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Abstract In recent years, the new technologies and
discoveries on manufacturing materials have encouraged
researchers to investigate the appearance of material
properties that are not naturally available. Materials
featuring a specific stiffness, or structures that combine
non-structural and structural functions are applied in the
aerospace, electronics and medical industry fields. Parti-
cularly, structures designed for dynamic actuation with
reduced vibration response are the focus of this work. The
bi-material and multifunctional concepts are considered for
the design of a controlled piezoelectric actuator with
vibration suppression by means of the topology optimiza-
tion method (TOM). The bi-material piezoelectric actuator
(BPEA) has its metallic host layer designed by the TOM,
which defines the structural function, and the electric
function is given by two piezo-ceramic layers that act as a
sensor and an actuator coupled with a constant gain active
velocity feedback control (AVFC). The AVFC, provided
by the piezoelectric layers, affects the structural damping
of the system through the velocity state variables readings
in time domain. The dynamic equation analyzed through-
out the optimization procedure is fully elaborated and
implemented. The dynamic response for the rectangular
four-noded finite element analysis is obtained by the
Newmark’s time-integration method, which is applied to
the physical and the adjoint systems, given that the adjoint
formulation is needed for the sensitivity analysis. A
gradient-based optimization method is applied to minimize
the displacement energy output measured at a predefined
degree-of-freedom of the BPEA when a transient
mechanical load is applied. Results are obtained for
different control gain values to evaluate their influence
on the final topology.

Keywords topology optimization method, bi-material
piezoactuator, active velocity feedback control, time-
domain transient analysis, host structure design, vibration
suppression

1 Introduction

In this work, the topology optimization (TO) extended to a
bi-material metallic design of piezoactuators in time-
domain analysis, seeks the structural vibration suppression
needed in modern electronic devices applications that
require lightweight, fast-response and fast stabilizing
actuators [1]. The bi-material piezoelectric actuator
(BPEA) structure designed in this work, features non-
structural functions such as the piezoelectric effect, for
sensing and actuation of a controlled transducer, and
optimized structural functions such as stiffness and
damping of a bi-metallic host layer. Some recent applica-
tions for multifunction structures, such as the described
transducer, and multifunction materials, are in morphing
aircraft wings and structurally integrated electronic
components [2]. For the design of the BPEA with an
active velocity feedback control (AVFC) for vibration
attenuation, the topology optimization method (TOM) is
the most suited technique once it allows a continuous
material properties variation within the microstructure
according to the objective of the design.
The design of controlled piezoactuators using the TOM

has been vastly explored for transient applications in
frequency domain. The structural design for a spacecraft
subjected to an extreme thermal environment has been
studied in Ref. [3], where a membrane thermal surface load
is carried out, which assumes the form of a time-harmonic
external load. The thermal force is design-dependent since
it is related to a thermal stress coefficient. Piezoelectric
actuators have been studied in frequency domain by means
of the model reduction method in Ref. [4], where
piezoelectric sensors and actuator integrated with an
AVFC are distributed over a host layer aiming vibration
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suppression, and in Ref. [5], that also distributes piezo-
electric material but in order to maximize the controll-
ability for a given vibration mode. In this last case, the
structural model is written into the state-space representa-
tion and limites the control spillover effects, caused by the
residual modes, by including a spillover constraint. Yet in
Ref. [6], authors optimized the surface electrode distribu-
tion over piezoelectric sensors and actuators which are
integrated with an AVFC for reducing the sound radiation
in an unbounded acoustic domain. However, literature
survey shows that fewer works involve the TOM apllied to
the design of a piezoelectric structure under a time-domain
transient load.
The TOM procedure associated with time-domain

