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Abstract: Analyzing long term urban growth trends can provide valuable insights into a city’s 
future growth. This study employs LANDSAT satellite images from 1990, 2000, 2010 and 
2019 to perform a spatiotemporal assessment and predict Ahmedabad’s urban growth. Land 
Use Land Change (LULC) maps developed using the Maximum Likelihood classifier produce 
four principal classes: Built-up, Vegetation, Water body, and “Others”. In between 1990–2019, 
the total built-up area expanded by 130%, 132 km2 in 1990 to 305 km2 in 2019. Rapid popu-
lation growth is the chief contributor towards urban growth as the city added 3.9 km2 of addi-
tional built-up area to accommodate every 100,000 new residents. Further, a Multi-Layer 
Perceptron – Markov Chain model (MLP-MC) predicts Ahmedabad’s urban expansion by 
2030. Compared to 2019, the MLP-MC model predicts a 25% and 19% increase in Ahmed-
abad’s total urban area and population by 2030. Unaltered, these trends shall generate many 
socio-economic and environmental problems. Thus, future urban development policies must 
balance further development and environmental damage. 

Keywords: land use land cover; urbanization; maximum likelihood classification; multi-layer perceptron – Mar-
kov chain model 

1  Introduction 

Land use refers to the utilization of Earth’s land resources for different human activities, 
whereas land cover is the bio-physical cover over Earth’s surface by built-up spaces, agri-
cultural farmlands, green pastures, forests, water bodies etc. (Herold et al., 2006; Mishra and 
Rai, 2016). Together, land use land cover (LULC) change explains the modification of the 
Earth’s terrestrial surface by natural and anthropological means. Urbanization is the prime 
contributor to anthropogenic driven LULC changes, extending and densifying existing urban 
areas. Urbanization involves the mass migration of people towards urban areas searching for 
better job education and health care opportunities (Mansour et al., 2020). Urbanization ex-
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pands existing city boundaries, transforming forests, croplands and wetlands into built-up 
areas containing residential, commercial and industrial buildings and supporting infrastruc-
ture like roads, bridges, parks, playgrounds etc. (Wakode et al., 2014).  

Rapid population growth is regarded as the most significant contributor to urban expan-
sion. (Hegazy and Kaloop, 2015; Nurwanda and Honjo, 2020). Since 1850, the total human 
population has increased six times globally, whereas the total urban population has grown 
100 times (Ahmad, Goparaju and Qayum, 2017). By 2050, 66% of the global population is 
expected to live in cities that will present large-scale urban management challenges, espe-
cially in developing countries experiencing much faster urban growth than those faced any-
time during the 20th century (Hassan et al., 2016; Shukla and Jain, 2019). Though urbaniza-
tion provides several socio-economic benefits for the citizens, unplanned-uncoordinated, 
haphazard development can force city-dwellers to face several unintended negative conse-
quences. Unplanned urban growth deteriorates urban dwellers’ quality of life by widening 
the gap between the demand and supply of essential services (Wakode et al., 2014). Under 
such situations, the urban population gets limited access to critical infrastructure facilities, 
including health, education, transportation and sanitation (Vermeulen et al., 2015; Saravanan 
et al., 2016; Islam and Dinar, 2021). Moreover, densely populated urban areas face a much 
higher risk of rapid transmission of infectious diseases like Covid-19. As seen in India, large 
numbers of infected people risk overhauling the available public health facilities hampering 
early detection, isolation, treatment and vaccination (Gupta et al., 2021). Rapid urbanization 
has also been linked to a widening socio-economic gap, proliferation of slums and rising 
crime rates (Hegazy and Kaloop, 2015; Kuddus et al., 2020).  

Perhaps, the most damaging effect of unregulated-haphazard urbanization is visible in the 
urban environment. Urbanization replaces forests, agricultural and wetlands with built-up 
spaces, damaging flora-fauna biodiversity causing air, water, soil and noise pollution (Zhu et 
al., 2012; Power et al., 2018; Mansour et al., 2020). Further, unhealthy modifications to 
natural biogeochemical and hydrological cycles damage urban ecosystems (Ahmad et al., 
2017). Many studies endeavoured to quantify the effects of rapid urbanization on natural 
resource quantity and quality, especially agricultural production, coastal contamination, air 
and water pollution and access to drinking water (Kaliraj et al., 2017; Power et al., 2018; 
Kookana et al., 2020). Rapidly declining agricultural land has also become a chief contribu-
tor to the global food shortage (Meshesha et al., 2016; Shi et al., 2016; Tarawally et al., 
2019). Urbanization is also the prime contributor to Urban Heat Island (UHI). Due to ur-
banization, roads, pavements and building structures replace open lands, forest floors and 
farmlands with waterproof materials like pavements, asphalt, and concrete. Such changes 
decrease the ground absorptance, surface evaporation and heat-storage rates, thereby modi-
fying the near-surface temperatures and wind flow patterns. UHI can increase the urban land 
surface temperatures (LSTs) by an average of 2–4℃ above neighboring rural areas (Rah-
man et al., 2017). UHI is also linked to health issues like heat strokes, asthma, and 
heart-related deaths, especially among children and elders (Ahmed et al., 2013; Borbora and 
Das, 2014; Rahman, Aldosary and Mortoja, 2017; Pal and Ziaul, 2017; Sultana and Satya-
narayana, 2020).  

