section. The results of the ground stiffness estimated
by Bosworth et al. [42] showed that the stiffness of
concrete is harder than 300 kN/m, the stiffness of foam is
about 20 kN/m, and the stiffness of wood is approximately

an average of them. Thus, they can be good representatives
for hard, soft, and medium grounds in our paper. Figure 5
shows a block diagram of this method. The collected data
include the foot contact force, the pitch and roll angles, and
the forward velocity of the robot. Contact foot force is
separated into three sub windows, and each sub window
provides five features. With the attitude angles and the
forward velocity, 18 features from time domains are
extracted to compile a data set. These features are fed into a
multiclass SVM offline in MATLAB to generate the terrain
classification model. This model is then utilized by the
robot to classify terrain online. The average run time on a
real robot is approximately 10 ms, which is much less than
the gait cycle (about 300 ms).

3.1 Data overview

The data come from encoders and torque sensors installed
in the joint to capture the foot contact force. Each leg
has three revolution degrees: Abduction–adduction
degree, rotation degree of the thigh, and rotation degree of
the shank. Positions can be captured by encoders, and joint
torques can be collected by torque sensors. Foot contact

Fig. 4 Hierarchical control framework of the motion planning used in the robot Qingzhui. IMU: Inertial measurement unit.
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force can be calculated by utilizing a 3D Jacobian matrix.
Figure 6 shows the schematic diagram of the leg

mechanism for kinematics, and joint j2 is out of parallel
connection through a parallelogram mechanical structure.
Tip position vector p ¼ x y z½ �T can be calculated
from joint position vector j ¼ j0 j1 j2½ �T as follows:

x ¼ l1c1 þ l2c2, (1)

y ¼ ðl1s1 þ l2s2Þc0, (2)

z ¼ ðl1s1 þ l2s2Þs0, (3)

where ci and si ði ¼ 0, 1, 2Þ stands for sine and cosine of
joint position values, respectively. The velocity of the foot
tip (v) can then be obtained as follows:

v ¼ _p ¼ J cb⋅j#, (4)

where _p is the derivative of the tip position (p) with respect
to time, j# is derivative of the joint position (j) with respect
to time, and J cb is the Jacobian matrix shown as below:

J cb ¼
– l1s1 – l2s2 0

l1c1c0 l2c2c0 – ðl1s1 þ l2s2Þs0
l1c1s0 l2c2s0 ðl1s1 þ l2s2Þc0

2
64

3
75: (5)

According to the data of the torque sensors assembled at
the joints and IMU information, tip force can be calculated
as follows:

Fb ¼ Rb
L⋅ðJT

cbÞ –1⋅τ, (6)

where Fb is the set of tip forces of the three coordinate
directions in the body frame, Rb

L denotes the orientation of

the leg frame rotations with respect to the body frame, JT
cb

is the transposed matrix of J cb, and τ is the torque set of
three revolution joints.
Six legs are divided into two groups: MF, RB, and LB

legs move as Group A; MB, RF, and LF legs move as
Group B. Figure 7 shows the force of the y-axis and
position of the tips in Group A when the hexapod robot
walks on flat concrete with a dynamic alternating tripod
trotting gait. Velocity is 0.3 m/s, and acceleration is 0. The
position of the y-axis is set to 0 when the leg is in the flying
phase to focus on the data when the leg is in the support
phase. An evident variance between different legs’ force
curves is observed because the distribution of the six legs
is not a regular hexagonal, which is the main reason
why each leg has its own classifier and impedance
controller.
The data from the accelerometer and the gyro in IMU are

fused to capture the pitch and roll angles of the robot. The
average speed of the tip in the stance phase is calculated to
capture the forward velocity of the robot.

3.2 Feature extraction

The foot force in the stance phase is separated into three
sub windows, and five features are extracted in each sub
window. The algorithm calculates the maximum, mini-
mum, mean, median, and standard deviation of the force
signal in each sub window, resulting in 15 features.
Attitude angle features are extracted by calculating the
average pitch and roll angle during the touchdown phase.
The average velocity of the foot tip in the leg coordinate

Fig. 5 Flow chart of terrain classification system. SVM: Support
vector machine.