analysis is a sensitive problem towards convergence
achievement in terms of the optimization problem
parameters setup. The number of time steps used in time
integration for the dynamic finite element (FE) analysis
and the time varying rate used for the dynamic input load
are examples of parameters that have a significant
influence on the final topological result [7]. For this
reason, when it comes to the design of piezoelectric
actuators for time domain dynamic applications, research-
ers mostly deal with plate structures, given a fixed host
layer structure, and optimize the piezoelectric material
distribution for a transient objective function [8]. However,
inspired by the flextensional piezoelectric actuators, the
objective of this work is to optimize the host layer topology
by taking advantage of the new structural property given
by two metals optimally distributed withing the domain.
The active vibration control scheme in piezoelectric

systems, that is stablished by the extra voltage or electric
charge supplied to the piezoceramic material [9], and that
is applied to the design of the controlled BPEA therein
proposed, has been studied for flexible plates [10–12], for
cylindrical laminated composite shells [13], for beams
[14,15], and for precision positioning of hard disk drives
[16,17]. Tzou and Tseng [10] implemented the constant-
gain feedback control and the constant-amplitude feedback
control. Wang et al. [11] also studied a time-domain
formulation with the velocity feedback control, and
evaluated the system stability according to its piezo-
ceramics placement. Besides the velocity feedback, linear
quadratic regulator (LQR) and proportion integration
differentiation (PID) control schemes have been studied
for different excitation types applyed to flexible structures
[18]. Among those works, the predefined placement of
sensors and actuators associated with a controller have
resulted in vibration attenuations of the system.
Therefore, this paper treats the design of an optimized

topology for the bi-material host layer in time-domain
analysis for fixed ceramic layers and a control gain. The
proposed structure involves the clamped-free host layer to
which a transient disturbance is applied. The piezoelectric
sensor layer embedded to one of the surfaces monitors the
structural deformation and generates an electrical charge

vector Qs
p, that is differentiated in time, _Q

s
p is amplified by

the control gain K, and the resulting voltageΦa
p is fed back

into the actuator piezoelectric layer attached to the opposite
surface of the host structure, as illustrated in Fig. 1.

To illustrate the method, the bidimensional domain is
discretized in bilinear FEs with three degrees-of-freedom
per node. The TOM implementation is based on a density
material model, the solid isotropic material with penaliza-
tion (SIMP), and on the projection filter proposed by Ref.
[19]. The sensitivity analysis is based on the adjoint
method [20] and the optimization problem is solved by the
linear programming (LP) algorithm. The AVFC influence
in the optimized topology results for vibration suppression
is analyzed.
This paper is organized as follows. In Section 2, the

evolving steps to obtain the FE formulation of the
piezoelectric actuator equation with the AVFC is
described. In Section 3, the TO problem based on the
time-domain analysis is stated, by explaining the material
model chosen and deriving the adjoint sensitivity formula-
tion. In Section 4, a flowchart illustrating the step-wise
iterations for the problem solved is presented. In Section 5,
the BPEA design for some gain values are obtained and
discussed. The results are analyzed based on different
feedback control gains towards a more efficient vibration
suppression of the optimized piezoelectric structure. In
Section 6, some conclusions and the perspectives for future
studies are inferred.

2 Controlled FE model for a BPEA

2.1 Dynamic piezoelectric equations

The direct and converse piezoelectric effects considered
for the sensing and actuation of the BPEA, respectively, are
given by the constitutive equations:

T ¼ cES – eE,

D ¼ eS þ εSE,

(
(1)

where T and S are the stress and strain tensors,
respectively, and D is the electric displacement vector.
The piezoelectric elastic matrix cE, evaluated under a

