Skip to main content
Log in

Progress in terahertz nondestructive testing: A review

  • Review Article
  • Published:
Frontiers of Mechanical Engineering Aims and scope Submit manuscript

Abstract

Terahertz (THz) waves, whose frequencies range between microwave and infrared, are part of the electromagnetic spectrum. A gap exists in THz literature because investigating THz waves is difficult due to the weak characteristics of the waves and the lack of suitable THz sources and detectors. Recently, THz nondestructive testing (NDT) technology has become an interesting topic. This review outlines several typical THz devices and systems and engineering applications of THz NDT techniques in composite materials, thermal barrier coatings, car paint films, marine protective coatings, and pharmaceutical tablet coatings. THz imaging has higher resolution but lower penetration than ultrasound imaging. This review presents the significance and advantages provided by the emerging THz NDT technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brown E, McIntosh K, Nichols K, et al. Photomixing up to 3.8 THz in low-temperature-grown GaAs. Applied Physics Letters, 1995, 66 (3): 285–287

    Google Scholar 

  2. Gu P, Tani M, Hyodo M, et al. Generation of cw-terahertz radiation using a two-longitudinal-mode laser diode. Japanese Journal of Applied Physics, 1998, 37, Part 2(8B): L976–L978

    Google Scholar 

  3. Smet J, Fonstad C, Hu Q. Intrawell and interwell intersubband transitions in multiple quantum wells for far-infrared sources. Journal of Applied Physics, 1996, 79(12): 9305–9320

    Google Scholar 

  4. Jeong Y, Lee B, Kim S, et al. First lasing of the KAERI compact farinfrared free-electron laser driven by a magnetron-based microtron. Nuclear Instruments & Methods in Physics Research. Section A, Accelerators, Spectrometers, Detectors and Associated Equipment, 2001, 475(1–3): 47–50

    Google Scholar 

  5. Tonouchi M. Cutting-edge terahertz technology. Nature Photonics, 2007, 1(2): 97–105

    Google Scholar 

  6. Shen Y, Upadhya P, Linfield E, et al. Terahertz generation from coherent optical phonons in a biased GaAs photoconductive emitter. Physical Review B: Condensed Matter and Materials Physics, 2004, 69(23): 235325

    Google Scholar 

  7. Tani M, Horita K, Kinoshita T, et al. Efficient electro-optic sampling detection of terahertz radiation via Cherenkov phase matching. Optics Express, 2011, 19(21): 19901–19906

    Google Scholar 

  8. Yu C, Fan S, Sun Y, et al. The potential of terahertz imaging for cancer diagnosis: A review of investigations to date. Quantitative Imaging in Medicine and Surgery, 2012, 2(1): 33–45

    Google Scholar 

  9. Ho L, Müller R, Gordon K C, et al. Terahertz pulsed imaging as an analytical tool for sustained-release tablet film coating. European Journal of Pharmaceutics and Biopharmaceutics, 2009, 71(1): 117–123

    Google Scholar 

  10. Zhong S, Shen Y, Ho L, et al. Non-destructive quantification of pharmaceutical tablet coatings using terahertz pulsed imaging and optical coherence tomography. Optics and Lasers in Engineering, 2011, 49(3): 361–365

    Google Scholar 

  11. Shen Y. Terahertz pulsed spectroscopy and imaging for pharmaceutical applications: A review. International Journal of Pharmaceutics, 2011, 417(1–2): 48–60

    Google Scholar 

  12. Lin H, Dong Y, Markl D, et al. Measurement of the intertablet coating uniformity of a pharmaceutical pan coating process with combined terahertz and optical coherence tomography in-line. Journal of Pharmaceutical Sciences, 2017, 106(4): 1075–1084

    Google Scholar 

  13. Tu W, Zhong S, Shen Y, et al. Nondestructive testing of marine protective coatings using terahertz waves with stationary wavelet transform. Ocean Engineering, 2016, 111: 582–592

    Google Scholar 

  14. Su K, Shen Y, Zeitler J A. Terahertz sensor for non-contact thickness and quality measurement of automobile paints of varying complexity. IEEE Transactions on Terahertz Science and Technology, 2014, 4(4): 432–439

    Google Scholar 

  15. Dong J, Locquet A, Citrin D S. Terahertz quantitative nondestructive evaluation of failure modes in polymer-coated steel. IEEE Journal of Selected Topics in Quantum Electronics, 2017, 23(4): 8400207

    Google Scholar 

  16. Dong J, Bianca Jackson J, Melis M, et al. Terahertz frequencywavelet domain deconvolution for stratigraphic and subsurface investigation of art painting. Optics Express, 2016, 24(23): 26972–26985

    Google Scholar 

  17. Shen Y, Lo T, Taday P F, et al. Detection and identification of explosives using terahertz pulsed spectroscopic imaging. Applied Physics Letters, 2005, 86(24): 241116

    Google Scholar 

  18. Federici J F, Schulkin B, Huang F, et al. THz imaging and sensing for security applications—Explosives, weapons and drugs. Semiconductor Science and Technology, 2005, 20(7): S266–S280

