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Abstract We present an energy penalization method for
isogeometric topology optimization using moving morph-
able components (ITO–MMC), propose an ITO–MMC
with an additional bilateral or periodic symmetric
constraint for symmetric structures, and then extend the
proposed energy penalization method to an ITO–MMC
with a symmetric constraint. The energy penalization
method can solve the problems of numerical instability and
convergence for the ITO–MMC and the ITO–MMC
subjected to the structural symmetric constraint with
asymmetric loads. Topology optimization problems of
asymmetric, bilateral symmetric, and periodic symmetric
structures are discussed to validate the effectiveness of the
proposed energy penalization approach. Compared with
the conventional ITO–MMC, the energy penalization
method for the ITO–MMC can improve the convergence
rate from 18.6% to 44.5% for the optimization of the
asymmetric structure. For the ITO–MMC under a bilateral
symmetric constraint, the proposed method can reduce the
objective value by 5.6% and obtain a final optimized
topology that has a clear boundary with decreased
iterations. For the ITO–MMC under a periodic symmetric
constraint, the proposed energy penalization method can
dramatically reduce the number of iterations and obtain a
speedup of more than 2.

Keywords topology optimization, moving morphable
component, isogeometric analysis, energy penalization
method, symmetric constraint

1 Introduction

Topology optimization (TO) from the work of Bendsøe
and Kikuchi [1] has been used extensively in the academic
community due to its effectiveness in obtaining efficient
and lightweight structures. With the endeavors of many
excellent scientific researchers over past three decades [2–
5], many methods, such as homogenization approach [1],
solid isotropic material with penalization (SIMP) [6–11],
level set method (LSM) [12–22], and the evolutionary
approach (ESO) [23,24], have been presented to solve TO
problems. From the viewpoint of application, TO has been
applied to many industrial fields owing to its tremendous
superiorities in designing optimal structures, such as
aircraft [25,26], additive manufacturing [27,28], photonics
design [29,30], and hip implant design [31]. A remarkable
work of a full-scale airplane wing with the optimal design
of the internal structure has been elaborated in the journal
Nature [32].
Large engineering parts, such as airplane wing and car

wheel, are often composed of small symmetric compo-
nents for the benefit of stress equilibrium, manufacture
convenience, structure stability, transportation, installa-
tion, maintenance, and recycling [18]. Many researchers
have investigated the TO of symmetric structures.
Sigmund [33] proposed an inverse homogenization
method based on periodic boundary conditions to tailor
the effective properties of cellular materials possessing
periodic symmetric microstructures. With this method, the
optimal cellular material distribution is obtained consider-
ing extreme macroscopic mechanical properties. After-
ward, the layout of macrostructures considering periodic
symmetric geometries is investigated through the macro-
scopic design to identify the preliminary layout of
materials, where the material distribution of microstructure
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is locally determined using a refined design [34]. Using bi-
directional ESO (BESO) and with the aim of minimization
of the pressure frequency response, the optimal material
distribution within the design domain can be generated for
an acoustic-structure coupled system with periodic sym-
metric geometry constraint [35]. Unit cells having different
geometries and discretized into irregular finite element
meshes for periodic structures are optimized by a TO
method proposed in Ref. [36] based on the BESO and
Shepard interpolation functions.
However, the lack of geometric information about the

boundary of the optimized results is a serious drawback in
the optimal design of symmetric structures using the
traditional TO approaches. This drawback can be resolved
by the explicit TO method based on moving morphable
component (MMC) [37]. Compared with the conventional
TO approaches, TO approaches based on MMC and
moving morphable void (MMV) can directly obtain the
explicit geometric information from the final result. Some
imperfections existing in conventional TO methods based
on MMC and MMV may cause failure of structural
optimization. First, unstable results may occur due to the
numerical instabilities resulting from the use of linear
elements in finite element analysis (FEA) [38]. Second, the
computational burden is huge when the order of elements
used in the FEA is no less than quadratic [16]. Last, low-
order elements lead to the checkerboard pattern in the final
result, which can be circumvented using high-order
elements [6]. Therefore, high-efficient MMC–TO must
be developed for symmetric structures to maximize the
aforementioned effectiveness of MMC–TO in the struc-
tural design for the symmetric structure and to overcome
the drawbacks of the traditional TO method in structural
optimization.
The problems mentioned above in TO can be dealt with

using the isogeometric analysis (IGA) proposed by Hughes
et al. [39], which features high accuracy and computational
efficiency when high-order elements are used in the
analysis. Given the aforementioned advantages, IGA has
attracted more and more academic researchers [40–48]. In
recent years, using IGA to replace finite element method
(FEM) in structural TO has received increasing attention.
An isogeometric TO (ITO) combining with a phase-field
model is presented in Ref. [49], and higher accuracy is
obtained with the help of the embedded CAD geometric
expression in optimization and analysis. Shape irregula-
rities, such as “islanding” and “layering” are solved by
taking B-spline as the shape function to obtain the
corresponding shape boundaries exploiting the high
smoothness of B-spline [50]. An accurate and efficient
ITO is proposed by utilizing the advantages of IGA and
parameterized LSM (PLSM) [16], and an arbitrary
geometric constraint is added in such ITO scheme to
satisfy some practical requirements [15]. Furthermore, the
TO problem of isotropic and anisotropic lattice materials is
settled by an ITO scheme with the aid of asymptotic

homogenization theory [51]. A parallel computation
approach based on GPU has been used to overcome the
tremendous computational burden of the level set-based
ITO [17]. Xu et al. [52] developed an isogeometric
approach to the TO of spatially graded hierarchical
structures. FEM is replaced by IGA in MMC–TO (ITO–
MMC), which inherits the merits of MMC–TO and IGA, to
promote the stability and robustness of MMC–TO [38].
Xie et al. [53] introduced a new ITO–MMC based on
R-functions and Greville abscissae collocation scheme to
accelerate the convergence rate of MMC–TO and obtain an
effective constitutive model. However, the ITO–MMC
may encounter slow convergence for some TO problems,
such as the short beam subjected to an asymmetric load
shown in Section 6.1.
To solve this problem, we propose an energy penaliza-

tion method for ITO–MMC. With this method, the
sensitivities of MMC geometric parameters with respect
to the objective function are modified by the penalization
of the strain energy of elements. In addition, an ITO–MMC
is applied to the design of symmetric structures to obtain
explicit structural boundary information. Then, the energy
penalization method is extended to symmetric structures
under asymmetric loads optimized by an ITO–MMC with
a symmetric constraint. In the remainder of our work, the
basic theory of MMC–TO, the non-uniform rational
B-splines (NURBS) basis function used in IGA and the
mathematic model of ITO–MMC are given in Section 2.
Then, an energy penalization method for ITO–MMC is
proposed in Section 3. With the consideration of two types
of symmetric constraints, an optimization model based on
ITO–MMC is displayed in Section 4. Section 5 describes
the sensitivities of MMC geometric parameters under the
symmetric constraint based on the extension of the energy
penalization method. Section 6 expounds on the numerical
results of several symmetric TO problems in terms of the
effectiveness of the ITO–MMC with a symmetric
constraint and the energy penalization method. Finally,
conclusions are provided in Section 7.