Fig. 1 Bi-material piezoactuator
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constant electric field E, the dielectric tensor εS, evaluated
under constant strain S, and the coupling piezoelectric
tensor e, are the piezoelectric material constituents.
The system dynamics is approximated by a 2D-solid

bilinear FE where the displacement field u and the electric
potential f are interpolated by means of the shape
functions Nu and Nf, respectively. The displacement

field U ¼ u Φf gT is given by two mechanical compo-

nents u ¼ ux uy
� �T for deformations in directions x and

y, and an electric component Φ ¼ Φf Φp

� �
subdivided

into free voltages, Φf , and prescribed voltages, Φp.
Therefore, the dynamic FE equilibrium equations for the
piezoelectric system are written [21]:
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where the global mass matrix Muu, stiffness matrix Kuu,
piezoelectric coupling matrix, Kuf ¼ Kfu, dielectric
permittivity matrix Kff, external nodal force vector Fu ,
where f b is the body force vector and t is the surface
traction vector, and the free charge vector Qp, where q is
the free charge density per unit surface area, are defined
from the elementary matrices (superscript e) as bellow:

Me
uu ¼ !

Ωe

�NT
uNudΩe,   Muu ¼

X
e

M e, (3)

Ke
uu ¼ !

Ωe

BT
uc

EBudΩe,   Kuu ¼
X
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Ke
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Ke
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ue

TBfdΩe,   Kuf ¼
X
e

Ke
uf, (5)

Ke
ff ¼ –!
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BT
fεSBfdΩe,   Kff ¼

X
e

Ke
ff, (6)

Fe
u ¼ !

Ωe

NT
u f bdΩe þ!ΓT

NT
u tdΓT , (7)

Qe
p ¼ –!

ΓD

NT
fqdΓD, (8)

where the boundary surface is composed by the prescribed
traction region, ΓT , and the electroded region, ΓD. The
subscript uu denotes structural states, the subscript f

denotes electrical states, and Bu and Bf are, respectively,
the mechanical and electrical shape functions derivatives
[22]. The proportional damping matrix Cuu is defined by

Cuu ¼ αMuu þ βKuu, (9)

where α and β are Rayleigh’s coefficients, that are non-
negative and small in the sense that the effective damping
coefficients is << 1 [23], and are considered to be design-
independent [24,25].

2.2 Active velocity feedback control

The problem of vibration suppression on smart structures
is addressed by performing the velocity feedback control,
which is derived from the electrical charge readings on the
sensor layer Qs

p, by imposing null voltage on the sensor
electrodes Φs

p ¼ 0 when the system is under a mechanical
transient load. Knowing that the electric charges at the
piezoelectric internal nodes Qf are null and that the
actuator and sensor electrodes do not share degrees of
freedom, Kfs

pf
a
p
¼ 0, the expanded Eq. (2) is as follows:

Muu€u þ Cuu _u þ Kuuuþ Kuff
Φf þ Kufa

p
Φa

p ¼ F, (10)

Kff uu –Kffff
Φf –Kfff

a
p
Φa

p ¼ 0, (11)

Kfs
puu –Kfs

pff
Φf ¼ Qs

p, (12)

Kfa
puu –Kfa

pff
Φf –Kfa

pf
a
p
Φa

p ¼ Qa
p: (13)

The derivative of the electrical charge Eq. (12) results in
the nodal electric current vector I s on the external sensor
electrode:

I s ¼ Kfs
pu _u –Kfs

pff
_Φf , (14)

that can be added by pre-multiplying I s by the unity vector
Ifs

p
¼ 1 ⋯ 1f g, and the measured current in the top

electrode of the sensor layer is obtained:

I s ¼ Ifs
p
I s ¼ Ifs

p
Kfs

pu _u –Kfs
pff

_Φf

� �
: (15)

To establish a velocity feedback control law, the actuator
input voltage Φa

p is defined as a current amplifier:

Φa
p ¼ KI sIfa

p
, (16)

where Ifa
p
¼ 1 ⋯ 1f gT and K is the feedback gain.