Reliable LULC information is vital for sustainable urban planning to ensure sufficient 
resources for present and future generations (Han et al., 2015). The United Nations’ eleventh 
sustainable development goal also emphasizes periodic urban area monitoring to ensure en-
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vironmentally responsible development (Tarawally et al., 2019). Assessing long-term LULC 
changes can assist urban planning efforts by identifying existing and potential social, infra-
structure and environment-related challenges. Past changes to the regional landscape also 
provide a fair indication regarding the city’s future urban growth. However, physically mon-
itoring LULC change is expensive, time-consuming, exhausting and prone to errors (Su-
ribabu et al., 2012). Instead, multispectral and multi-temporal remote sensing (RS) satellite 
images provide a fast, precise and in-expensive solution to measure human activities’ influ-
ence on the Earth’s land resources (Mishra and Rai, 2016; Ahmad et al., 2017; Rahman et al., 
2017). RS-Geographical Information System (GIS) tools reveal urban growth patterns by 
measuring the distance between urban areas away from the city centers (Hegazy and Kaloop, 
2015). RS-GIS tools also help analyze large inaccessible areas to gauge their sensitivi-
ty/vulnerability to ongoing development trends (Wakode et al., 2014). Advanced RS-GIS 
predictive tools can also predict future urban expansion and help build sustainable land-use, 
transportation, infrastructure policies (Shafizadeh Moghadam and Helbich, 2013; Alqurashi 
and Kumar, 2014; Al shawabkeh et al., 2019).  

Several Indian cities witnessed a drastic rise in population during the past two-three dec-
ades, leading to unprecedented levels of urban expansion (Shafizadeh Moghadam and Hel-
bich, 2013; Mishra and Rai, 2016; Ahmad et al., 2017). As per United Nations world urban-
ization prospects, more than half of India’s population is expected to live in urban areas by 
2050 (Shukla and Jain, 2019). Rapid population growth will stress already fragile urban in-
frastructure and the surrounding environment, especially after the Covid-19 pandemic. The 
developing nations should not be expected to replicate the growth trajectories exhibited by 
developed countries (Welsh, 2004). The success of any urban planning strategy for a region 
relies on a close understanding of its past and ongoing urban development. To this end, spa-
tio-temporal LULC assessment can help analyze past and prevailing urban dynamics and 
provide future growth trends. Such studies can help regional and national governments with 
sustainable developmental planning. With almost one-third of India’s population residing in 
cities, it is crucial to acquire information regarding its growth patterns and environmental 
interactions (Wakode et al., 2014). This study performs a spatio-temporal assessment of a 
large Indian metropolitan city, i.e. Ahmedabad, to address the following research questions. 

1. Which land-use classes are most affected by Ahmedabad’s urban growth during 
1990–2019?  

2. What is the relation between population rise and urban growth?  
3. How much additional urban growth is expected for Ahmedabad by the end of the pre-

sent decade, i.e. 2030?  
The rest of the paper is structured as follows. A concise literature review is presented in 

section II, covering different approaches and methodologies for analyzing past and future 
LULC change dynamics. Section III contains a step-wise description of the methodology 
adopted for this study. Section IV explains the results of the spatiotemporal assessment and 
future LULC prediction. Finally, the closing Section V presents conclusions, recommenda-
tions, limitations and future scope.  

2  Literature review 

Research studies investigating the effects of LULC change on regional landscape, climate 
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change and environmental damage have grown in number since the International Geosphere 
and Biosphere (IGB) program (Seitzinger et al., 2015; Silva et al., 2020). Most studies have 
focused on performing regional spatio-temporal assessment by comparing LULC maps from 
different periods. A few studies also focused on predicting future urban expansion employ-
ing advanced urban growth models. Most LULC change assessment and prediction studies 
are carried out using LANDSAT datasets. LANDSAT is the longest-running remote sensing 
program operated by the United States Geological Survey (USGS) and National Aeronautics 
and Space Administration (NASA) for acquiring Earth’s satellite imagery. Since the 
LANDSAT-1 mission launched in 1972, this program has provided free mid-resolution sat-
ellite images to perform spatio-temporal evaluations for several decades (Wakode et al., 
2014). The most recent satellite LANDSAT 8, was launched on February 11 2013 (Wikipe-
dia, 2021c).  

