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Abstract Resonant phenomena have been observed and investigated in var-
ious situations, such as plasma experiments, the maritime security and the
microtubule in cell physiology. In this paper, abundant resonant behaviors
are studied for the (3+1)-dimensional BKP-Boussinesq equation. We mainly
discuss the resonant two- and three-soliton solutions in the (x, y)-plane and
(x, z)-plane. The characteristics are given for the kink soliton waves, including
expressions, maximums, minimums and velocities. The kink soliton waves in
the (x, y)-plane are parallel, and the fusion or fission may occur. The kink
soliton waves in the (x, z)-plane are not parallel and the resonant phenomena
among them are more complicated.
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1 Introduction

The observation and relevant application of resonant phenomena have been dis-
cussed in various situations, such as plasma experiments [40], the maritime se-
curity [27], the microtubule in cell physiology [25] and the underdamped Joseph-
son junctions [26]. Resonances of two solitons have been reported theoretical-
ly [8, 28]. In one-dimensional space, the two solitons to the Sawada–Kotera
equation near the resonant state interact with each other to emit or absorb a
third soliton [8]. The resonances of two solitons to the Kadomtsev–Petviashvili
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(KP) equation in superfluid helium films have been investigated based on the
asymptotic behavior of solitons [28]. Furthermore, the existence of resonant
phenomena among three solitons has been pointed out by using the Hirota bi-
linear method [34]. The Hirota bilinear method is widely used to construct
soliton solutions to nonlinear evolution equations (NLEEs) [2,4,7,15,17,36,39].
The linear superposition principle provides an efficient way to obtain multi-
exponential wave solutions to Hirota bilinear equations [22,41].

The B-type KP equation (BKP) [32] is written as

uty − uxxxy − 3(uxuy)x + 3uxz = 0, (1.1)

which can be used to simulate the evolution process of quasi-one dimension-
al shallow water waves [11]. As a generalization of Eq. (1.1), the (3+1)-
dimensional BKP-Boussinesq equation [32] is given as

uty − uxxxy − 3(uxuy)x + 3uxz + utt = 0, (1.2)

in which the term utt has significant impact on the phase shift and dispersion
relation [32]. Eq. (1.2) can describe the propagation of nonlinear lattice waves
or long waves in shallow water [9]. The bilinear form of Eq. (1.2) has been given
by virtue of Bell polynomials [30]. Lie group analysis, Bäcklund transformation
and conservation laws have been obtained [6, 9, 35].

Searching for exact solutions to NLEEs has attracted much attention [1, 3,
5,10,12,14,16,29,31,33,37,38]. Recently, N -soliton solutions to nonlinear inte-
grable equations have been systematically studied by the Hirota bilinear method
for both (1+1)-dimensional integrable equations and (2+1)-dimensional inte-
grable equations [18–21, 23]. An algorithm to check the Hirota conditions has
been proposed [18, 20, 21]. Different from the soliton solutions, the resonant
soliton solutions are soliton solutions without phase shifts. The parameteriza-
tions of the constants associated with the wave variables play a vital role in
solving the resonant condition. In this paper, we aim to extend the parame-
terizations and derive the resonant soliton solutions to the (3+1)-dimensional
BKP-Boussinesq equation. Compared with the soliton solutions in Ref. [32], the
resonant soliton solutions can be used to describe resonant phenomena among
soliton waves. Other exact solutions to the (3+1)-dimensional BKP-Boussinesq
equation have been deduced, which have their own special properties. The lump
solutions in Ref. [13] are a kind of rational function solutions and algebraically
decay in all directions. The lump-kink solutions in Ref. [35] can be used to
describe the interaction phenomena between lump waves and kink waves. The
exact solutions in Ref. [6] were constructed by using the Tanh method on re-
duced equations. We hope that the resonant phenomena among soliton waves
discussed here will be of value for the investigation of nonlinear dynamics.