The nodal voltage input at the actuator layer, Eq. (16), is
then rewritten by substituting Eq. (15) into Eq. (16):

Φa
p ¼ KIfa

p
Ifs

p
Kfs

pu _u –KIfa
p
Ifs

p
Kfs

pff
_Φf : (17)
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Now, substituting Eq. (17) into Eqs. (10), (11) and (13),
we have
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and the coupled system to be solved is given by Eqs. (18)
and (19):
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where Cuu is given by Eq. (9),
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Equation (13) can be used for verification purposes.
For the sake of simplifying the representation of the

dynamic system above, Eq. (21) is rewritten as below:
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The modified damping matrix Cfb, Eq. (28), contains
extra terms given the velocity readings from the piezo-
electric sensor layer, as shown by Eq. (17), that provides an
active damping effect to the structure.

3 Topology optimization problem

3.1 Problem formulation

The TOM employs a material model concept [26] to define
the microstructure property by distributing different
materials within a design domain, aiming to extremize a
cost function, and uses the FE method for systematic
structure analysis. Targeting the vibrabration suppression
of a BPEA, the objective function defined in this work
considers the minimization of an energy functional
involving the displacement of a predefined degree-of-
freedom as its squared integral spanned over a time interval
½0,tf � [8],

f ðρÞ ¼ !
tf

0
u2dof dt, (33)

where the ρ-vector elements are the design variables, and
u2dof ¼ UTBU , where B ¼ BT is

B ¼
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As for the initial conditions, this dynamic problem
depends on the magnitude of the input load. For a point-
wise mechanical load with the profile shown in Fig. 2, the
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initial displacement vector U0 is given by the static
analysis KU0 ¼ Fð0Þ while the initial velocity vector V0 is
null. A volume constraint Vmax limits the distribution of
one of the materials. The optimization problem is therefore
stated as bellow:

min
ρ

   f ðρÞ ¼ !
tf

0
u2dof dt,

s:t:   

MðρÞ €U þ CfbðρÞ _U þ KðρÞU ¼ FðtÞ,
KU0 ¼ Fð0Þ,
_U jt¼0 ¼ V0,

U jt¼0 ¼ U0,

XN
n¼1

�nVn£Vmax,

10 –15£�n£1:

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

(35)

As stated in optimizatioin problem Eq. (35), its
constraints also includes the dynamic equilibrium
Eq. (26), where FðtÞ ¼ FyðtÞ, and boundary values for
each element design variable �n of a total of N elements.
The metallic materials distribution is such that it minimizes
the cost function Eq. (33).

3.2 Material model

In this work, for the transition from one metallic material to
the other, it is adopted the SIMP, which has been proved to
be robust when applied to linear elastic problems [27–29].
It allows the properties at each element to assume
intermediate values, and though intermediate properties
of the bi-material, since the gray scale is allowed. Smooth
increments to the penalization factor p are applied at each
iteration of the TOM what is denominated the continuation
approach. This procedure prevents a premature conver-
gence to a local minima [30].
Based on SIMP, the elasticity matrix, ceð�Þ, and the

specific weight, ζ , specified for the elastic domain are
functions of the pseudo-density � defined for each FE e:

ζ eð�Þ ¼ �p1ðxc,ycÞ�mat1 þ ½1 – �p1ðxc,ycÞ�ζmat2, (36)

ceð�Þ ¼ �p2ðxc,ycÞcmat1 þ ½1 – �p2ðxc,ycÞ�cmat2, (37)

where ðxc,ycÞ is the centroid cartesian coordinate pair of
each element, and cmat1 and cmat2 are the elastic tensors for
the first and second materials, respectively.

3.3 Sensitivity analysis

Considering the design problem as an optimization
problem in the pseudo-densities only, the sensitivity
analysis consists on finding the objective function
derivatives with respect to the vector of design variables
ρ. These derivatives, or the sensitivity analysis is given by
the adjoint method which involves an adjoint vector lðtÞ
that is chosen as the solution to the adjoint equations
derived from a Lagrangian function LðU ,lÞ [20]:
LðU ,lÞ ¼ !

tf

0
UTBUdt þ!

tf

0
lTðtÞ MðρÞ €U þ CfbðρÞ _U

�
þKðρÞU –FðtÞ�dt: (38)