2.1  LULC classification 

LULC classification using suitable image classification techniques helps extract useful re-
al-world information from multispectral satellite images. Several methods are available to 
classify mid (30 m × 30 m) and high resolution (15 m × 15 m) satellite imagery into a finite 
number of land use (LU) classes based on similar spectral reflectance profiles (MohanRajan 
et al., 2020). Broadly, LULC classification can be performed using unsupervised and super-
vised methods. Unsupervised LULC classification methods include K-Means clustering, 
ISODATA (Iterative Self-Organizing Data Analysis), Fuzzy C-Means clustering, 
Self-Organizing Maps and Neural Networks. Unsupervised classifiers such as ISODATA 
automatically classify satellite imagery into a user-defined number of groups based on simi-
lar spectral characteristics (Hegazy and Kaloop, 2015). Post classification, manual edits may 
be needed to remove a few miss-classified pixels or merge similar LU classes. In the past, 
researchers used the ISODATA algorithm for LULC classification of urban and coastal 
landscapes in India, Egypt and the middle east (Baby, 2015; Hegazy and Kaloop, 2015; Us-
man et al., 2015; Rahman, 2016; Ahmad et al., 2017).  

Supervised LULC classification methods include the Maximum Likelihood Classifier 
(MLC), K-Nearest Neighbour, Support Vector Machines and Random Forest Classifiers 
(MohanRajan et al., 2020). These supervised methods can extend or extrapolate available 
LU information from known image sectors to classify unknown image sectors. In these 
methods, the user first develops a training set containing several training areas for each LU 
class. Next, the software generates class wise spectral signatures based on the provided 
training set. Finally, the software classifies the entire image by assigning each pixel to the 
LU class having maximum likelihood (Rahman, 2016). The supervised ML classifiers can be 
accessed using inbuilt tools present in QGIS, ArcGIS, and ERDAS Imagine software (Mo-
hanRajan et al., 2020). ML classifiers have been used for spatiotemporal assessment of hilly 
regions in Ramnagar and Almora, India, during 1990–2010 (Tripathi and Kumar, 2012; 
Rawat et al., 2013). ML classifiers have also been used to characterize LU changes in urban, 
forest and coastal landscapes across Indian cities like Tiruchirappalli, Hyderabad, Salem and 
Kanyakumari (Suribabu et al., 2012; Wakode et al., 2014; Kaliraj et al., 2017; Arulbalaji, 
2019). In almost every study, the built-up area expanded at the expense of other LU classes 
such as forests, agriculture, water bodies, and wetlands. Unsupervised classifiers are helpful 
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when no prior ground information is available. However, the process of identifying and re-
combining similar LU classes can be exhausting and generally produces lower classification 
accuracy. Notably, MLC is the most widely adopted LULC classifier for different landscapes 
as it delivers high accuracy by referring to LU signatures supplied by the user (Dewan and 
Yamaguchi, 2009; Belal and Moghanm, 2011; Tahir et al., 2013; Alqurashi and Kumar, 2014; 
Wakode et al., 2014; Usman et al., 2015; Meshesha et al., 2016; Shi et al., 2016; Kaliraj et 
al., 2017; Al shawabkeh et al., 2019; GeoKnowledge, 2020).  

2.2  LULC prediction 

In addition to the LULC classification, several researchers adopted advanced urban growth 
models to predict future urban growth (Mansour et al., 2020). These models can perform 
space-time simulations to determine long term LU class-wise transitional probabilities and 
generate future LULC maps. A few models solely rely on past LULC maps, whereas others 
also incorporate the influences of static (slope) and dynamic (urban density, road networks, 
proximity to main roads) urban growth drivers (Chang-Martínez et al., 2015; MohanRajan et 
al., 2020). The most common model, i.e. Cellular Automata- Markov Chain (CA-MC), is a 
spatio-temporal extension of the Markov Chains model that accommodates neighbourhood 
transition effects (Araya and Cabral, 2010; Nwaogu and Pechanec, 2018; Bhugeloo et al., 
2019). This hybrid model solves the limitations of the CA model by integrating the effects of 
natural and human variables for making land use forecasts. For instance, Mansour et al. 
adopted a CA-MC model to simulate urban expansion during 2008–2038 in Nizwa city, 
Oman (Mansour et al., 2020). This model also considers the effects of elevation, aspects, 
terrain slopes, population density and proximity to roads and major urban centers. While 
implementing MC models, Multi Criteria Decision Making techniques and fuzzy logic may 
be needed to assign relative weights to different urban growth drivers. For instance, 
Moghadam and Helbich used an integrated MC-CA urban growth model to predict Mum-
bai’s urban expansion during 2020–2030 (Shafizadeh et al., 2013). The analytical hierarchy 
process apportioned the effects of different urban change drivers to develop transition prob-
ability maps.  