    Google Scholar 

  19. Woodward R M, Wallace V P, Arnone D D, et al. Terahertz pulsed imaging of skin cancer in the time and frequency domain. Journal of Biological Physics, 2003, 29(2–3): 257–259

    Google Scholar 

  20. Crawley D, Longbottom C, Wallace V P, et al. Three-dimensional terahertz pulse imaging of dental tissue. Journal of Biomedical Optics, 2003, 8(2): 303–307

    Google Scholar 

  21. Naito K, Kagawa Y, Utsuno S, et al. Dielectric properties of eightharness-stain fabric glass fiber reinforced polyimide matrix composite in the THz frequency range. NDT & E International, 2009, 42(5): 441–445

    Google Scholar 

  22. Stoik C, Bohn M, Blackshire J. Nondestructive evaluation of aircraft composites using reflective terahertz time domain spectroscopy. NDT & E International, 2010, 43(2): 106–115

    Google Scholar 

  23. Lopato P. Double-sided terahertz imaging of multilayered glass fiber-reinforced polymer. Applied Sciences, 2017, 7(7): 661–674

    Google Scholar 

  24. Watanabe M, Kuroda S, Yamawaki H, et al. Terahertz dielectric properties of plasma-sprayed thermal-barrier coatings. Surface and Coatings Technology, 2011, 205(19): 4620–4626

    Google Scholar 

  25. Fukuchi T, Fuse N, Okada M, et al. Topcoat thickness measurement of thermal barrier coating of gas turbine blade using terahertz wave. Electrical Engineering in Japan, 2014, 189(1): 1–8

    Google Scholar 

  26. Roth D J, Cosgriff L M, Harder B, et al. Self-calibrating terahertz technique for measuring coating thickness. Materials Evaluation, 2015, 73(9): 1205–1213

    Google Scholar 

  27. Ferguson B, Zhang X C. Materials for terahertz science and technology. Nature Materials, 2002, 1(1): 26–33

    Google Scholar 

  28. Strachan C J, Rades T, Newnham D A, et al. Using terahertz pulsed spectroscopy to study crystallinity of pharmaceutical materials. Chemical Physics Letters, 2004, 390(1–3): 20–24

    Google Scholar 

  29. Cheville R A, Grischkowsky D. Far-infrared terahertz time-domain spectroscopy of flames. Optics Letters, 1995, 20(15): 1646–1648

    Google Scholar 

  30. Zhong S, Shen Y, Shen H, et al. FDTD study of a novel terahertz emitter with electrical field enhancement using surface plasmon resonance. PIERS Online, 2010, 6(2): 153–156

    Google Scholar 

  31. Yoneda H, Tokuyama K, Ueda K, et al. High-power terahertz radiation emitter with a diamond photoconductive switch array. Applied Optics, 2001, 40(36): 6733–6736

    Google Scholar 

  32. Ropagnol X, Morandotti R, Ozaki T, et al. Toward high-power terahertz emitters using large aperture ZnSe photoconductive antennas. IEEE Photonics Journal, 2011, 3(2): 174–186

    Google Scholar 

  33. Zhong S, Shen Y, Evans M, et al. Quantification of thin-film coating thickness of pharmaceutical tablets using wavelet analysis of terahertz pulsed imaging data. In: Proceedings of 34th International Conference on Infrared, Millimeter, and TerahertzWaves, IRMMWTHz. Busan: IEEE, 2009

    Google Scholar 

  34. Shen H, Gan L, Newman N, et al. Spinning disk for compressive imaging. Optics Letters, 2012, 37(1): 46–48

    Google Scholar 

  35. Shen H, Newman N, Gan L, et al. Compressed terahertz imaging system using a spin disk. In: Proceedings of IEEE International Conference on Infrared, Millimetre, and Terahertz Waves (IRMMW-THz 2010). Rome: IEEE, 2010, 3–4

    Google Scholar 

  36. Liu L, Zhang Z, Gan L, et al. Terahertz Imaging with compressed sensing. In: Proceedings of IEEE 9th UK-Europe-China Workshop on Millimetre Waves and Terahertz Technologies (UCMMT 2016). Qingdao: IEEE, 2016, 50–53

    Google Scholar 

  37. Amenabar I, Lopez F, Mendikute A. In introductory review to THz non-destructive testing of composite material. Journal of Infrared, Millimeter, and Terahertz Waves, 2013, 34(2): 152–169

    Google Scholar 

  38. Stoik C D, Bohn M J, Blackshire J L. Nondestructive evaluation of aircraft composites using transmissive terahertz time domain spectroscopy. Optics Express, 2008, 16(21): 17039

    Google Scholar 

  39. Chady T, Przemyslaw P. Testing of glass-fiber reinforced composite materials using terahertz technique. International Journal of Applied Electromagnetics and Mechanics, 2010, 33(3–4): 1599–1605

    Google Scholar 

  40. Anbarasu A. Characterization of defects in fiber composites using terahertz imaging. Thesis for the Master’s Degree. Atlanta: Georgia Institute of Technology, 2008