Taking the derivative of the Lagrangian Eq. (38) with
respect to the design variables ρ we get the expression
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that is solved by integration by parts:
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Fig. 2 Transient load profile for the example proposed
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Rearranging Eqs. (40)–(42), Eq. (39) is then rewritten:
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To eliminate the state variables derivatives
∂Uðtf Þ
∂�e

and

∂ _U ðtf Þ
∂�e

from Eq. (43), we define the adjoint variable lT

such that it annihilates the expression in square brackets of
the second term given the initial conditions in the last two
terms, resulting in the system Eq. (43). The derived adjoint
ordinary differential equation is similar to the primal
problem, except for a sign change on the adjoint velocity
term Cfb

_l. Given that BUðtÞ þ UTðtÞB ¼ 2udof ðtÞ, the
adjoint system that needs to be solved is

M€l
TðtÞ –Cfb

_l
TðtÞ þ KlTðtÞ ¼ – 2udof ðtÞ,

lTðtf Þ ¼ 0,

_l
Tðtf Þ ¼ 0:

8>>><
>>>:

(44)

In order to redefine the system Eq. (44) as an initial value
primal problem, we apply the change of variables
τðtÞ ¼ tf – t, and the adjoint system to be solved is as
follows:

M €Λ
TðτðtÞÞ þ Cfb

_Λ
TðτðtÞÞ þ KΛTðτðtÞÞ ¼ – 2udof ðτðtÞÞ,

ΛTð0Þ ¼ 0,

_Λ
Tð0Þ ¼ 0,

8>>><
>>>:

(45)

where ΛðτðtÞÞ ¼ lðtÞ and _ΛðτðtÞÞ ¼ – _lðtÞ. Therefore, the
sensitivity expression for the transient problem reduces to

∂LðU ,ΛÞ
∂�e

¼ !
tf

0
ΛT tf – tð Þ ∂MðρÞ

∂�e
€U þ ∂CfbðρÞ

∂�e
_U

�

þ∂KðρÞ
∂�e

U –
∂FðtÞ
∂�e

 �dt: (46)

4 Numerical implementation

The TO problem implementation given the input data
that includes the nodal Cartesian coordinates, their
connectivity, boundary conditions and initial material
distribution, begins with the dynamic FE method analysis
for which the objective function is calculated. If the
convergence is not achieved, the sensitivities are calculated
and the optimizatioin problem is solved through the LP
algorithm. The physical and adjoint dynamic systems, Eqs.
(26) and (45), respectively, are solved by the α-Newmark
time-integration method. The design variables are updated
and the next iteration loop initiates, as indicated in the
flowchart of Fig. 3.
In this work, the approach proposed by Ref. [19] is used

to calculate the pseudo-densities of each FE by applying a
linear projection filter to the design variables, which are
defined for the centroid coordinate of the element. This
linear projection technique solves the undesired mesh
dependency problem that arises when intermediate mate-
rial densities are penalized.
Regarding the Newmark’s time-integration, the sam-

pling rate fs and the time-step Δt implemented depend on
the first resonance frequency ω1 (in Hz) of the topology at
each optimization iteration, as follows:

fs ¼ 20ωn1 ,

Δt ¼ 1

fs
: (47)

The optimization solver based in LP is implemented
with iterative adjustments of the design variables within a
percentage of their original values, what is called the
moving limits and which are dependent on the objective
function value history:

(43)
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�l ¼
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8>>>><
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8>>>><
>>>>:

(49)

where �l and �u are, respectively, the lower and upper
bounds of the design variables, and “it” is the current
iteration step. After each optimization step, the design
variables vector ρ is obtained and updated in the design
domain.