2 Fundamentals

2.1 A summary of the MMC–TO

In MMC–TO, topology description functions (TDFs) [54]
constructed from the MMC geometric parameters describe
the relationship between the element Young’s modulus and
the geometric variables of MMCs. For the sake of
simplicity, MMCs with straight skeleton and variable
depth are used in this paper, which have the same
geometric parameters as those illustrated in Fig. 1.
The TDF of the component with the same shape as Fig. 1

can be expressed by a set of geometric parameters
explicitly, including the position of the center (xOi, yOi)
in the global coordinate system, the half-length (Li) of the
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component, the inclined angle with respect to the x-axis
(qi), and the variable depth (t1i, t2i, t3i). The formula of TDF
corresponding to the ith structural component is shown in
Eq. (1):

φiðx, yÞ ¼
x#

Li

� �s

  þ  
y#

f ðx#Þ
� �s

  – 1, (1)

with

x#

y#

( )
  ¼  

cos�i sin�i

– sin�i cos�i

" #
x – xOi
y – yOi

� �
, (2)

and

f x#ð Þ ¼ t1i þ t2i – 2t3i
2L2i

ðx#Þ2 þ t2i – t1i
2Li

x# þ t3i: (3)

In Eq. (1), s is an even integer (s ¼ 6 herein), and ðx, yÞ
represents one of the nodal coordinates of linear FEM
elements used to discretize the design domain. Each
individual component has a unique TDF such that the
number of TDF values of all the element nodal points is
equal to the that of components. If the structural topology
of the design domain is composed of n structural
components, then the implicit expression of structural
topology is formulated as Eq. (4):

φsðxÞ > 0, if   x 2 Ωs,

φsðxÞ ¼ 0, if   x 2 ∂Ωs,

φsðxÞ < 0, if   x 2 DnΩs,

8><
>: (4)

where

φsðxÞ ¼ maxðφ1, φ2, :::, φnÞ: (5)

In Eq. (4), D denotes the design domain, and Ωs

represents a proportion of the designable domain occupied
with n solid components.

The general theoretical model of the framework of TO
using MMC can be written as follows [37]:

     Find   d ¼ ðdT1 , dT2 , :::, dTn ÞT,
    Minimize  I ¼ IðdÞ, 
s:t:  

     gjðdÞ £ 0,      j ¼ 1, 2, :::, m,

     d � Ud ,

(6)

where di ¼ ðxOi, yOi, Li, t1i, t2i, t3i, �iÞ is the union of
geometric variables of ith components, the geometric
variables of all components d determine the objective
functional I, m represents the number of inequality
constraints, and the admissible set of d is expressed by Ud .
With the aid of Eulerian mesh description and fixed

finite element mesh as well as the values of TDF as defined
in Eq. (5), the problem formulation shown in Eq. (6) can be
reformulated as Eq. (7) when the minimization of
structural compliance is the objective of TO under a
prescribed volume constraint.

     Find   d ¼ ðdT1 , dT2 , :::, dTn ÞT,
    Minimize  I ¼ Iðd,uÞ, 
s:t:  

    !
D
HðφsÞ  E : εðuÞ : εðvÞdV

     ¼ !
D
HðφsÞ  f $vdV þ  !

Γt

t$vdS,  8v 2 U ad,

    !
D
HðφsÞ  dV£V , 

     d � Ud ,

     u ¼ u,   on  Γu,

(7)

where H denotes the Heaviside function, E ¼ E½Iþ
v=ð1 – 2vÞ  δ� δ�=ð1þ vÞ (I is the fourth-order identity
tensor, δ represents the second-order identity tensor, and E
and v are the Young’s modulus and Poisson’s ratio,
respectively) is the fourth-order isotropic elasticity tensor
of the material, f is the external force, and t represents the
surface traction on Neumann boundary Γt. u is the
displacement field, and v denotes the test function
corresponding to u with U ad ¼ fvjv 2 H1ðΩÞ,  v ¼ 0 on
Γug. ε represents the second-order linear strain tensor.
Moreover, V is the prescribed solid material volume, and u
is the fixed displacement on Dirichlet boundary Γu.

2.2 Basic theory of NURBS

NURBS [55,56] is a vital ingredient of numerical
discretization in IGA. Having n spline basis functions of
p-degree, the (ordered) knot vector Ξ ¼ f�1, �2, :::,
�nþpþ1g denotes a non-decreasing sequence of real
numbers representing parametric coordinates in 1D

Fig. 1 Illustration of the ith component, which has a straight
skeleton and quadratically varies along the direction of depth.
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parameter space. The interval ½�1, �nþpþ1�  represents a
patch, and the subinterval ½�i, �iþ1� denotes a span. The
B-spline basis functions of a knot vector Ξ are recursively
derived from the celebrated Cox-de Boor recursion
formula [57]:

Bi,0ð�Þ ¼
1,       if   �i £ � < �iþ1,

0,       otherwise,

(

Bi,pð�Þ ¼
� – �i

�iþp – �i
Bi,p – 1ð�Þ þ

�iþpþ1 – �

�iþpþ1 – �iþ1
Biþ1,p – 1ð�Þ,

if    �i£� < �iþ1, (8)

where the convention 0=0 ¼ 0 is used. Figure 2 depicts
seven cubic basis functions constructed from an open knot
vector.
A tensor product is used to construct the basis functions

for multi-dimensional parameter space, formulated as

Nj,q
i,p ð�,ηÞ ¼ Ni,pð�ÞNj,qðηÞ, (9)

where Ni,pð�Þ is the B-spline basis function of the knot
vector Ξ ¼ f�1, �2, :::, �nþpþ1g, and Nj,qðηÞ represents the
B-spline basis function for Π ¼ fη1, η2, :::, ηmþqþ1g. A
NURBS basis function is obtained from scaling a B-spline
basis function with a corresponding positive weight wi:

Ni,pð�Þ ¼
Bi,pð�ÞwiXn

j¼1

Bj,pð�Þwj

: (10)

By means of the tensor product, NURBS basis functions
in 2D parameter space are as follows:

Nj,q
i,p ð�,ηÞ ¼

Bi,pð�ÞBj,qðηÞwi,jXn
k¼1

Xm
t¼1

Bk,pð�ÞBt,qðηÞwk,t

, (11)

where wi,j denotes the weight of the tensor product
Bi,pð�ÞBj,qðηÞ.