The next popular class of urban growth models, i.e. MLP-MCA, relies on a neural net-
work backpropagation algorithm to select suitable input parameters for predicting future 
urban growth. Using historical LULC maps and specific urban change drivers, the 
MLP-MCA method performs a non-parametric regression between several input parameters 
and one output, i.e. predicted pixel class membership (Losiri et al., 2016). For instance, Abd 
EL-kawy et al. used the Land Change Modeller module in Terrset software to implement an 
MLP-MC model to predict urban encroachment of agricultural lands in two different cities 
of Egypt between 2019 to 2100 (Abd EL-kawy et al., 2019). Similarly, L Silva et al. per-
formed land change assessment and prediction for the Taperoá River basin of Brazil from 
1990 to 2035 (Silva et al., 2020). Training for 1000 iterations, the backpropagation MLP 
algorithm produced future LULC maps with a high prediction accuracy of 89.69%. Ahmed 
et al. performed a comparative assessment of MLP-MC with stochastic Markov-Chain and 
CA-MC and models to predict Dhaka’s urban growth in 2019–2029 using LANDSAT imag-
es from 1989–2009. MLP-MC outperformed the other two models when validated against an 
actual 2009 LULC image (Ahmed and Ahmed, 2012).  
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Few specialized urban growth models can also develop future LULC maps based on dif-
ferent theories of urban development (Han et al., 2015). These models can incorporate the 
effects of possible policy changes by the government about urban development and envi-
ronmental exploitation (Mohamed and Worku, 2020). Urban growth models have also been 
linked to the UHI phenomenon for predicting LSTs (Pal and Ziaul, 2017; Gohain et al., 
2020). For instance, B. Ahmed et al. employed the MLP-CA model to simulate Dhaka’s ur-
ban growth during 2019–2029 (Ahmed et al., 2013). Empirical relationships between urban 
growth drivers and urban LSTs indicated that up to 56% and 87% of the total urban area may 
encounter temperatures above 30 °C in 2019 and 2029, respectively. Several other urban 
growth models such as GEOMOD, LCM, CLUES, Dynamica, EGO, and GISCAME have 
also been employed to predict future land use. Extensive discussions on the suitability of 
different LULC prediction methods can be found by referring to the works of 
Chang-Martínez et al. (2015) Nwaogu and Pechanec (2018), and MohanRajan et al. (2020). 
Various instances from the literature confirm the suitability of MLC and MLP-MCA algo-
rithms for LULC classification and prediction. Therefore, this study selects these models for 
Ahmedabad’s spatio-temporal assessment and prediction.  

3  Methodology 

3.1  Study area 

The city of Ahmedabad (23.022°N, 72.571°E) is located in the western Indian state of Guja-
rat, along the banks of the Sabarmati river. Placed in north-central Gujarat, the state capital 
is roughly 53 meters (174 ft) above the mean sea level. Built on sandy and dry soils, the en-
tire city has a flat landscape except for some small hills located in the northwestern area. 
The city experiences a hot, semiarid type climate (Köppen climate classification: BSh), 
having three primary seasons, i.e. summer, winter and monsoons. Apart from monsoons, the 
weather is warm and dry, especially during summers (April–June) when the daily maximum 
temperature frequently rises above 40℃. The city receives an average yearly precipitation of 
932 mm (Wikipedia, 2021b). Ahmedabad is a major economic center, home to many textile, 
pharmaceuticals and information technology companies generating a gross domestic product 
of $68 billion (in 2017). It hosts many public sector enterprises with central research and 
training institutions, universities, and professional colleges. Modern shopping and office 
centers, educational institutes, housing facilities and old heritage buildings, along with am-
ple transportation facilities, including metro, buses, shuttles and an international airport, all 
contribute to the city’s socio-economic development.  

The city’s population has grown steadily since the 1950s, achieving a 2.54% annual 
growth rate to reach 8,059,441 in 2020, making it the fifth most densely inhabited Indian 
city and 46th worldwide (Wikipedia, 2021d). Further, Ahmedabad also has a high slum pop-
ulation. The last publically available estimates from 2013 suggest 262,551 people living in 
slums around the city (Mahadevia et al., 2014). Rapid unplanned urban growth shall burden 
the city’s existing civic, health and transportation infrastructure and also damage its natural 
ecology. The prevailing land-intensive urban growth strategy shall intensify city-wide pollu-
tion (air, water, noise) levels and embolden UHI-induced climate changes. Investigating past 
urban growth trends can provide valuable insights into prevailing and future urban growth. 
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Thus, this study gauges Ahmedabad’s 1990, 2000, 2010 and 2019 LU maps to predict the 
city’s urban growth in 2030 and 2040. Noteworthy, the city’s present-day total urban extent 
is equal to 464 km2. However, the official city boundaries get redrawn every few years as 
per new development plans. So, this study considers a total area of 945 km2 around the city’s 
centre to fully estimate the effects of ongoing and probable future expansions.  

As shown in Figure 1, a step-wise framework is adopted for performing a spatio-temporal 
assessment and future prediction of Ahmedabad’s urban growth. The entire methodology is 
divided into three main steps.  