Fig. 6 Schematic diagram of leg mechanism.
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system is also extracted as a feature. From the above, 18
features are extracted for each leg during the stance phase.

s ¼ ðsf 1, sf 2, sf 3, sp, sr, svÞ, (7)

sfi ¼ ðmaxfi, minfi,�fi,mfi,�fiÞ, i ¼ 1, 2, 3, (8)

where sfi is the feature set extracted from the ith sub
window, sp is the feature extracted from pitch angle, sr is
the feature extracted from roll angle, and sv is the feature
extracted from velocity. maxfi is the maximum force in the
ith sub window, minfi is the minimum force in the ith sub
window, �fi is the average force in the ith sub window, mfi

is the median force in the ith sub window, and �fi is the
standard deviation of force in the ith sub window.
Data are collected when the robot walks on concrete,

foam, and wood. Figure 8 shows the tip force along the
y-axis. In each diagram, terrain types from left to right are
concrete, foam, and wood. Figures 8(a) and 8(d) show the
tip force of the front legs. Figures 8(b) and 8(e) show the
tip force of the back legs. Figure 8(c) shows the tip force of
the MB leg. Figure 8(f) shows the tip force of the MF leg.

3.3 Classification

SVM provides a nonlinear high-dimensional model that is
less prone to overfitting [43]. Open-source LIBSVM
library is implemented to accomplish online terrain
classification [44]. A practical guide to support vector
classification is followed to achieve acceptable results [45].
First, each feature attribute is linearly scaled to the range
[0, 1]. The same scaling factors are used in training and
testing data. Second, radial basis function kernels are
selected because they nonlinearly map samples into a
higher-dimensional space. Third, v-fold cross-validation

and grid search are applied to determine the optimal
parameters c and g for the radial basis function kernels.
Figure 9 shows that using the grid search and three-fold
cross-validation, the optimal value of the penalty para-
meter c is 0.25, and kernel parameter gamma g in kernel
function is 0.0625. The classification model is established
offline in MATLAB and will be used in the online control
of the robot.

4 Adaptive locomotion

Adaptive locomotion control is introduced in this section.
The robot uses a dynamic alternating tripod trotting gait.
First, the gait state machine is revealed to illustrate the
coordinated movement of the six legs. Then, the
impedance control for each leg is described in detail.
Finally, the stiffness adjustment strategy is introduced.
Other parts of gait control are not covered in this paper and
can be referred with our early work [24].

4.1 Gait state machine

Figure 10(a) shows the gait sequence that ensures at least
three alternating legs form a supporting triangle to keep the
robot from falling. Figure 10(b) shows four phases in the
state machine for a leg: Landing state (LDS), weight
acceptance state (WAS), thrust state (THS), and lifting
state (LTS). Once LDS is over, the state machine turns into
WAS. The leg provides support force and extends to push
the robot body upward in THS. When the supporting
period is over, the state machine turns into LTS, and the
leg shortens and lifts up. After that, the leg swings to
the desired position on LDS until the next landing is
detected.

Fig. 7 Recorded data about (a) tip force and (b) tip position of leg Group A. MF: Middle front; RB: Right back; RF: Right front.
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4.2 Leg impedance control

Impedance controllers are widely adopted in dynamic
locomotion on legged robots, which can give the robot legs
more compliance without additional physical compliant
components, such as springs or dampers. Considering the
mechanical configuration of the leg, which has a planar
parallel structure with the first two joints intersected at one
point, our impedance controller is deployed in a spherical
coordinate system instead of a Cartesian coordinate
system. Figure 11(a) shows the definitions of the leg
coordinates between Cartesian system and spherical
system, and Fig. 11(b) shows the abstract schematic
diagram of the virtual mass–spring–damping system. Tip
position pðx, y, zÞ is described in leg Cartesian coordinate,
which can be translated into psðl, �, fÞ described in leg

Fig. 8 Samples of training data (in each diagram, terrain types from left to right are concrete, foam, and wood): Data of (a) leg 1, (b) leg
2, (c) leg 3, (d) leg 4, (e) leg 5, and (f) leg 6.