2.3 R-functions and Greville abscissae-based ITO–MMC

In the MMC–TO method and ITO–MMC by Hou et al.
[38], the values of TDF are calculated by max function
which leads to C1 discontinuity. However, the C1

discontinuity caused by max function obviously deterio-
rates the convergence of TO because the method of moving
asymptotes (MMA) is used in the MMC–TO and ITO–
MMC as the optimizer, where the variables are optimized
by the gradient. The TDF values of overlapping regions of
components are computed by R-functions [58] in Greville
abscissae-based ITO–MMC to solve the problem [53].
Thus, the formula of TDF illustrated in Eq. (5) is replaced
by Eq. (12):

φs ¼
Rαð [φmi¼1Þ, if   φi 2 φþ  with   2£m£n,

 maxðφ1, φ2, :::, φnÞ, otherwise,

(

  with   φþ ¼ fφi 2 fφ1, φ2, :::, φngjφi>0g,

Rαð [φmi¼1Þ  ¼
1

1þ αðRαð [ φm – 1
i¼1 Þ þ φm

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
Rαð[ φm – 1

i¼1 Þ
�2 þ φ2m – 2αRαð [φm – 1

i¼1 Þφm
r Þ  ,  

α 2 ð – 1, 1Þ: (12)

In Eq. (12), φþ represents a subset of fφ1, φ2, :::, φng
and the elements of the set φþ (the number of elements is
m) are positive values. In addition, Rαð [ φmi¼1Þ is a
straightforward extension of Eq. (13):

Rαðφ1[φ2Þ ¼
1

1þ α
φ1 þ φ2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
φ21 þ f2

2 – 2αφ1φ2

q� �
, 

α 2 ð – 1, 1Þ: (13)

To solve the problem of numerical instability resulting
from linear FEM elements used in traditional MMC–TO

Fig. 2 B-spline basis functions for open knot vector Ξ ¼ f0, 0, 0, 0, 1, 2, 3, 3, 4, 4, 4, 4g.
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and the high computation cost of high-order FEM elements
illustrated in Fig. 3, Xie et al. [53] used IGA in ITO–MMC
to replace FEM. The Greville abscissae collocation scheme
is adopted to establish the ersatz material model in the new
ITO–MMC, which is different from the indirect and
complicated ersatz material model used in ITO–MMC by
Hou et al. [38]. Hence, the ITO–MMC formula on the basis
of R-functions and Greville abscissae for the minimization
compliance problem under a specified volume constraint is

     Find  d ¼ ðdT1 , dT2 , :::, dTn ÞT, 

    Minimize  C ¼
XNe

e¼1

γeu
T
eKeue, 

s:t:  

    
XNe

e¼1

γeKe

 !
$u ¼ F,

    
XNe

e¼1

�eVe  £V ,

    d � Ud ,

(14)

where d is the union of the geometric variables, u denotes
the displacement field, C represents the structural mean
compliance, γe and �e denote the eth element Young’s
modulus coefficient and density calculated by Eq. (15),
respectively. ue is the displacement vector of the eth
element, Ke is the standard stiffness matrix of the eth
element, F represents the external load vector, Ve is the eth
element volume, V represents the specified volume ratio,
and Ud denotes the admissible set of d.

γ ¼ 1
ncol

� Xncol
icol¼1

Hq
ε ðφicolÞ

�
,

� ¼ 1
ncol

� Xncol
icol¼1

HεðφicolÞ
�
,

8>>><
>>>:

(15)

where γ and � represent Young’s modulus coefficient and
density based on Greville abscissae collocation points, ncol

denotes the number of element collocation points, φicol
denotes the value of TDF of the icolth collocation point
calculated by Eq. (12), q ¼ 2, Hq

ε ðφicolÞ is the component
of the Young’s modulus coefficient at the icolth collocation
point, and HεðφicolÞ obtained from Eq. (16) represents the
regularized TDF value of icolth collocation point:

HεðxÞ ¼
1, if   x > ε,

3ð1 – βÞ
4

x

ε
–
x3

3ε3

� �
þ 1þ β

2
, if   – ε£x£ε,

β, if   x < – ε,

8>>><
>>>:

(16)

where β denotes a positive parameter to assure the non-
singularity of the global stiffness matrix, which is very
small, and ε controls the level of regularization.

3 Energy penalization method for ITO–MMC

In MMC–TO, the sensitivity of the minimization com-
pliance problem is obtained from the first-order variation
of the mean compliance to the variation of component
geometric parameters. When an arbitrary design variable aj
is changed, the corresponding sensitivity of the mean
compliance in ITO–MMC is approximately defined as [53]

∂C
∂aj

¼–
XNe

e¼1

ue
Tq

ncol

Xncol
icol¼1

HεðφicolÞq – 1
∂HεðφicolÞ

∂aj

 !
e

$Keue

" #
,

(17)

where Ne is the number of NURBS elements used to obtain
the displacement field of the design domain, ncol denotes
the number of Greville abscissae collocation points of a

NURBS element, and it takes q ¼ 2, and
∂HεðφiicolÞ

∂aj
represents the finite difference quotient of φiicol and the
design variable aj.
The sensitivity of the volume constraint function in

ITO–MMC is illustrated in Eq. (18):

Fig. 3 A comparison: Total number of DOFs is 162 in the left for FEA, which are much larger than 72 for IGA.
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∂V
∂aj

¼
XNe

e¼1

1

ncol

Xncol
icol¼1

∂HðφicolÞ
∂aj

 !
e

Ve

" #
  : (18)

The original ITO–MMC procedure is straightforwardly
proceeded with gradually optimizing the geometric para-
meters of components by the MMA [59].
During the above objective functional sensitivity

analysis, the sensitivities for geometric design variables
depend on the strain energy of elements. If the differences
of strain energy of elements are overly large, which usually
occurs in the optimization of a structure subjected to an
asymmetric load, it may lead to the very limited effect of
the elements with small strain energy on the optimization,
which will deteriorate the convergence and numerical
stability of the optimization process. To solve the
aforementioned problem, we propose an energy penaliza-
tion method based on the strain energy obtained by the
p-power of strain energy of each element in this part. The
sensitivity with respect to the mean compliance of
component geometric parameters is reformulated as
follows:

∂C
∂aj

¼ –
XNe

e¼1
f q

ncol

Xncol
icol¼1

HεðφicolÞq – 1
∂HεðφicolÞ

∂aj

 !
e

$ðueTKeueÞpg, p < 1  : (19)

The basic idea of the penalization method is originated
from the variation curves of a power function y = xp taking
different p values, and the curves are shown in the left of
Fig. 4. The curves depicted in Fig. 4(a) show that the
dependent variable y is decreased and a penalization effect
occurs in the dependent variable y, when p is decreased and
the variable x is set to a fixed value. In addition, the
difference between 10p and 2p is decreased with the

decrease in p-value on the basis of the variation curve
shown in Fig. 4(b). Although the strain energy of elements
in the void region will be enlarged, the void elements’
magnifying effect on the sensitivity calculated by Eq. (19)
is very limited because of the small Heaviside values of
Greville abscissae of the void elements. Hence, the large
difference in the strain energy of solid elements can be
eased by reducing the value of p used as the power
exponent of the strain energy, for the structure optimized
by ITO–MMC. With the modified sensitivity, the varia-
tions of the design variables are reduced over the
optimization process, so a converged solution is easily
obtained.