This paper is organized as follows. In Sect. 2, we will introduce the general
method to construct the resonant soliton solutions to NLEEs. In Sect. 3, the
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resonant soliton solutions to the (3+1)-dimensional BKP-Boussinesq equation
will be derived based on the Hirota bilinear form. Finally, some conclusions
will be given in Sect. 4.

2 Preliminaries

We consider the following bilinear equation

F (Dx, Dy, Dz, Dt)f · f = 0, (2.1)

where Dx, Dy, Dz and Dt are the Hirota bilinear operators [7], and F is an
even polynomial with F (0, 0, 0, 0) = 0.

The N -wave function f =
∑N

i=1 µie
ki1x+ki2y+ki3z+ki4t with µi and kim (1 ≤

i ≤ N, 1 ≤ m ≤ 4) as all constants solves Eq. (2.1) if and only if [24]

F (ki1 − kj1, ki2 − kj2, ki3 − kj3, ki4 − kj4) = 0, 1 ≤ i < j ≤ N. (2.2)

Eq. (2.2) together with

F (ki1, ki2, ki3, ki4) = 0, 1 ≤ i ≤ N, (2.3)

generates the resonant soliton solutions to the corresponding NLEEs under the
transformations u = α

(
ln f

)
x

or u = α
(
ln f

)
xx

, where α is a constant.
Using the parameter ki, we firstly introduce the parameterizations of con-

stants ki1, ki2, ki3 and ki4 (1 ≤ i ≤ N) as

ki1 = ki, ki2 =

N1∑
n1=−N1

bn1k
n1
i ,

ki3 =

N1∑
n1=−N1

cn1k
n1
i , ki4 =

N1∑
n1=−N1

dn1k
n1
i , 1 ≤ i ≤ N, (2.4)

where bn1 , cn1 and dn1 are constants, and N1 is a positive integer. Secondly,
substituting Eq. (2.4) into Eqs. (2.2) and (2.3), we set the coefficients of each
power of the variables ki and kj be zero and obtain the relations among bn1 , cn1

and dn1 . Thus, f =
∑N

i=1 µie
ki1x+ki2y+ki3z+ki4t solves Eq. (2.1) if the relations

among bn1 , cn1 and dn1 are satisfied, and resonant soliton solutions to the
corresponding NLEEs can be derived.

3 Resonant Soliton Solutions to the (3+1)-dimensional BKP-
Boussinesq Equation

Under the transformation u(x, y, z, t) = 2
[
ln f(x, y, z, t)

]
x
, Eq. (1.2) is trans-

formed into

(DtDy −D3
xDy + 3DxDz +D2

t )f · f = 0, (3.1)
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the polynomial associated with which is

F (x, y, z, t) = ty − x3y + 3xz + t2, (3.2)

and the corresponding conditions (2.2) and (2.3) turn out to be

F (ki1 − kj1, ki2 − kj2, ki3 − kj3, ki4 − kj4)
= (ki4 − kj4)(ki2 − kj2)− (ki1 − kj1)3(ki2 − kj2)

+ 3(ki1 − kj1)(ki3 − kj3) + (ki4 − kj4)2 = 0, (3.3)

and

F (ki1, ki2, ki3, ki4) = ki4ki2 − k3i1ki2 + 3ki1ki3 + k2i4 = 0. (3.4)

We substitute Eq. (2.4) into Eq. (3.3) and set all the coefficients of each
power of the variables ki and kj be zero. We focus on the following coefficients
of the variables ki and kj ,

kN1+2
i kj : 3bN1 , (3.5)

kN1+1
i kj : 3bN1−1, (3.6)

kni k
n
j (4 ≤ |n| ≤ N1) : −2dnbn − 2d2n, (3.7)

kni k
2
j (4 ≤ n ≤ N1) : −dnb2 − d2bn − 2d2dn − 3bn−1, (3.8)

kni kj (4 ≤ n ≤ N1,−N1 + 2 ≤ n ≤ −4) : −dnb1 − d1bn − 2d1dn + 3bn−2 − 3cn,
(3.9)