5 Numerical results

In this section, a numerical example is presented to
demonstrate the methodology described in this text. The

optimized topology of the host structure is obtained for two
distinct metallic materials for the predefined locations of
the piezoelectric sensor and actuator layers. The domain
characteristics are given in Table 1. The material properties
of PZT-5A [31] are: c11 = 139 GPa, c12 = 77.84 GPa, c13 =
74.28 GPa, c33 = 115.41 GPa, c44 = 25.64 GPa, c66 = 30.58
GPa, e31 = – 14.8 C/m2, e33 = 15.7835 C/m2, e15 = 12.67
C/m2, ε11 = 1474.36 pF/m, ε33 = 1299.38 pF/m, ε0 =
8.854188 pF/m, � = 7500 kg/m3. The material properties
of mat1 and mat2 in Eqs. (36) and (37) are shown in
Table 2.

The proposed two-dimensional BPEA has its metallic
nodes clamped in x and y directions at one end and has a
transient load applied at its free opposite end (Fig. 4). The
AVFC aims to minimize the vibration response measured
at the loaded tip degree-of-freedom. The fixed design
domain is discretized into four-noded bilinear FEs with
three degrees-of-freedom per node. Implementation has
been performed with MATLAB® software using its
embedded LP optimizer.
The penalization coefficients (p1 and p2) update is given

by the curves shown in Fig. 5. The radius value of the
projection filter applied is such that the circumference
encloses five elements diagonally.
After 35 iteration steps the convergence is achieved,

resulting in topologies with a shadowy gray scale region
for the feedback gain values K (K1= 0, K2= 9�104, K3=
3.6�105, K4= 7.2�105). The resulting designs are shown
in Fig. 6. The pseudo-densities ρ are plotted for the
obtained topologies in Figs. 6(a), 6(c), 6(e) and 6(g). In
Figs. 6(b), 6(d), 6(f) and 6(h), those resulted material

Fig. 3 Flowchart for the implemented optimization procedure

Table 1 Design domain definitions for the vibration attenuation
problem
Parameter Symbol Value Unit

Domain size (width, heigh, depth) ðwd,hd,ddÞ (20,4,0.2) cm

Substrate size (width, heigh, depth) ðws,hs,dsÞ (20,2.67,0.2) cm

Piezoceramic size (width, heigh, depth) ðwp,hp,dpÞ (20,0.67,0.2) cm

Substrate mesh size (xs,ys) (120,16) ‒

Piezo ceramic mesh size (xp,yp) (120,4) ‒

Mechanical load amplitude kFk 1 N

Initial material volume Vini 30% ‒

Material volume constraint Vmax 70% ‒

Proportional damping (α,β) (0,1�10–5) ‒

Table 2 Material properties (mat1 and mat2 in Eqs. (36) and (37))

Material E /GPa ζ /(kg∙m–3) �

Fictitious (mat1) 300 1 0.24

Alumina (mat2) 392 4000 0.24
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distribution are interpreted as material Type 1 (black) for
design variables greater than or equal to 0.7, as material

Type 2 (white) for design variables smaller than 0.7, and
the ceramics are the gray regions. The influence of the
different constant gains to the final topology is investi-
gated.
The respective convergence curves during the optimiza-

tion steps are shown in Fig. 7, and the volume constraint
curves are shown in Fig. 8.
For a homogeneous initial material distribution of 30%-

material Type 1, the optimization managed to minimize the
vibration energy function by increasing the concentration
of the less stiff material (mat1). The volume constraint of
70%-material Type 1 is inactive for all simulated feedback
gains, as shown in Fig. 8. Regarding the influence of the
control gain, Table 3 shows that as K-value increases, the