4 ITO–MMC with a symmetric constraint

The target of the present TO is to generate an optimal
material distribution within the design domain simulta-
neously subjected to volume and symmetric constraints.
For the sake of simplicity, minimization of the mean
compliance is only presented in this paper. The symmetric
constraint has two concrete forms, namely, bilateral and
periodic symmetric constraints. Two TO models based on
ITO–MMC briefly introduced in Section 2.3 are developed
in this work. One is for TO problems with bilateral
symmetric constraint, and the other is for TO problems
with periodic symmetric constraint.

4.1 Bilateral symmetric TO problems using ITO–MMC

Huang and Xie [60] proposed a method of applying the
periodic constraint to a structure based on BESO, where
the densities of periodic symmetric elements are equal and
only the densities of elements in a unit cell are the design
variables. Similarly, two bilateral symmetric unit cells
construct the design domain as elaborated in Fig. 5 to apply

Fig. 4 Variation curves of (a) y = xp with different p values and (b) the difference between 10p and 2p with respect to p.

Xianda XIE et al. Isogeometric topology optimization using MMC 105



the bilateral symmetric constraint in a TO problem.
Moreover, the basic structural components in the first
and the second unit cells are bilateral symmetric with
respect to the dashed symmetry axis presented in Fig. 5.
Hence, the basic structural components in any unit cell can
be used as the design variables, which reduce the design
variables by half than the ITO–MMC without a bilateral
symmetric constraint. According to the ersatz material
model shown in Eq. (15), the Young’s modulus coefficient
and density of each element in the first cell are obtained,
whereas that information in the second cell can be easily
gained from the first cell according to the bilateral
symmetric constraint. The total number of basic structural
components and the initial parameters corresponding to
those components in the second unit cell can be specified
from the first unit cell. Thus, to take the bilateral symmetric
constraint into consideration, we can reformulate the
minimization problem of mean compliance in terms of
the ersatz material model generated from the geometric
design variables in the first cell (Fig. 5), as

     Find  d ¼ ðdT1 , dT2 , :::, dTn=2ÞT,

    Minimize C ¼
Xnelx
i¼1

Xnely
j¼1

γi,ju
T
i,jK i,jui,j,

s:t:  

    
Xnelx
i¼1

Xnely
j¼1

γi,jK i,j

 !
$u ¼ F,

   
Xnelx
i¼1

Xnely
j¼1

�i,jVi,j  £V ,

     γnelx – iþ1,j ¼ γi,j,  ði ¼ 1,  2,  :::,  nelx=2;  j ¼ 1,  2,  :::,  nelyÞ,
    �nelx – iþ1,j ¼ �i,j,  ði ¼ 1,  2,:::,  nelx=2;  j ¼ 1,  2,  :::,  nelyÞ,
    d � Ud , 

(20)

where d is the set of design variables associated with the
components in the first unit cell, u and F are the
displacement vector of all control points of NURBS
mesh and the applied external force, and C denotes the
mean compliance. γi,j, �i,j, and Vi,j correspond to the
Young’s modulus coefficient, density, and the element
volume (i and j represent the index of the element in the x
and y directions). The bilateral symmetric constraint is
satisfied by γnelx – iþ1,j ¼ γi,j and �nelx – iþ1,j ¼ �i,j.
Using the geometric parameters of basic structural

components in the first or the second unit cell as the
design variables shows no considerable difference.

4.2 Periodic symmetric TO problems using ITO–MMC

Similar to the problems under bilateral symmetric
constraint in ITO–MMC, the TO problems subjected to
periodic symmetric constraint can be solved by ITO–

MMC. A 2D designable domain with m ¼ 8 unit cells is
shown in Fig. 6 for the periodic symmetric case. For the
simplicity of illustration, the parameters of components
placed in the first unit cell are used as the design variables.
The conventional TO problem appears when m ¼ 1� 1.
Therefore, the TO problem subjected to periodic sym-
metric using R-functions and Greville abscissae-based
ITO–MMC can be formulated as

     Find  d1 ¼ ðdT1,1, dT1,2, :::, dT1,n=mÞT,

    MinimizeC ¼
Xm
i¼1

Xne
j¼1

γi,ju
T
i,jK i,jui,j, 

s:t:  

    
Xm
i¼1

Xne
j¼1

γi,jK i,j

 !
$u ¼ F,

   
Xm
i¼1

Xne
j¼1

�i,jVi,j  £V ,

     γ1,j ¼   γ2,j ¼ ⋯  ¼ γm,j,  ðj ¼ 1,    2,    :::,    neÞ,
    �1,j ¼   �2,j ¼ ⋯  ¼ �m,j,  ðj ¼ 1,    2,    :::,    neÞ,
    d � Ud ,

(21)

where d1 denotes the set of all design variables that
represent the geometric parameters of the structural
components placed in the first unit cell, n/m denotes the

Fig. 5 2D design domain with bilateral symmetric constraint,
where 12 basic structural components are only placed in the first
unit cell, the design domain is divided into nelx and nely quadratic
NURBS elements along the x and y directions, respectively, and
the blue and yellow elements are bilateral symmetric, about the
dark red symmetric axis.

Fig. 6 2D design domain with m = 8 unit cells, m1 is the number
of unit cells along the x direction, andm2 is the number of unit cells
along the y direction.
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number of components placed in the first unit cell, m is the
number of unit cells used to decompose the design domain,
and ne represents the number of NURBS elements in a unit
cell. γi,j, �i,j and Vi,j represent the element Young’s modulus
coefficient, density, and volume, respectively (i and j
denote the index of a unit cell and the local element index
within a unit cell, respectively).

5 Numerical implementation for ITO–MMC
with a symmetric constraint

5.1 Sensitivities of ITO–MMC with a symmetric constraint
based on the energy penalization method

When an arbitrary geometric design variable am of
components located in the first unit cell is changed, the
corresponding sensitivity of the structural mean compli-
ance for the ITO–MMC under a bilateral symmetric
constraint illustrated in Fig. 5 is obtained by reformulating
Eq. (17) as Eq. (22), and the sensitivity of the volume
constraint Eq. (18) is transformed into Eq. (23), exploiting
the equality of Young’s modulus coefficient defined by
γnelx – iþ1,j ¼   γi,j and density formulated as �nelx – iþ1,j ¼ �i,j.