Fig. 9 Result of grid research in the terrain classification model.
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spherical coordinate, where ðl, �, fÞ stand for the length
of the leg, forward/backward angle, and the abduction/
adduction angle of the leg, respectively.
Figure 12 shows the flow chart of leg impedance control.

The trajectory generalizer furnishes the designed position
and velocity, and the stabilizer provides the reference force
of the tip. Coordinate translators convert these designed
quantities into a spherical description. The spherical
impedance controller calculates the designed force and
then converts it into torque needed of each joint of the leg.
Close-loop torque PID controls are accomplished with the
help of torque sensors distributed on each joint. Joint
encoders collect joint angles and angle velocities, and
dispense them to coordinate translators, kinematics, and
impedance controller.
First, the related quantities should be converted between

different coordinates.

psd ¼ T c2s_xðpcdÞ, (9)

vsd ¼ Tc2s_vðvcd, jÞ, (10)

Fig. 10 State machine in tripod trotting gait: (a) Diagram of gait sequence. Feet in support is filled with black, and feet in swing is filled
with white. (b) Diagram of state transformation. T: The time of one gait cycle. MF: Middle front; MB: Middle back; RB: Right back;
RF: Right front; LB: Left back; LF: Left front.

Fig. 11 Leg impedance control: (a) Definitions of Cartesian and
spherical coordinate system; (b) impedance model of the leg.

Fig. 12 Flow chart of leg impedance control.
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f sref ¼ T c2s_f ðf cref , jÞ, (11)

where a right superscript s is employed to represent the
quantities described in the spherical coordinate of the leg.
Typically, j, which is the vector that stands for three joint-
values when calculating velocity and force, should be
referenced. T c2s_x, T c2s_v, and T c2s_f are the translators that
convert the designed position (pcd), designed velocity (vcd),
and reference force (f cref ) of the foot tip described in the leg
Cartesian coordinate into corresponding quantities (psd, v

s
d,

f sref ) described in the leg spherical coordinate. The
designed position, designed velocity, and reference force
of the foot tip described in the leg Cartesian coordinate are
shown as follows:

pcd ¼ xd_x xd_y xd_z

� �T, (12)

vcd ¼ _pcd, (13)

f cref ¼ fref_x fref_y fref_z
� �T, (14)

where xd_x is the designed position in x-axis, xd_y is the
designed position in y-axis, xd_z is the designed position in
z-axis, fref_x is the designed force in x-axis, fref_y is the
designed force in y-axis, and fref_z is the designed force in
z-axis.
The designed position, designed velocity, and reference

force of the foot tip described in the leg spherical
coordinate are shown as follows:

psd ¼ l � f½ �T, (15)

vsd ¼ _psd, (16)

f sref ¼ fl t� tf
� �T, (17)

where fl is the designed force of the foot tip along the
direction l, t� is the designed torque about the axis of � and
tf is the designed torque about the axis of f.
Second, impedance control is accomplished in the

spherical coordinate. Parallelogram mechanical linkage is
applied in the leg structure to reduce leg inertia. The whole
mass of one leg is about 5.8 kg, and approximately 80% of
the weight is concentrated in the driver units (each driver
unit is about 1.5 kg). The leg impedance controller is
designed to realize a desired compliant behavior indicated
by the mass–damper–spring leg model in the leg spherical
coordinate, which can be described as follows:

M s
d €ps – €psdð Þ þ Bs

d _ps – _psdð Þ þ K s
dðps – psdÞ

¼ f sd – f
s
ref , (18)

where M s
d, B

s
d, and K s

d are diagonal positive definite mass,
damping, and stiffness parameter matrices of the desired

impedance model, respectively, f sd is the vector of the
designed forces the leg needs in the spherical coordinate.
Designed joint torque vector td can be calculated by

hiring translator T s2j_t.

td ¼ T s2j_tðf sd, jÞ: (19)

Finally, td is sent to the torque-PID controller. Each joint
has been deployed with a torque sensor, which is used to
accomplish more accurate torque executions. The final step
of the leg impedance controller is regulating td with torque
tsr measured by their corresponding torque sensor
(of course filtered) with the normal PID controller as
follows:

ti ¼ RPIDðtd,i, tsr,iÞ, i ¼ 1, 2, 3, (20)

where RPID stands for the normal PID regulation, td,i and
tsr,i are the ith items of vector td and vector tsr, respectively,
and ti is the final torque needed that is sent to the
corresponding joint actuator.