k4i k
2
j : −d4b2 − d2b4 − 2d2d4 − 3b3, (3.10)

k3i k
3
j : −2d3b3 − 2d23 + b3, (3.11)

k2i k
3
j : −d2b3 − d3b2 − 2d2d3 − 2b2, (3.12)

k−N1
i k3j : −d−N1b3 − d3b−N1 − 2d−N1d3 + b−N1 , (3.13)

kni k
3
j (−N1 ≤ n ≤ −4) : −dnb3 − d3bn − 2d3dn + bn, (3.14)

k−N1
i kj : −d−N1b1 − d1b−N1 − 2d−N1d1 − 3c−N1 , (3.15)

k−N1+1
i kj : −d−N1+1b1 − d1b−N1+1 − 2d−N1+1d1 − 3c−N1+1. (3.16)

Eqs. (3.5)–(3.12) indicate that bn1 = cn2 = dn3 = 0 (2 ≤ n1 ≤ N1, 4 ≤ n2 ≤
N1, 3 ≤ n3 ≤ N1). Eq. (3.7), Eq. (3.9) and Eqs. (3.13)–(3.16) indicate that
bn = cn = dn = 0 (−N1 ≤ n ≤ −4). Thus, choosing N1 = 3 and substituting
Eq. (2.4) into Eqs. (3.3) and (3.4), we obtain the following relations among
bn1 , cn1 and dn1 (−3 ≤ n1 ≤ 3),
b−3 = 0, b−2 = 0, b−1 = 0, b0 = 0, b1 = −1

3
d22, b2 = 0, b3 = 0,

c−3=0, c−2=0, c−1=0, c0=0, c1=
1

9
d1d

2
2 −

1

3
d21, c2=

1

9
d32 −

2

3
d1d2, c3=−4

9
d22,

d−3 = 0, d−2 = 0, d−1 = 0, d0 = 0, d1 = d1, d2 = d2, d3 = 0.
(3.17)
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Eq. (3.17) yields the relations among the constants associated with wave vari-
ables 

ki1 = ki,

ki2 = −1

3
d22ki,

ki3 =

(
1

9
d1d

2
2 −

1

3
d21

)
ki +

(
1

9
d32 −

2

3
d1d2

)
k2i −

4

9
d22k

3
i ,

ki4 = d1ki + d2k
2
i , 1 ≤ i ≤ N.

The resonant soliton solutions to the (3+1)-dimensional BKP-Boussinesq equa-
tion are

u = 2
(
ln f

)
x

=
2
∑N

i=1 µikie
θi∑N

i=1 µie
θi

, (3.18)

where θi = kix − 1
3d

2
2kiy +

( (
1
9d1d

2
2 − 1

3d
2
1

)
ki +

(
1
9d

3
2 − 2

3d1d2
)
k2i − 4

9d
2
2k

3
i

)
z +(

d1ki + d2k
2
i

)
t (1 ≤ i ≤ N), d1 and d2 are arbitrary constants.

Without loss of generality, we assume that µi = 1 (1 ≤ i ≤ N) and k1 >
k2 > · · · > kN . Eq. (3.18) has the following limit expression

u =
2
∑N

i=1 kie
θi∑N

i=1 e
θi
−→ wij = ki + kj + (ki − kj) tanh

θi − θj
2

(1 ≤ i < j ≤ N),

when θ1, θ2, . . . , θi−1, θi+1, . . . , θj−1, θj+1, . . . , θN → −∞.
We mainly discuss the resonant phenomena among the kink soliton waves

in the (x, y)-plane and (x, z)-plane.

3.1 Resonant Soliton Solutions in the (x, y)-plane

The maximum and minimum of the kink soliton wave wij is 2ki and 2kj , re-
spectively. The velocity of the kink soliton wave wij is(

vx = −9d1 + 9d2pij
d42 + 9

, vy =
3d1d

2
2 + 3d32pij
d42 + 9

)
, (3.19)

where pij = ki+kj , vx and vy denote the velocities of the wave along the x-axis
and the y-axis, respectively.