Fig. 4 Boundaries and transient load

Fig. 5 Penalization coefficients update

Fig. 6 Optimized topologies for different feedback gain values. (a) Optimized topology for K ¼ 0; (b) post-processed topology for
K ¼ 0; (c) optimized topology for K = 9�104; (d) post-processed topology for K = 9�104; (e) optimized topology for K = 3.6�105;
(f) post-processed topology for K = 3.6�105; (g) optimized topology for K = 7.2�105; (h) post-processed topology for K = 7.2�105
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concentration of material Type 2 increases, which has
greater specific weight and consequently the first natural
frequency decreases. As a natural frequency constraint is
not specified in the optimization problem formulation, the
increase in the feedback gain compensates for the lower
energy dissipation within the specified time interval caused
by a lower natural frequency. This described tendency can
be seen for all of the feedback gains except for K = 0,
where the absence of additional damping effect forces the
proportional structural damping to be larger by increasing
the concentration of mat2, comparing to K = 9�104, and K
= 3.6�105.
The topologies obtained for K = 0 and K = 3.6�105 have

both approximately the same material volume but the first
one shows a symmetric material distribution, what
contrasts with the antisymmetric material distribution
shown in the second case, Figs. 6(b) and 6(f), respectively.
Therefore, as seen in Fig. 7, as the constant gain value

increases, the objective function converges at a lower

value, what is quantitative shown in Table 3. The transient
responses in Fig. 9 shows that the faster the oscillation
decays, the higher the transient voltage peak (Fig. 10)
inputted into the actuator, what demostrates the AVFC
influence.

When the topologies of Fig. 6 are post-processed for the
feedback gains (K1= 0, K2= 9�104, K3= 3.6�105, K4=
7.2�105), the objective function values shown in Fig. 11
are obtained. The effect of designing the BPEA structure
by applying the TOM with a feedback gain can be seen by
comparing the objective function values of a topology
obtained with a higher constant gain with the topology
obtained with a lower constant gain but post-processed
with the higher gain. The last statement can be exemplified
by taking the objective function value of the K4-topology
post-processed with K4-gain. As it should be, its value is
smaller than the objective function value of K3-topology
post-processed with K4-gain.

Fig. 7 Convergence comparison evaluated by Eq. (33) for K ¼
Ki � 105 (i = 1,2,3,4)

Fig. 8 Volume constraint comparison for K ¼ Ki � 105

(i = 1,2,3,4)

Table 3 Objective function values for each optimized topology

K
Optimized Post-processed

f ðρÞ Vmat1 ωn1/Hz f ðρÞ Vmat1 ωn1/Hz

0.00 3.6508�10–15 60.02% 1217.7312 3.6638�10–15 53.96% 1220.31

9.00�104 3.4135�10–15 60.95% 1217.7312 3.4270�10–15 55.05% 1222.25

3.60�105 3.0654�10–15 60.17% 1214.3580 3.0773�10–15 54.01% 1218.80

7.20�105 2.8837�10–15 58.15% 1214.3580 2.8947�10–15 51.67% 1210.43

Fig. 9 Transient response for the optimized topologies K ¼
Ki � 105 (i = 1,2,3,4)

Fig. 10 Transient feedback voltage for the optimized topologies
K ¼ Ki � 105 (i = 1,2,3,4)
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6 Conclusions

The TO applied to the design of the host structure of
BPEAs with active vibration suppression is carried out in
this paper. The extra terms added to the damping matrix
given by the piezoelectric sensor layer readings in time
domain, has been shown to interfere to the metallic
material distribution within the design domain such that a
slower response decay, given by a lower natural frequency
of the structure, is compensated by the electrical damping
terms, what attenuates the vibration response of the
piezoelectric system. It has been shown that as the constant
gain increases, the objective function achieves a lower
minimum and the concentration between the metallic
materials are rebalanced. The final topology is though
dependent on the feedback control gain, what shows the
importance and viability of solving the TO of a controlled
piezoelectric system in time domain, with no loss to the
transient response information. Besides the fact that the
material distribution within the domain does not vary
significantly as the feedback gain increases, the loss of
symmetry is evident when the constant gain goes from zero
to the maximum value considered. Other combination of
material types, with lower elastic modulus for instance,
might be considered so the stiffness of the structure
depends more on the material distribution when the
feedback gain varies than on the presence of the
piezoceramics.
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