4.3 Stiffness adjustment

Two impedance modes are applied in our gait controller:
The “swing” mode and the “stance” mode. The “swing”
mode is adopted in LDS, and the swing leg is set compliant
to follow the ground and reduce the disturbance of
nonsimultaneous landing. M s

d, B
s
d, and K s

d are selected
by our landing experiments. The “stance”model is adopted
in the supporting and semi supporting states including
WAS, THS, and LTS. The “stance” mode aims to assign
proper impedance parameters to the legs to support the
body. M s

d, B
s
d, and K s

d are selected by referring to the
biological study on animals [46] and our experiments. In
this paper, the stiffness adjustment is accomplished in the
“stance” model by setting proper impedance parameters,
while the parameters in the “swing” mode do not change.
The robot can walk on many surfaces with an acceptable
performance by using the same parameters in leg
impedance control. However, an appropriate parameter
can reduce robot jitter. A leg impedance control simulation
experiment is conducted, and the results are shown in
Fig. 13. Based on the stiffness measurements of different
ground types [42], the ground is modeled as a spring–
damping system whose stiffness and damping are set to
70 kN/m and 200 N/(m$s–1), respectively. Hip target
position is set to a sine curve. In the leg impedance control
model, damping is set to 200 N/(m$s–1), while stiffness
is set to three different parameters, namely, 5, 15, and
25 kN/m. When stiffness is set to 5 kN/m, maximum
position error is approximately 0.04 m. When stiffness is
set to 15 kN/m, maximum position error is approximately
0.01 m. When stiffness is set to 25 kN/m, maximum
position error is approximately 0.04 m, and apparent
oscillation occurs. Based on the simulation results, leg
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impedance control needs an appropriate stiffness. Soft or
hard stiffness may result in large position errors and even
unstable characteristics. During the real robot control, two
kinds of parameters are preset for the robot. One is used on
hard ground, and the other is used on relatively soft
ground. After terrain classification, each leg needs to
decide which kind of stiffness to use. Leg stiffness only
switches after confirming the terrain change three times to
reduce detection error.

5 Experiments

The proposed terrain classification and adaptive locomo-
tion scheme is integrated on the hexapod robot Qingzhui.
Three experimental results are introduced in this section:
The first one shows the performance of terrain classifica-
tion, the second one shows the performance of adaptive
locomotion when the robot walks on a foam at a speed of 0,
and the third one shows the performance of the robot
walking on concrete and foam at a speed of 0.6 m/s.
Three types of terrain are tested in the first experiment.

Data are collected when the robot walks on concrete,

wood, and foam with different velocities. The payload is
5 kg, and the step height is set to 5 cm to adapt to the
unevenness of the ground. The range of walking velocity is
from 0 to 0.6 m/s, and 200 features are extracted in each
experiment. These data are randomly separated into
training data and testing data. Testing data account for
20% of all data.
Table 1 shows the confusion matrix, precision, and recall

metrics of the first leg. Precision is the positive predictive
value, whereas recall is the true positive rate or sensitivity.
They can be calculated as follows:

Precision ¼

Number of true positives

Number of true positivesþ Number of false positives
,

(21)

Recall ¼

Number of true positives

Number of true positivesþ Number of false negatives
,

(22)

where “true positives”means the prediction is positive, and
the result is positive, “false positives”means the prediction
is positive, and the result is negative, and “false negatives”
means the prediction is negative, and the result is positive.
Four prediction errors are observed. Table 1 shows that

three concrete samples are identified as wood, and one
wood sample is identified as foam. Table 2 shows that
precision and recall are above 90% for the three classes,
which shows that the utilized feature vector is suitable for
terrain classification. The accuracy metric is approximately
96.67%, which shows that the terrain classification method
is effective. Moreover, the average run time on the real
robot is approximately 10 ms, which is much less than the
gait control. Above all, the terrain types can be effectively
identified online.