∂C
∂am

¼ –
Xnelx=2
i¼1

Xnely
j¼1

f q

ncol

Xncol
icol¼1

HεðφicolÞq – 1
∂HεðφicolÞ

∂am

 !
i,j

$ðuTi,jK i,jui,j þ uTk,jKk,juk,jÞg with k ¼ nelx – iþ 1, (22)

∂V
∂am

¼ –
Xnelx=2
i¼1

Xnely
j¼1

1

ncol

Xncol
icol¼1

∂HεðφicolÞ
∂am

 !
i,j

ðVi,j þ Vk,jÞ
( )

with k ¼ nelx – iþ 1: (23)

Due to the periodicity of the cells as those depicted in
Fig. 6, the basic structural components constituting the
topology of an arbitrary unit cell should be the same. In
other words, the geometric parameters of the components
that are periodic symmetric should have the same amount
of change simultaneously. Therefore, we can choose the
geometric parameters of components in any unit cell as the
design variables of ITO–MMC. Thus, optimization can be
implemented in a representative unit cell, which can be
arbitrarily selected from all of the unit cells due to
periodicity. The first unit cell is selected in this work. The
computational domain of IGA is still the whole design
domain of the TO problem.
According to Eq. (17), the sensitivity of the objective

function caused by the variation of the arbitrary geometric
design variable is approximately by the total strain energy
of the Greville abscissae collocation points located in the

corresponding components. The strain energy of the
Greville abscissae collocation points is derived from the
strain energy of the corresponding elements. In the ITO–
MMC subjected to periodic symmetric constraint, the
sensitivity of the representative cell is formulated as Eq.
(24), and the sensitivity of the volume constraint can be
obtained from Eq. (25), due to the repeatability of the
components constituting the topology of an arbitrary unit
cell.

∂C
∂aj

¼ –
Xne
e¼1

f q

ncol

Xncol
icol¼1

HεðφicolÞq – 1
∂HεðφicolÞ

∂aj

 !
e

$
Xm
i¼1

uTi,eK i,eui,eg, (24)

∂V
∂aj

¼ –
Xne
e¼1

Xncol
icol¼1

∂HεðφicolÞ
∂aj

 !
e

Xm
i¼1

Vi,e

( )
: (25)

Similar to the optimization process of ITO–MMC
without a symmetric constraint, the convergence and
numerical stability of the optimization process are
deteriorated by the large differences in strain energy of
the symmetric elements for the ITO–MMC under a
symmetric constraint. To tackle those problems, an
extension of the energy penalization method elaborated
in Section 3 is performed for the ITO–MMC under a
symmetric constraint. Accordingly, Eqs. (22) and (24) are
changed into Eqs. (26) and (27), respectively. Using the
p-norm calculation with p< 1, the strain energy of
elements with small strain energy is enlarged, and the
influence of elements with small strain energy can be
magnified during the optimization of symmetric structures.

∂C
∂am

¼ –
Xnelx=2
i¼1

Xnely
j¼1

f q

ncol
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icol¼1

HεðφicolÞq – 1
∂HεðφicolÞ
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 !
i,j

$
�
ðuTi,jK i,jui,jÞp þ ðuTk,jKk,juk,jÞp

�1
pg

with k ¼ nelx – iþ 1 and p£1, (26)
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f q
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Xncol
icol¼1

HεðφicolÞq – 1
∂HεðφicolÞ

∂aj

 !
e

$
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ðuTi,eK i,eui,eÞp
 !1

pg with p£1: (27)

The extension of the energy penalization method to the
ITO–MMC with a symmetric constraint is illustrated by a
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simple case, where the design domain is decomposed into
two symmetric unit cells, and the relationship between
different strain energy are established in Eq. (28):

Ctotal ¼ Cp
1 þ Cp

2 ¼ Cp
2ðαp þ 1Þ,

α ¼ C1=C2,

�1 ¼   Cp
1=Ctotal ¼ αp=ðαp þ 1Þ,

�2 ¼   Cp
2=Ctotal ¼ 1=ðαp þ 1Þ,

8>>>>><
>>>>>:

(28)

where C1 is the larger strain energy of element in the cell
close to the load, C2 is the smaller strain energy of element
in the other cell, α represents the ratio of strain energy of
the symmetric elements in different unit cells, q1 and q2 are
respectively the proportion of the p power of the larger and
smaller strain energy in the total strain energy Ctotal, and
α³4 and p£1.
Basing from the variation curves illustrated in Fig. 7, we

can conclude that for p< 1 cases, q1 is less than p = 1 and
q2 is larger than p = 1; q1 is smaller if a smaller p value is
used in Eq. (28); q2 is larger if a smaller p value is used in
Eq. (28). When α is fixed, the ratio of q2 to q1 is increased
with the decrease in p. Therefore, for p< 1 cases, the
elements with smaller strain energy play a more important
role in the optimization than the p = 1 case due to the
increase in q2, the shrinking effect for the element in the
cell close to load becomes more obvious with the decrease
in p values, and the magnifying effect for the element in the
other cell becomes more obvious with the decrease in p
values.

5.2 Optimization for the ITO–MMC with a symmetric
constraint

On the basis of the ITO–MMC by Xie et al. [53], a new

ITO–MMC is developed to solve TO problems with
bilateral and periodic symmetric constraints. The flowchart
for the ITO–MMC under a symmetric constraint is
illustrated in Fig. 8. The meshing algorithm for the
conventional FEA in MMC–TO is replaced by patch
refinement [39] in ITO–MMC to eliminate geometric
discretization errors. MMC is used to obtain explicit
boundary information from the TO results, whose
geometric parameters are the design variables in ITO–
MMC. The formula of the ITO–MMC with a symmetric
constraint is developed in Section 4 to satisfy the
symmetric constraint. The sensitivity of the mean
compliance and the volume, as well as the sensitivities
based on the energy penalization method for the ITO–
MMC with a symmetric constraint, is shown in Section
5.1. Finally, the MMA algorithm is used as the optimizer in
the ITO–MMC with a symmetric constraint.

6 Numerical examples

Five benchmark TO problems are studied in this part to
verify the effectiveness of the proposed energy penaliza-
tion method for ITO–MMC and the ITO–MMC for
symmetric problems as well as the energy penalization
method for the ITO–MMC with a symmetric constraint.
The first one is intended to demonstrate the performance of
the energy penalization method for asymmetric structure
under ITO–MMC framework. The second and the third
ones are used to testify the effectiveness of the proposed
ITO–MMC for symmetric problems. Finally, the energy
penalization method for the ITO–MMC considering a
symmetric constraint is verified in the last two bench-
marks. All physical quantities in the problems are
dimensionless parameters due to the major concern of

Fig. 7 Energy ratio variation curve for the design domain divided into two symmetric unit cells with different p values used in Eq. (28):
Variation curve of the ratio (a) q1= C1/Ctotal, (b) q2= C2/Ctotal, and (c) q2 to q1.
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numerical performances. In any benchmark of our work,
the Young’s modulus and the Poisson’s ratio used in
standard elasticity matrix K i,j formulated as Eqs. (20) and
(21) are respectively set to 1 and 0.3 without special
explanation. MMA [59] is the optimizer used in the
optimization process.