 

 
 
Figure 1  Overall workflow for this study 

 
Several existing mid-resolution (30 m × 30 m) LANDSAT satellite datasets are downloa-

ded from the United States Geological Survey (USGS) Earth Explorer repository during the 
first stage. The LANDSAT program consists of a series of earth-observing satellite missions 
managed by the USGS and NASA. Since 1972, this program has provided free mid-reso-
lution satellite images for spatio-temporal evaluations (Wakode et al., 2014; Tarawally et al., 
2019). LANDSAT 8 Operational Land Imager and Thermal Infrared Sensor images are ac-
quired for 2019 and 2011, whereas the earlier 2000 and 1991 images are obtained from the 
LANDSAT 4–5 mission Thermic Mapper sensor. All four images belong to the (10–20) May 
period. Further, Ahmedabad’s digital elevation model (DEM) and road network map are 
procured from NASA and OpenStreetMap websites, respectively (Haklay and Weber, 2008). 
As shown in Table 1, Ahmedabad’s population data from 1990 to 2019 is taken from the 
world population review database (World Population Review, 2021). 

All four satellite images are geo-referenced to the Universal Transverse Mercator (UTM) 
projection system with World Geodetic System (WGS) 1984 as the datum. The particular  
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Table 1  Different data sources used in this study 

Dataset Time stamp Sensor/Source Resolution 

LANDSAT 1990 LANDSAT 4–5 Thermic Mapper (TM) (30 × 30) m 

LANDSAT 2000 LANDSAT 4–5 Thermic Mapper (TM) (30 × 30) m 

LANDSAT 2010 LANDSAT 8 Operational Land Imager and Thermal Infrared Sensor (30 × 30) m 

LANDSAT 2019 LANDSAT 8 Operational Land Imager and Thermal Infrared Sensor (30 × 30) m 

Population data 1990, 2000, 
2010, 2019 World Population Review 2021 Yearly 

Digital Elevation 
Model ASTER ‒ ASTER (NASA) (30 × 30) m 

Road network 2019 OpenStreetMap Vector 
 

area of interest is clipped by Erdas Imagine 2015 software using a common shapefile. Next, 
specific multispectral bands are combined to develop four satellite images of false-colour 
composite (FCC) images. The convolution and thematic tools are used for image sharpening 
and smoothening (Hegazy and Kaloop, 2015). Further, the Maximum Likelihood Algorithm 
is used for supervised LULC classification of the four FCC satellite images.  

3.2  LULC classification: Maximum likelihood supervised classification 

LULC maps for 1990, 2000, 2010 and 2019 are generated post supervised classification of 
the four FCC satellite images. Erdas Imagine 2015 software performs image classification 
by implementing the Maximum Likelihood (ML) algorithm. ML algorithm extrapolates us-
er-supplied LU information from known image sectors to classify unknown image sectors 
(Wakode et al., 2014; Kaliraj et al., 2017). Initially, the user develops a training set contain-
ing several training areas for each LU category. Then the software generates class wise (LU) 
spectral signatures based on the supplied information. Next, the software classifies the entire 
image by assigning each pixel to the LU class having maximum likelihood (Rahman, 2016).  

As shown in Table 2, ML algorithm classified the four FCC images into four LU broad 
categories: Vegetation, Water body, Built-up area and Bare land. The Vegetation class com-
prises all land use consistent with trees, forests, gardens, farmland, agricultural land, while 
all rivers, lakes, canals, and wetlands fall under Water body. The third LU class, i.e. Built-up 
area, contains all different buildings and physical infrastructure like roads, bridges, airports, 
etc. The final LU class, i.e. “Others”, contains open areas, bare plots, uncropped-farmlands 
landfill areas, and other remaining land uses. 

 
Table 2  The four unique LU classes used for classifying the LANDSAT images 

Land cover type Description 

Water body Water bodies including rivers, lakes, canals and wetlands 

Vegetation Green cover including trees, forests, gardens, cropped agricultural farmlands 

Built-up area Physical infrastructure inclusive of roads, bridges, residential, commercial, industrial and 
institutional buildings 

Others Open areas, including uncropped agricultural lands, bare plots, landfill areas and all other 
remaining land cover types 

 
The confusion matrix approach can evaluate the quality and usability of classified LULC 

images by calculating the kappa statistics (Congalton and Green, 2019). Kappa statistic is 



Shobhit CHATURVEDI et al.: A spatio-temporal assessment and prediction of Ahmedabad’s urban growth, 1990–2030 1799 

 

calculated by dividing the total number of correctly classified pixels by the total number of 
reference pixels. Two hundred fourty actual ground points (60 points per LU class) are gen-
erated randomly to compare the actual and predicted LU class labels. Kappa statistic values 
closer to 0 and 1 indicate near perfect and random assignments. A minimum kappa value of 
0.75 is necessary for accepting the ML algorithm’s classification results. The next step per-
forms LULC change assessment by comparing the extents of the four LUs classes during the 
four periods. Further, LU class transitions are explained using transition probabilities during 
2000–2010 and 2010–2019 shown in the LU transition matrix.  