Fig. 13 Simulation curves with different stiffnesses: (a) Soft
stiffness (param1 = 5 kN/m), (b) appropriate stiffness (param2 =
15 kN/m), and (c) hard stiffness (param3 = 25 kN/m).

Table 1 Confusion matrix of the first leg

Actual
class

Predicted
concrete

Predicted
wood

Predicted
foam

Concrete 40 0 0

Wood 3 37 0

Foam 0 1 39

Table 2 Precision and recall of the classification

Terrain Precision/% Recall/%

Concrete 100.00 93.02

Wood 92.50 97.37

Foam 97.50 100.00
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A laser tracker is used to record the position of the
robot and evaluate the performance of adaptive locomotion
in the second experiment. Figure 14 shows the scenario.
The robot steps on a foam that is approximately 3 cm
thick, and forward velocity is set to 0. A target ball is
assembled on the center of the robot platform, and a laser
tracker is utilized to track the target ball. At first, the
robot steps with the default parameters used on the hard
surface. Then, terrain classification and adaptive locomo-
tion are active. The stiffness of each leg is decided by the
terrain type detected by the terrain classifier. Figure 15(a)
and its boxplot in Fig. 15(b) show the acceleration
data along the y-axis. These two figures show that the
vibration of the robot is reduced when terrain classification
and adaptive locomotion method work. Figure 15(c)
shows the position trajectory of the target ball, and
its boxplot is drawn in Fig. 15(d). Based on these
data, the robot platform jitter is smaller when terrain
classification and adaptive locomotion method work. This
experiment demonstrates the effectivity of the proposed
method.
The performance of terrain classification and adaptive

locomotion when the robot walks at a speed of 0.6 m/s on
two different materials is evaluated in the third experiment.
The robot stands still at first but speeds up to 0.6 m/s in
three gait cycles after the command of moving forward.
Default control stiffness is set as 9 kN/m. After terrain
identification, the stiffness in active compliance control is
changed to 7 kN/m while walking on concrete and 11
kN/m while walking on foam. Figure 16 shows the
vibration of the robot’s body. Figures 16(a) and 16(c) show
the acceleration data along the y-axis (direction of gravity)
measured by IMU in 5 s. Figures 16(b) and 16(d) show the
boxplot based on the curve of acceleration over time to

observe the distribution of acceleration. The maximum
decreases, and the minimum increases after adaptive
compliance control works. Moreover, the distribution of
outliers shows that the platform jitter becomes smaller by
adjusting control stiffness. The results show that whether
the robot walks on concrete or soft foam, the vibration of
the robot decreases by adjusting the control parameters
using the above method. Although the impedance control
has good ground adaptability, the knowledge of various
ground properties and adaptive locomotion on different
surfaces improves the robot’s walking performance,
especially the robot vibration.

6 Conclusions

In this paper, a terrain classification and adaptive
locomotion method for the hexapod robot Qingzhui is
proposed. A terrain classification method based on SVM is
proposed, and a dynamic alternating tripod trotting gait
that can adaptively adjust the leg’s stiffness is utilized to
achieve robot motion. Several real experiments are carried
out, and the results verify the effectiveness of the method.
Compared with other terrain classification algorithms,

the major advantages of the method are as follows: 1) Each
foot has an independent terrain classifier to adapt to
complex surface environments; 2) the leg impedance
controller can change its parameters based on the terrain
type during one gait cycle; 3) the proposed method is tested
by a real hexapod robot and is shown effective. The
drawbacks are that only three terrain types are tested. The
dynamic performance of the robot will be improved, and
data will be collected from other terrain types, such as
rocks, grass, and carpet in the future work.

Fig. 14 Experimental scene of the second experiment.
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Fig. 15 Experimental results of the second experiment: (a) Acceleration of the robot in the y-axis, (b) acceleration boxplot of two kinds
of parameters, (c) positions of the robot in the y-axis, and (d) position boxplot of two kinds of parameters.

Fig. 16 Experimental results of the robot walking at a speed of 0.6 m/s: (a) Acceleration of the robot in the y-axis while walking on
concrete, (b) acceleration boxplot of two kinds of parameters while walking on concrete, (c) acceleration of the robot in the y-axis while
walking on foam, and (d) acceleration boxplot of two kinds of parameters while walking on foam.
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