6.1 Asymmetric structure optimized by ITO–MMC based
on the energy penalization method

The problem setting and the initial design of components
for an asymmetric structure are illustrated in Fig. 9. The
asymmetric structure is fixed at the left edge and subjected
to a vertical load at the right-bottom corner, whereas the
prescribed volume ratio is set to 0.4. The maximum
number of iterations is 1000. Given that the mesh size and
the parameters of MMA influence the convergence rate of
MMC–TO, the ITO–MMC based on the energy penaliza-
tion method is investigated for four cases (Table 1).
The parameters of MMA used in Cases 1 and 2 are the

same to those elaborated in Ref. [53], and the parameters of
MMA for Cases 3 and 4 are identical to those used in Ref.

[61]. Then, the comparison results between the ITO–MMC
based on the energy penalization method and the ITO–
MMC for the four cases are shown in Fig. 10. p = 1 means
the ITO–MMC is not penalized by the energy penalization
method.
As shown in Fig. 10, the improvement in convergence

rate for all cases listed in Table 1 ranges from 18.6% to
44.5% through the energy penalization method used in
ITO–MMC, without deteriorating the stiffness of the
optimized structure. A large difference in the improvement
effect of the energy penalization method on the conver-
gence rate for different mesh sizes is observed. In specific,
the improvement is no less than 40% for Cases 1 and 3
where a 30� 30 mesh size is used while 20.2% for Cases 2
and 4 where a 40 � 40 mesh size is used. Therefore, the
energy penalization method exerts a significance to the
convergence rate.

6.2 Bilateral symmetric structure by the ITO–MMC with a
symmetric constraint

The structure shown in Fig. 11 is a bilateral symmetric beam.

Fig. 8 Flowchart of ITO–MMC subjected to bilateral symmetric constraint (left) and periodic symmetric constraint (right).
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The TO of the bilateral symmetric beam can be viewed as a
TO problem subjected to a bilateral symmetric constraint.
Hence, a beam having a bilateral symmetric boundary can be
optimized by the process illustrated in the left of Fig. 8. The
designable domain, unit cells, the dimensions of the design
domain and the prescribed material volume ratio, as well as
the boundary condition, are illustrated in Fig. 11. In Fig. 11,
the green dashed line is the symmetric axis of the design
domain, the beam is fixed at the right and left bottoms, and a
vertical downward force is applied to the middle of the top
boundary of the design domain.
The beam is first optimized without a bilateral

symmetric constraint to testify the feasibility of ITO–
MMC in the optimal design of the beam illustrated in Fig.
11. The design domain is discretized into a quadratic
NURBS mesh with the size of 180� 30, and the initial
topology of the structure consisting of 48 basic structural
components is depicted in Fig. 12. The final optimized
structure of the beam using ITO–MMC is shown in Fig.
13(a). Then, the optimal results of the beam using the
traditional SIMP method and SIMP with a density filter are
presented in Figs. 13(b) and 13(c), respectively. Appar-
ently, the final result optimized by ITO–MMC has a similar
optimal structure obtained by either SIMP or SIMP with a
Heaviside density filter, which indicates the effectiveness
of ITO–MMC.
Afterward, the bilateral symmetric beam is optimized by

the ITO–MMC with a bilateral symmetric constraint, and
the optimization process is presented in the left of Fig. 8.
Quadratic NURBS elements with the size of 180� 30 are
adopted, which are the same as those used in the case of the
ITO–MMCwithout a bilateral symmetric constraint. Then,
the initial design of the first cell illustrated in Fig. 11
consists of 24 basic structural components, which is half of
that used in the ITO–MMC without a bilateral symmetric
constraint, and those components are as depicted in Fig.
14(a). The optimal design of the beam is obtained through
348 optimization iterations by using the model of the ITO–
MMC subjected to a bilateral symmetric constraint
presented in Eq. (20), and the final optimal layout is
presented in Fig. 14(b). Finally, the convergent history of
the optimization process using the ITO–MMC with a
bilateral symmetric constraint is illustrated in Fig. 15.
Basing from the convergence history and the correspond-
ing results, we can conclude that the ITO–MMC with a
bilateral symmetric constraint can handle the TO problem
subjected to a bilateral symmetric constraint effectively. In
addition, the number of iterations is reduced from 837 to
348, and the time consumption is decreased from 49.6 to
11.9 s for each iteration, when the ITO–MMC is replaced
by the ITO–MMC under a bilateral symmetric constraint.
This result indicates that the convergence rate is largely
improved by the new ITO–MMC model considering the
bilateral symmetric constraint due to the reduction of half

Fig. 9 Problem setting and initial design of components for the asymmetric structure. (a) The problem setting for asymmetric structure;
(b) the initial design of components for all cases.

Table 1 Parameters of MMA and the mesh size for the four cases

Case
Parameters of MMA

Mesh size of the NURBS mesh
epsimin raa0 albefa asyinit asyincr asydecr

1 10–10 0.01 0.3 0.1 0.4 0.2 30 � 30

2 10–10 0.01 0.3 0.1 0.4 0.2 40 � 40

3 10–10 0.01 0.4 0.1 0.8 0.6 30 � 30

4 10–10 0.01 0.4 0.1 0.8 0.6 40 � 40
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of the design variables. The convergence rate of the ITO–
MMC under a bilateral symmetric constraint is improved
up to 58.4% and the computational efficiency is acceler-
ated by 76% for each iteration compared with the ITO–

MMC without a bilateral symmetric constraint. Hence, the
speedup is up to 10, which is defined by the time of the
ITO–MMC with a bilateral symmetric constraint versus to
the time of the ITO–MMC.

Fig. 10 Improvement in convergence rate by the energy penalization method for ITO–MMC.
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6.3 Periodic symmetric structure by the ITO–MMC with a
symmetric constraint