In the case of N = 2, Eq. (3.18) becomes u = k1 +k2 + (k1−k2) tanh θ1−θ2
2 ,

and there only exists one kink soliton wave.
When N ≥ 3, the kink soliton waves are parallel and the fission or fusion

may occur. The process of fusion can be described as follows. When t→ −∞,
there exist N − 1 kink soliton waves wi,i+1 (1 ≤ i ≤ N − 1). As time goes
from −∞ to +∞, two adjacent waves interact and merge into another wave.



722 Sijia CHEN, et al.

To explain this phenomenon in detail, supposing that the two adjacent waves
are wi,i+1 and wi+1,i+2, they merge into another wave wi,i+2 at

t =
1

9
(6d1 − d22 + 4d2(ki + ki+1 + ki+2))z. (3.20)

Eq. (3.20) shows that it is impossible for three adjacent waves to merge into
one wave because ki 6= kj (i 6= j). When t → +∞, there only exists one kink
soliton wave w1N .

The process of fission can be described as follows. When t → −∞, there
exists one kink soliton wave w1N . As time goes from −∞ to +∞, the one wave
splits into two adjacent waves. As an example, the wave wi,i+2 splits into the
two adjacent waves wi,i+1 and wi+1,i+2. When t→ +∞, there exist N − 1 kink
soliton waves wi,i+1 (1 ≤ i ≤ N − 1).

We illustrate the resonant phenomena among the kink soliton waves in the
(x, y)-plane with N = 2, 3 and 4 in Eq. (3.18). Figure 1 displays the one-kink
soliton wave, which moves with a constant velocity (vx = −1.44, vy = 1.92).
The maximum and minimum of the kink soliton wave are 2 and 1, respectively.
Figure 2 shows the fission of kink soliton waves, that is, the wave w13 splits into
two waves w12 and w23 at t = −58

27 . The two waves w12 and w23 move with the
constant velocity and the distance between them increases with time. Figure
3 shows the fusion of kink soliton waves. There exist three kink soliton waves
w12, w23 and w34 at t = −7. Then the two adjacent waves w23 and w34 interact
and merge into the wave w24 at t = −2

3 . Two adjacent waves w12 and w24

interact and merge into the wave w14 at t = 14
9 . The maximums, minimums

and velocities of the two- and three-kink soliton waves in the (x, y)-plane are
shown in Tables 1 and 2, respectively. The sectional plots of the resonant soliton
solutions are given in Figure 4.

(a) (b) (c)

Figure 1. Plots of the one kink soliton wave via Eq. (3.18) in the (x, y)-plane at (a) t = −10,

(b) t = −2 and (c) t = 5 with parameters d1 = 1, d2 = 2, k1 = 1, k2 = 1
2

and z = 1.
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(a) (b) (c)

Figure 2. The resonant phenomena of two kink soliton waves via Eq. (3.18) in the

(x, y)-plane at (a) t = −10, (b) t = 5 and (c) t = 12 with parameters d1 = −1, d2 = −2,

k1 = 1, k2 = 1
2
, k3 = − 1

3
and z = 1.

(a) (b) (c)

Figure 3. The resonant phenomena of three kink soliton waves via Eq. (3.18) in the

(x, y)-plane at (a) t = −7, (b) t = −0.5 and (c) t = 10 with parameters d1 = 1, d2 = 2,

k1 = 2, k2 = 1, k3 = − 1
2
, k4 = − 3

2
and z = 1.