3.3  Multi-layer perceptron-Markov chain model 

MLP-MCA model is suitable for quantifying long term spatio-temporal LULC change and 
predicting future urban growth (Mishra and Rai, 2016; Mansour et al., 2020). MLP-MCA is 
implemented using the Terrset 2018 software package. There are three main stages in per-
forming the MLP-MC analysis. (1) Change Analysis; (2) Transition Area Analysis; (3) 
Change Prediction Analysis (Nurwanda and Honjo, 2020). During the change analysis stage, 
transformations between different LU classes are assessed between 2000 and 2010. Markov 
Chain analysis is used in the following transition analysis stage to obtain the LU change 
transition area matrix. The transition area matrix can be represented using equation 1.  

 
11 1n

n1 nn

A A
 0

A A
A

 
 =  
  



 



  (1) 

where Aij > 0, 
1

n

ij
j

A
=
∑ = 1, 1, , .i n= …  Aij represents the transition probability between states 

i and j. After developing the transition matrix, the MLP-MC model is applied to predict fu-
ture LU maps. For the change prediction assessment, only major LU transitions are consid-
ered, such as bare land to built-up spaces, Vegetation to built-up spaces, bare lands to Vege-
tation and Vegetation to bare lands.  

Further, the MLP-MCA model also considers several urban change drivers impacting 
growth (Dadhich and Hanaoka 2010). DEM, slope maps and road and urban distance maps 
are tested as potential urban-change drivers. Cramer V statistic calculates the association 
level between land-use change and driving factors. A significance value closer to 0 implies 
that the variable has a weak association with the LU change (Mishra and Rai, 2016). All ur-
ban change drivers with Cramer V values greater than 0.15 are useful (Eastman, 2009). Next, 
a neural network is developed during the change prediction stage to train an MLP model 
(Ahmed and Ahmed, 2012). During the MLP training, the input signals from the input layer 
are passed to the next layer nodes in a feed-forward manner (Atkinson and Tatnall, 1997; 
Araya and Cabral, 2010; Hegazy and Kaloop, 2015). The input received by a single node is 
represented in equation 2.  
 i ik knet w o=∑  (2) 

where wik is the wight between node k and node l and ok is the output from node k. Further, 
output from node l, i.e., ol is illustrated in equation 3 (Atkinson and Tatnall, 1997). 
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 ( )k io f net=  (3)  

Generally, a non-linear sigmoid function f(neti) is applied to the weighted sum of inputs be-
fore passing the inputs to the next layer. This step is termed Forward Propagation. Once all 
nodes send a forward signal, the output is compared to the actual response (a set of training 
data, e.g. known LU classes). This difference, termed network error, is transmitted back into 
the network. After that, the weight of each node is adjusted as in equation 4. 

 ( ) ( ) ( )1ij ij j iw n w n Oα η δ∆ + = ∆ +  (4)  

where η=learning rate parameter; δj=error rate of change index; α=momentum parameter. 
This forward and backward propagation process is repeated iteratively until the network er-
rors get minimalized to an acceptable scale. The end goal of these iterations is to find proper 
connection weights for all nodes between the input, hidden and output layers. Post MLP 
training, transition probability maps are developed for all the locations. Terrset uses a fuzzy 
membership function for every pixel. A higher class value represents a higher membership to 
the particular LU class. Final MLP network outputs and final LU maps for 2019 and 2030 
are simulated using the Markov-Chain analysis. Before 2030 LU maps is developed, 
MLP-MC projected 2019 LU map is compared to the actual 2019 LU map to ensure suffi-
cient prediction accuracy. LU class-wise accuracy is calculated by equating the actual and 
predicted area of each LU category.  

4  Results 

4.1  Spatiotemporal mapping of LULC changes 

Figures 2, 3 and Table 4 describe the region’s urban growth during the past three decades, i.e. 
1990–2019. All the four (1990, 2000, 2010, 2019) LULC maps are classified into four broad 
LU classes: Vegetation, Water body, Built-up, and Others. The actual LU class of the 240 
randomly generated ground points is verified using Google Earth Explorer to calculate 
Kappa statistics. As shown in Table 3, all four years overall Kappa values are higher than 
0.80, and Built-up LU class kappa values are always greater than 0.85, implying a close 
match between classified and actual ground features. All four ML generated LULC maps are 
acceptable, as their overall Kappa values are higher than the minimum threshold of 0.80 
(Congalton and Green, 2019).  