The proposed method for optimizing the periodic structure
as shown in the right of the flowchart illustrated in Fig. 8
can be used to generate the optimal design of a sandwich
structure with a periodic symmetric constraint as depicted
in Fig. 16 where skins are attached to the sandwich
structure and the ends of skins are fixed. The design
domain is a rectangular region with the size of 16� 4,
which is discretized into 160 � 40 quadratic NURBS
elements, and the top and bottom layers have 0.1 thickness
and are discretized into 160 quadratic NURBS beam
elements. Only the mean compliance of the structure is
considered, and the upper volume fraction is set at
V ¼ 0:4. The Young’s modulus and Poisson’s ratio of
the material of skins are assumed to be 100 and 0.3,
respectively. The middle of the top skin is subjected to a
vertical force F ¼ 1.
The convergent histories of volume fraction, objective

function, topology for m ¼ 2� 1, m ¼ 4� 1, and m ¼
8� 2 are respectively illustrated in Fig. 17. All topologies
shown in Fig. 17 satisfy the prescribed periodic symmetric
constraint. Figure 18 depicts the initial designs of
components for m ¼ 2� 1, m ¼ 4� 1, and m ¼ 8� 2.
The final topology and the corresponding mean compli-
ance for the three periodic symmetric constraints are
presented in Fig. 19, where the material layout inside dash
lines is the topology of a representative unit cell for each
specific case. Those topologies depicted in Fig. 19 are
similar to those generated by BESO [60]. In addition, the
final optimal topologies are different for different numbers
of unit cells, indicating that the optimal topology in ITO–
MMC under a periodic symmetric constraint depends on
the number of unit cells for decomposing the design
domain. The objective function is increased with increas-
ing cell number, considering that the design space is
decreased with increasing cell number and the solution in
the small space is inferior to that obtained in the large
design space. Furthermore, compared with the BESO with
a periodic symmetric constraint, the ITO–MMC with a
periodic symmetric constraint can more effectively obtain
the explicit geometric parameters from the final optimal
results, which are vital to manufacturing the final
optimized structure. In addition, the number of design
variables is much less under the same mesh. In specific, the

Fig. 11 Design domain of the bilateral symmetric beam example.

Fig. 12 Initial design of the bilateral symmetric beam.

Fig. 13 Optimal results of the bilateral symmetric beam
(a) obtained by the ITO–MMC without a bilateral constraint and
the number of optimization cycle is stepiteration ¼ 837, C = 57.54;
(b) generated by SIMP with filter radius rmin ¼ 4 based on the 88-
line code using sensitivity filter, C = 66.58; and (c) gained by
SIMP with rmin ¼ 4 based on the variant of 88-line code using
density filter, C = 58.32.

Fig. 14 (a) Initial design of components located in the first cell of which the geometric parameters are the design variables used in the
ITO–MMC model formulated as Eq. (20); (b) the final result generated by Eq. (20).
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number of design variables in Fig. 19(c) is 70, whereas that
in the BESO is up to 6400 when a finite element mesh with
the size of 160 � 40 is used.

6.4 Optimization of symmetric structure by the energy
penalization method

Two benchmarks considering the bilateral symmetric
constraint and the periodic symmetric constraint are
considered to testify the validity of the energy penalization
method.

6.4.1 Bilateral symmetric structure

A 2D beam subjected to a lateral load is depicted in
Fig. 20(a), where the dimension of the design domain is set
to 2� 1. The corner of the left and right bottom of the
asymmetric loaded beam is fixed, the asymmetric load F1
is applied at the upper right corner, the specified volume
ratio is 0.5, and a bilateral symmetric constraint is
considered. The beam is divided into 80 � 40 quadratic

NURBS elements for analysis. In addition, the max
number of iterations is set to 1000. Figure 20(b) depicts
the initial design of components. The results are listed in
Fig. 21 obtained by the energy penalization method with p
taking different values used in Eq. (26). Equation (26) is
equivalent to Eq. (22), and the penalization effect is
disappeared when p ¼ 1.
According to the final optimized structure presented in

Fig. 21, the objective values represented by C are reduced
by 5.6% and the optimized structures have a clear
boundary in the final topology when p takes 0.6, 0.7, and
0.8 than when p takes 1 equally to the ITO–MMC
considering a symmetric constraint without energy pena-
lization. The overall iteration number for p = 0.6 is 491,
which is less than the iterations for p = 0.7, p = 0.8, and p =
1. Moreover, from both the objective value and the
clearness of boundary of the final topology standpoint, the
results cannot be improved for p = 0.4, p = 0.5, and p = 0.9
than p = 1. Hence, the optimal penalization parameter used
in Eq. (26) is p = 0.6, and the energy penalization method
is valid for the ITO–MMC optimizing the symmetric
structure because the strain energy of the cell with a
smaller strain energy is magnified when p = 0.6, p = 0.7,
and p = 0.8, which enlarge the influence of the element
having a small strain energy on the design variables.
Obviously, overly small penalization parameter causes
excessive punishment, which is indicated by the results
obtained when p = 0.4 and p = 0.5.

6.4.2 Periodic symmetric structure

A 2D beam subjected to multiple loads (Fig. 22) is used as
the benchmark to verify the validity of energy penalization

Fig. 15 Convergence histories of volume fraction, objective function, and topology for the beam depicted in Fig. 11 using the model of
the ITO–MMC subjected to a bilateral symmetric constraint.

Fig. 16 Design domain of 2D sandwich structure.
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in the optimization of the periodic symmetric structure. In
addition, the size of the design domain is set to 2� 1. The
left edge of the beam is fixed, the prescribed external load

F1 and F2 are respectively applied at the upper and bottom
right corners, and the upper-bounded volume is specified
to 0.5, and a periodic symmetric constraint is considered.

Fig. 17 Curves of volume fraction, compliance, and topology for 2D sandwich structure with (a) m ¼ 2� 1, (b) m ¼ 4� 1, and
(c) m ¼ 8� 2 using the model of ITO–MMC under a periodic symmetric constraint.
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As shown in Section 6.3, the optimal results depend on the
cell number. The design domain is divided into m ¼ 2� 1,
m ¼ 4� 1, and m ¼ 4� 2 unit cells to validate the
versatility of the proposed energy penalization method
for the optimization of a periodic structure. Meshes with
the sizes of 80�40, 120�60, and 120�60 are used for the
three cases where m ¼ 2� 1, m ¼ 4� 1, and m ¼ 4� 2
unit cells are the specific periodic symmetric constraints.
The maximum iteration of the optimization process is set to
2000. The initial designs of components for those three
cases are shown in Fig. 23. Similar to the bilateral
symmetric case, the penalization effect is disappeared
when p ¼ 1 is used in Eq. (27).
The optimized structures and the corresponding objec-

tive values, as well as the iterations for the three specific
periodic symmetric constraints, are illustrated in Figs. 24–
26. For the m ¼ 2� 1 periodic symmetric constraint, the
iterations for all p< 1 cases are less than that for the p = 1
case. The objective values for the p = 0.1, p = 0.2, and p =
0.3 cases are considerably larger than those for the other
cases, and the objective values are decreased with the
increase in p for p = 0.1, p = 0.2, and p = 0.3, as shown in
Fig. 24. For p = 0.1, p = 0.2, and p = 0.3, the objective

values are decreased with the increase in p because the
excessive penalization effect of the strain energy of
elements in the cells close to the load is alleviated with
the increase in p. Then, the excessive penalization effect
disappears when p is no less than 0.4 (Fig. 24).
Furthermore, the optimal factor used in Eq. (27) is p =
0.5 in terms of convergence and objective value as well as
the boundary clearness of topology. In addition, the
iteration number of p = 0.5 is only 235, which is lower
by 51% than that of the optimization process without
energy penalization, whereas the objective values for p =
0.5 are slightly less than that when p takes 1 for a m ¼
2� 1 periodic symmetric constraint. The comparison in
convergence history between p = 0.5 and p = 1 is shown in
Fig. 27. Hence, the energy penalization method accelerates
the optimization of the ITO–MMC considering a m ¼
2� 1 periodic symmetric constraint.
As shown in Fig. 25 for am ¼ 4� 1 periodic symmetric

constraint applied to the multiple load beam, the iterations
for p = 0.4, p = 0.6, p = 0.686, and p = 0.7 are less than the
iterations for the p = 1 case, whereas the optimization
becomes suboptimal when p takes 0.4 due to the excessive
penalization effect of the strain energy of elements close to

Fig. 18 Initial design of components: (a) m ¼ 2� 1; (b) m ¼ 4� 1; and (c) m ¼ 8� 2.