(a) (b) (c)

Figure 4. The sectional plots of resonant soliton solutions in the (x, y)-plane. (a) The

sectional plot of Figure 1, (b) The sectional plot of Figure 2, (c) The sectional plot of Figure

3 with x = 0.
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Table 1 The features of the resonant two-kink soliton waves in the (x, y)-plane

waves expressions maximums minimums velocities

w13 k1 + k3 + (k1 − k3) tanh
θ1−θ3

2
2k1 2k3

(
vx = − 9d1+9d2p13

d42+9
, vy =

3d1d
2
2+3d32p13

d42+9

)

w12 k1 + k2 + (k1 − k2) tanh
θ1−θ2

2
2k1 2k2

(
vx = − 9d1+9d2p12

d42+9
, vy =

3d1d
2
2+3d32p12

d42+9

)

w23 k2 + k3 + (k2 − k3) tanh
θ2−θ3

2
2k2 2k3

(
vx = − 9d1+9d2p23

d42+9
, vy =

3d1d
2
2+3d32p23

d42+9

)

Table 2 The features of the resonant three-kink soliton waves in the (x, y)-plane

waves expressions maximums minimums velocities

w12 k1 + k2 + (k1 − k2) tanh
θ1−θ2

2
2k1 2k2

(
vx = − 9d1+9d2p12

d42+9
, vy =

3d1d
2
2+3d32p12

d42+9

)

w23 k2 + k3 + (k2 − k3) tanh
θ2−θ3

2
2k2 2k3

(
vx = − 9d1+9d2p23

d42+9
, vy =

3d1d
2
2+3d32p23

d42+9

)

w34 k3 + k4 + (k3 − k4) tanh
θ3−θ4

2
2k3 2k4

(
vx = − 9d1+9d2p34

d42+9
, vy =

3d1d
2
2+3d32p34

d42+9

)

w24 k2 + k4 + (k2 − k4) tanh
θ2−θ4

2
2k2 2k4

(
vx = − 9d1+9d2p24

d42+9
, vy =

3d1d
2
2+3d32p24

d42+9

)

w14 k1 + k4 + (k1 − k4) tanh
θ1−θ4

2
2k1 2k4

(
vx = − 9d1+9d2p14

d42+9
, vy =

3d1d
2
2+3d32p14

d42+9

)

3.2 Resonant Soliton Solutions in the (x, z)-plane

The resonant phenomena among the kink soliton waves in the (x, z)-plane are
more complicated than those in the (x, y)-plane, and the kink soliton waves are
not parallel. The maximum and minimum of the kink soliton wave wij is 2ki
and 2kj , respectively. The velocity of the kink soliton wave wij is(

vx = −d1 + d2pij
1 + q2ij

, vz = −(d1 + d2pij)qij
1 + q2ij

)
, (3.21)

where qij = 1
9d1d

2
2 − 1

3d
2
1 + (19d

3
2 − 2

3d1d2)(ki + kj) − 4
9d

2
2(k

2
i + kikj + k2j ), and

vx and vz denote the velocities of the wave along the x-axis and the z-axis,
respectively.

We illustrate the resonant phenomena among the kink soliton waves in the
(x, z)-plane with N = 2, 3 and 4 in Eq. (3.18). Figure 5 shows that there only
exists one kink soliton wave moving with the velocity (vx = −18

65 , vz = 66
65).

The maximum and minimum of the kink soliton wave are the same as that in
Figure 1, because they only depend on k1 and k2. Figure 6 shows two kink
soliton waves w12 and w23 interact with each other and generate the third kink
soliton wave w13. From Figure 7, we can see that there exist five kink soliton
waves w12, w23, w24, w13 and w34 when t = −60. As time goes on, the kink
soliton wave w23 disappears, while the kink soliton wave w14 appears. To study
the propagation of the two- and three-kink soliton waves in the (x, z)-plane, the
features of the kink soliton waves in the (x, y)-plane are shown in Tables 3 and
4. Figure 8 displays the sectional plots of the resonant soliton solutions.
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(a) (b) (c)

Figure 5. Plots of the one kink soliton wave in the (x, z)-plane via Eq. (3.18) at (a) t = 0,

(b) t = 16 and (c) t = 30 with parameters d1 = 1, d2 = 2, k1 = 1, k2 = 1
2

and y = 1.

(a) (b) (c)

Figure 6. The resonant phenomena of two kink soliton waves in the (x, z)-plane via Eq.