The total area under study is 945  km2. During 1991, the “Others” LU class covered the  
 

Table 3  The calculated Kappa statistic values for the four years 

LU class 
Class-Wise Kappa coefficient 

1990 2000 2010 2019 

Water body 0.83 0.75 0.87 0.91 

Vegetation 0.82 0.78 0.90 0.74 

Built-up area 0.85 0.86 0.86 0.95 

Others 0.80 0.82 0.82 0.86 

Overall Kappa 0.83 0.80 0.86 0.87 
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Figure 2  Ahmedabad LULC maps between 1990–2019 
 
largest 641.49 km2 followed by the built-up class covering 132.45 km2, vegetation class 
cover of 161.03 km2 and 9.37 km2 of water bodies. Several interesting patterns emerge 
from Table 4 and Figure 2. In the past 30 years, Ahmedabad’s total built-up area has grown  
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Table 4  Absolute quantities for each LU class during 1990–2019 

LU class 

Area (km2) 

Year 

1990 2000 2010 2019 

Water body 9.47 8.23 12.03 11.24 

Vegetation 161.03 185.55 203.84 226.60 

Built-up area 132.45 181.55 276.46 305.24 

Others 641.49 569.10 452.10 357.47 
  

 
 

Figure 3  Temporal change of land use classes during the four periods 
 

extensively both in extent and density. As shown in Figure 3, the Built-up class grew from 
181.45 km2 in 2000 to 276.46 in 2010 and 305.24 km2 in 2019. During 1990–2019, the re-
gion’s total Built-up area more than doubled, showing 130% growth, with an average deca-
dal gain of 33%. The urban growth rate was fastest during 2000–2010, i.e. 52%, followed by 
37% and 10% during 1990–2000 and 2010–2009. 

The second-largest change is seen in the “Others” LU class, containing open areas such as 
bare plots, uncultivated agricultural lands and landfills. The total “Others” area reduced to 
half its size during 1990–2019, with a 17% average decadal decrease rate. The highest per-
centage decrease of 21% is seen during 2010–2019, trailed by 20% and 11% during 
1990–2000 and 2000–2019. The “Others” LU class reduction also indicates a net decrease in 
cultivable lands as this LU class contain large amounts of un-cropped farmlands, as verified 
by Google Earth Explorer. Next, a rising trend is seen for the Vegetation LU class compris-
ing cropped agricultural farmlands, parks and forests. Vegetation class enlarged by 40.8% 
from 161.03 km2 in 1990 to 226.60 km2 during 2019. With the highest growth rate of 15.3% 
during 1990–2000, this class continues to grow at a decadal growth rate of 12%, due to sev-
eral afforestation programs run by the local government and municipal corporation. The fi-
nal LU class, i.e. Water body comprising river, lakes, canals and wetlands, cover a tiny frac-
tion of the city’s area ~1%. In comparison to other classes, this LU does not show much 
fluctuation. However, after the construction and interlinking of the Narmada river with the 
Sabarmati, the Water body class total area increased 46.2% during 2000–2010. As a result, 
the Sabarmati river no longer runs dry anytime during the year.  
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4.2  Markov transitional probability matrix and 2019 land use prediction 

The Markov Process is applied over the four LULC maps to estimate the class-wise LU 
transition probabilities matrices for 2000–2010 and 2010–2019 (refer to Table 5). Inspecting 
pairwise transition probabilities explain the likelihood of one LU class transforming into 
another. The diagonal elements denote the probability for self-replacement, i.e., LU classes 
that do not change between two periods. In contrast, off-diagonal elements indicate the like-
lihood of transition from one LU class to another.  

 
Table 5  Transition probabilities for the periods 2000–2010 and 2010–2019 

Period LU class Water body Vegetation Built-up area Others 

2000–2010 

Water body 0.362 0.198 0.267 0.173 

Vegetation 0.011 0.435 0.106 0.447 

Built-up area 0.003 0.052 0.878 0.067 

Others 0.02 0.194 0.163 0.623 

2010–2019 

Water body 0.531 0.097 0.218 0.155 

Vegetation 0.010 0.416 0.184 0.389 

Built-up area 0.007 0.072 0.825 0.096 

Others 0.003 0.298 0.099 0.601 

 

 
 

Figure 4  Transformation of different LULC classes to the Built-up spaces 
 
As shown in Table 5 and Figure 4, “Others” and Vegetation classes are steadily transi-

tioning into the Built-up class. The “Others” class containing open lands and uncropped 
farmlands show the maximum conversion to the Built-up areas. The rate of this transfor-
mation is fastest during 2000–2010 (p = 0.163), followed by 1990–2000 and 2010–2019 (p = 
0.099). Vegetation LU class, particularly agricultural lands, also transformed into Built-up 
spaces. Notable transitions are also seen between Vegetation to “Others” (p = (0.447, 0.389)) 
and “Others” to Vegetation (p = (0.196, 0.298)) class during 2000–2010 and 2010–2019. The 
“Others” class contains large amounts of uncropped agricultural fields that undergo planta-
tion at different times of the year. Thus, transitions between Vegetation and "Others" LU 
class arise when a farm gets converted to non-agricultural lands during the non-cultivation 
season and vice-versa. Thus, large scale conversion of “Others” to Built-up class also indi-
cates a sharp decrease in total cultivable lands.  
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4.3  Relationship between population and urban growth  

Figure 5 shows the relationship between population rise and urban growth during the past 
three decades (1990–2019). Ahmedabad’s population grew from 35.47 lakhs in 1990 to 
78.68 lakhs in 2019, whereas the built-up class grew from 132.45 km2 to 305.24 km2 in the 
same period.  