Fig. 19 Optimized results for 2D sandwich structures under three periodic constraints: (a) m ¼ 2� 1, C = 10.54; (b) m ¼ 4� 1,
C = 12.94; and (c) m ¼ 8� 2, C = 15.09.

Fig. 20 Problem setting and initial design of components for beam subjected to symmetric and volume constraints. (a) Problem setting;
(b) initial design of components.
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the load. Moreover, p = 0.686 is the optimal coefficient
used in the energy penalization formula from the viewpoint
of objective function and convergence as well as the
boundary clearness of topology. The iteration number of
p = 0.686 is only 880, which is lower by 56% than that
when p = 1, whereas the objective value for p = 0.686 is
slightly larger than that obtained from the optimization
process without energy penalization for a m ¼ 4� 1
periodic symmetric constraint. Thus, similar to the
m ¼ 2� 1 periodic symmetric constraint case, the energy
penalization method is highly effective for the ITO–MMC
taking a m ¼ 4� 1 periodic symmetric constraint into
consideration.
As demonstrated in Fig. 26, the iterations for p = 0.83,

Fig. 21 Final optimized results for p taking different values in Eq. (26).

Fig. 22 Problem setting for multiple load beam
considering periodic symmetric constraint.

Fig. 23 Three initial designs of components for different numbers of unit cells as the periodic symmetric constraint of the multiple load beam.
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Fig. 24 Final results are presented, for the beam divided into m ¼ 2� 1 unit cells optimized by the energy penalization method, where
different penalization values are used in Eq. (27).
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p = 0.85, p = 0.9, p = 0.92, and p = 0.95 in a m ¼ 4� 2
periodic symmetric constraint are less than the iterations
for the p = 1 case, and the differences in objective value
among the p = 0.83, p = 0.85, p = 0.9, p = 0.92, and
p = 0.95 cases are negligible. According to the principle
of the least iterations, p = 0.92 outperforms the other cases
listed in Fig. 26, and the iteration number of p = 0.92 is
only 100, which is 88% lower than that when p = 1.
Meanwhile, the stiffness of the optimized structure for
p = 0.92 is slightly higher than that obtained in the

optimization process without energy penalization. Thus,
similar to the m ¼ 2� 1 and m ¼ 4� 1 periodic sym-
metric constraint cases, the validity of the energy
penalization method for the ITO–MMC considering a
m ¼ 4� 2 periodic symmetric constraint is verified.
Therefore, the proposed energy penalization method is

very valid for enhancing the convergence and the
numerical stability of the ITO–MMC under a periodic
constraint. Moreover, the optimal factor used in Eq. (27)
increases with cell number, considering that the optimal

Fig. 25 Final results obtained by the energy penalization method where different penalization values used in Eq. (27) are presented for
the beam subjected to a m ¼ 4� 1 periodic symmetric constraint.

118 Front. Mech. Eng. 2020, 15(1): 100–122



Fig. 26 Optimized structures obtained by the energy penalization method where the coefficient used in Eq. (27) takes different values for
a m ¼ 4� 2 periodic symmetric constraint.

Fig. 27 Convergence histories for p = 0.5 and p = 1 under a m ¼ 2� 1 periodic symmetric constraint.
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factors for m ¼ 2� 1, m ¼ 4� 1, and m ¼ 4� 2 unit
cells are 0.5, 0.686, and 0.92, respectively. The reason for
the aforementioned conclusion is that the enlargement
effect of small-strain-energy elements increases with the
increase in the number of unit cells for the same factor used
in Eq. (27).

7 Conclusions

An energy penalization method is proposed for ITO–MMC
to solve the low convergence problem of asymmetric
structure by ITO–MMC. The improvement in convergence
rate for all cases listed in Table 1 ranges from 18.6% to
44.5% with the energy penalization method within the
optimization framework of ITO–MMC. Hence, the ITO–
MMC based on the energy penalization method is more
effective for the optimization of asymmetric structure than
ITO–MMC. Then, to solve the TO problems of symmetric
structures, including bilateral and periodic structures, we
develop two formulae of ITO–MMC and extend the energy
penalization method to solve the optimization of structures
subjected to asymmetric loads. An additional bilateral or
periodic constraint has been considered in ITO–MMC,
which ensures the symmetry of the structure. The
numerical stability and convergence rate of the optimiza-
tion process of asymmetric loaded structure is largely
improved by the energy penalization method for the ITO–
MMC with a symmetric constraint.
The optimal material distribution within a unit cell is

obtained from gradually optimizing the basic structural
components located in the unit cell using the ITO–MMC
method. Four benchmarks are studied in this work to
demonstrate the validity of the new ITO–MMC formulae
and the energy penalization method. Numerical results
show that the improvement from the view of the iteration
number and time consumption for each iteration are up to
58.4% and 76%, respectively, compared with the ITO–
MMC without a bilateral symmetric constraint. The
optimal topology in the ITO–MMC under a periodic
symmetric constraint depends on the number of unit cells.
In addition, the speedup of the overall optimization process
is up to 10 when ITO–MMC considers the bilateral
symmetric constraint for the bilateral symmetric structures.
With the aid of the energy penalization method, the

numerical stability for the ITO–MMC under a bilateral
symmetric constraint is largely improved, which can be
observed from the final optimized topology that has a clear
boundary for p = 0.6, whereas the boundary of the final
topology is not clear for p = 1, and the improvement in
objective value is up to 5.6% with less iterations when p
takes 0.6 compared with the case without the energy
penalization effect used in the optimization. Meanwhile,
the proposed energy penalization method can largely
speedup the convergence rate and improve the numerical
stability of the ITO–MMC under a periodic symmetric

constraint, and the speedups are more than 2 (defined by
the time of ITO–MMC with energy penalization effect
versus to the time of ITO–MMC without energy penaliza-
tion effect).
An ITO–MMC subjected to a symmetric constraint with

an automatic reconstruction of boundary condition [62,63]
is under construction. In addition, the computational
efficiency of the proposed optimization framework can
be largely improved by a GPU algorithm [64], and it needs
further research. Furthermore, the proposed method will be
extended to the problem of frequency–stiffness optimiza-
tion.
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