(3.18) at (a) t = 0, (b) t = 16 and (c) t = 30 with parameters d1 = 1, d2 = 2, k1 = 1, k2 = 1
2
,

k3 = − 1
3

and y = 1.

(a) (b) (c)

Figure 7. The resonant phenomena of three kink soliton waves in the (x, z)-plane via Eq.

(3.18) at (a) t = −60, (b) t = −30 and (c) t = 5 with parameters d1 = 1, d2 = 2, k1 = 1,

k2 = 1
2
, k3 = − 3

7
, k4 = − 6

5
and y = 1.
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Table 3 The features of the resonant two-kink soliton waves in the (x, z)-plane

waves expressions maximums minimums velocities

w12 k1 + k2 + (k1 − k2) tanh
θ1−θ2

2
2k1 2k2

(
vx = − d1+d2p12

1+q212

, vz = − (d1+d2p12)q12
1+q212

)

w23 k2 + k3 + (k2 − k3) tanh
θ2−θ3

2
2k2 2k3

(
vx = − d1+d2p23

1+q223

, vz = − (d1+d2p23)q23
1+q223

)

w13 k1 + k3 + (k1 − k3) tanh
θ1−θ3

2
2k1 2k3

(
vx = − d1+d2p13

1+q213

, vz = − (d1+d2p13)q13
1+q213

)

Table 4 The features of the resonant three-kink soliton waves in the (x, z)-plane

waves expressions maximums minimums velocities

w12 k1 + k2 + (k1 − k2) tanh
θ1−θ2

2
2k1 2k2

(
vx = − d1+d2p12

1+q212

, vz = − (d1+d2p12)q12
1+q212

)

w23 k2 + k3 + (k2 − k3) tanh
θ2−θ3

2
2k2 2k3

(
vx = − d1+d2p23

1+q223

, vz = − (d1+d2p23)q23
1+q223

)

w24 k2 + k4 + (k2 − k4) tanh
θ2−θ4

2
2k2 2k4

(
vx = − d1+d2p24

1+q224

, vz = − (d1+d2p24)q24
1+q224

)

w13 k1 + k3 + (k1 − k3) tanh
θ1−θ3

2
2k1 2k3

(
vx = − d1+d2p13

1+q213

, vz = − (d1+d2p13)q13
1+q213

)

w34 k3 + k4 + (k3 − k4) tanh
θ3−θ4

2
2k3 2k4

(
vx = − d1+d2p34

1+q234

, vz = − (d1+d2p34)q34
1+q234

)

w14 k1 + k4 + (k1 − k4) tanh
θ1−θ4

2
2k1 2k4

(
vx = − d1+d2p14

1+q214

, vz = − (d1+d2p14)q14
1+q214

)

(a) (b) (c)

Figure 8. The sectional plots of resonant soliton solutions. (a) The sectional plot of Figure 5

with x = 20, (b) The sectional plot of Figure 6 with x = −5, (c) The sectional plot of Figure

7 with x = 80.

4 Conclusions

We have extended the parameterizations of the constants associated with the
wave variables. The resonant soliton solutions to the (3+1)-dimensional BKP-
Boussinesq equation have been derived. We have mainly discussed the resonant
two- and three-soliton solutions in the (x, y)-plane and (x, z)-plane. The char-
acteristics including expressions, maximums, minimums and velocities of kink
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soliton waves have been given. The kink soliton waves in the (x, y)-plane are
parallel and the fusion or fission may occur. The fusion process can be described
as follows. When t→ −∞, there exist N − 1 kink soliton waves. As time goes
from −∞ to +∞, two adjacent waves interact and merge into another wave.
When t → +∞, there only exists one kink soliton wave. The fission process
shows that one kink soliton wave splits into N−1 kink soliton waves with time.
The kink soliton waves in the (x, z)-plane are not parallel and the resonant phe-
nomena are more complicated. In conclusion, we have obtained abundant res-
onant behaviors of soliton solutions to the (3+1)-dimensional BKP-Boussinesq
equation.
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