    Google Scholar 

  41. Fukuchi T, Ozeki T, Okada M, et al. Nondestructive inspection of thermal barrier coating of gas turbine high temperature components. IEEJ Transactions on Electrical and Electronic Engineering, 2016, 11(4): 391–400

    Google Scholar 

  42. Fukuchi T, Fuse N, Okada M, et al. Topcoat thickness measurement of thermal barrier coating of gas turbine blade using terahertz wave. Electrical Engineering in Japan, 2014, 189(1): 1–8

    Google Scholar 

  43. Fukuchi T, Fuse N, Okada M, et al. Measurement of refractive index and thickness of topcoat of thermal barrier coating by reflection measurement of terahertz waves. Electronics and Communications in Japan, 2013, 96(12): 37–45

    Google Scholar 

  44. Chen C, Lee D, Pollock T, et al. Pulsed-terahertz reflectometry for health monitoring of ceramic thermal barrier coatings. Optics Express, 2010, 18(4): 3477–3486

    Google Scholar 

  45. Yasui T, Yasuda T, Sawanaka K, et al. Terahertz paintmeter for noncontact monitoring of thickness and drying progress in paint film. Applied Optics, 2005, 44(32): 6849–6856

    Google Scholar 

  46. Izutani Y, Akagi M, Kitagishi K. Measurements of paint thickness of automobiles by using THz time-domain spectroscopy. In: Proceedings of 37th International Conference on Infrared, Millimeter, and Terahertz Waves. Wollongong: IEEE, 2012

    Google Scholar 

  47. Yasuda T, Iwata T, Araki T, et al. Improvement of minimum paint film thickness for THz paint meters by multiple-regression analysis. Applied Optics, 2007, 46(30): 7518–7526

    Google Scholar 

  48. Su K, Shen Y, Zeitler J A. Terahertz sensor for non-contact thickness and quality measurement of automobile paints of varying complexity. IEEE Transactions on Terahertz Science and Technology, 2014, 4(4): 432–439

    Google Scholar 

  49. Su K, May R K, Gregory I S, et al. Terahertz sensor for non-contact thickness measurement of car paints. In: Proceedings of 38th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz). Mainz: IEEE, 2013

    Google Scholar 

  50. Cook D J, Sharpe S J, Lee S, et al. Terahertz time domain measurements of marine paint thickness. Optical Terahertz Science and Technology, 2007, TuB5

    Google Scholar 

  51. Cook D J, Lee S, Sharpe S J, et al. Accuracy and linearity of timedomain THz paint thickness measurements. SPIE Proceedings, Terahertz Technology and Applications, 2008, 6893: 68930H

    Google Scholar 

  52. Tu W, Zhong S, Shen Y, et al. Nondestructive testing of marine protective coatings using terahertz waves with stationary wavelet transform. Ocean Engineering, 2016, 111: 582–592

    Google Scholar 

  53. Fitzgerald A J, Cole B E, Taday P F. Nondestructive analysis of tablet coating thicknesses using terahertz pulsed imaging. Journal of Pharmaceutical Sciences, 2005, 94(1): 177–183

    Google Scholar 

  54. Ho L, Müller R, Römer M, et al. Analysis of sustained-release tablet film coats using terahertz pulsed imaging. Journal of Controlled Release, 2007, 119(3): 253–261

    Google Scholar 

  55. Zeitler J A, Shen Y, Baker C, et al. Analysis of coating structures and interfaces in solid oral dosage forms by three dimensional terahertz pulsed imaging. Journal of Pharmaceutical Sciences, 2007, 96(2): 330–340

    Google Scholar 

  56. Wallace V P, Taday P F, Fitzgerald A J, et al. Terahertz pulsed imaging and spectroscopy for biomedical and pharmaceutical applications. Faraday Discussions, 2004, 126: 255–263

    Google Scholar 

  57. Ho L, Cuppok Y, Muschert S, et al. Effects of film coating thickness and drug layer uniformity on in vitro drug release from sustainedrelease coated pellets: A case study using terahertz pulsed imaging. International Journal of Pharmaceutics, 2009, 382(1–2): 151–159

    Google Scholar 

  58. May R K, Evans M J, Zhong S, et al. Terahertz in-line sensor for direct coating thickness measurement of individual tablets during film coating in real-time. Journal of Pharmaceutical Sciences, 2011, 100(4): 1535–1544

    Google Scholar 

Download references

Acknowledgements

We would like to express our appreciation to the National Natural Science Foundation of China (Grant No. 51675103), Fujian Provincial Excellent Young Scientist Fund (Grant No. 2014J07007), Shanghai Natural Science Fund (Grant No. 18ZR1414200), and Research Project of State Key Laboratory of Mechanical System and Vibration (Grant No. MSV201807).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuncong Zhong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, S. Progress in terahertz nondestructive testing: A review. Front. Mech. Eng. 14, 273–281 (2019). https://doi.org/10.1007/s11465-018-0495-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11465-018-0495-9

Keywords

Navigation