The high Pearson correlation coefficient (ρ = 0.97) indicates a strong relationship between 
population rise and urban growth. As a 
result, a straight line between the two 
variables provides an excellent fit 
(R2=0.957). Thus, on average, 3.9 km2 
additional built-up area is required to 
accommodate every 1 lakh (100,000) 
new residents into the city. Further, rapid 
urbanization has led to the densification 
of formal and informal housing in 
planned and unplanned neighbourhoods, 
especially in slum areas (Bhatt, 2003).  

4.4  Predicting future urban expansion 

The MLP-MCA model in Terrset software predicts Ahmedabad’s future urban growth. The 
study’s MLP model only considered “Others” to Built-up, Vegetation to Built-up, Vegetation 
to “Others”, and “Others” to Vegetation transitions for simplicity and accuracy. Apart from 
2000 and 2019 LULC maps, the model considers several urban growth drivers for training 
and prediction. Drivers with Cramer V values greater than 0.15 are taken as additional mod-
el inputs (Eastmen, IDRISI 2009). As shown in Figure 7, a third-degree polynomial de-
scribing the likelihood of “Others” to Built-up conversion, Digital Elevation Maps, Road 
Network distance maps and region’s Slope Map with Cramer V values of 0.287, 0.234, 
0.205 and 0.151 are selected. Next, the MLP neural network is trained for 10000 iterations, 
during which the Root Mean Square Error converges smoothly to produce a high accuracy 
rate of 91.33 %. Further, as shown in Figure 6, the MLP-MCA model is used to predict Ah-
medabad’s 2019 LULC map. Model validation compares the predicted 2019 LULC map to 
the actual map. As shown in Table 6, the model slightly over-predicts the Built-up, Water 
body and “Others” LU class by 8.44%, 5.24% and 3.12%, respectively. In contrast, Vegeta-
tion class is under-predicted by 16.55% respectively. The overall Kappa statistic value of 
83.6% confirms the MLP-MCA model’s prediction accuracy (Atkinson and Tatnall, 1997). 
Using the same parameter settings, the MLP-MCA model is rerun to predict the 2030 LU 
map.  
 

Table 6  LULC-predicted versus actual value for the year 2019 

LU Class Actual area (km2) Predicted area (km2) Percentage difference 

Water body 11.24 11.83 –5.24 
Vegetation 226.60 189.11 –16.55 
Built-up area 305.24 330.99 8.44 
Others 357.47 368.62 3.12 

 

 
 

Figure 5  Relationship between Ahmedabad’s population 
rise and urban growth 
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Figure 6  Actual and predicted LULC map of Ahmedabad in 2019 
 
Table 7  Area under each LU class (km2) in 2019 and 2030 

LU class 2019 2030 

Water body 11.24 11.78 

Vegetation 226.60 234.24 

Built-up area 305.24 383.29 

Others 357.47 271.25 

 
By 2030, the Built-up LU class area is expected to undergo the largest change of 31.45%, 

rising from 305 km2 to 383 km2 (refer to Figure 8 and Table 7). Most of this increase in the 
city’s built-up area shall be compensated by a decline in the “Others” geographical spread. 
Overall, the available open grounds, bare lands, uncropped agricultural areas shall reduce 
from 358 km2 in 2019 to 271 km2 by 2030. The city’s green cover shall grow slightly from 
227 km2 in 2019 to 234 km2 in 2030. No appreciable changes are expected in the size and 
locations of the city’s water bodies. Besides, as per regression estimates, the city's popula-
tion is expected to grow by 18.8%, reaching 93.5 lakhs in 2030 from 78.70 lakhs in 2019. As 
per the equation in Figure 6, a 93.5 lakh population in 2030 shall require a 374.2 km2 of 
built-up area close to 383.29 km2 predicted by the future LULC map. In the absence of so-
phisticated LULC modelling tools, this equation can be adopted for predicting future urban 
expansion in this region. 
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Figure 7  The various urban growth drivers selected for predicting Ahmedabad’s 2030 urban growth 
 

Between 1990 to 2019, Ahmedabad witnessed massive urban development at the expense 
of forests, bare lands, cultivable and un-cropped farmlands. In this period, the total built-up 
area grew from 145 km2 to 305 km2. During 1990–2000, most residential developments 
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Figure 8  Ahmedabad predicted LULC map in 2030 
 
focused westward of the Sabarmati river along Chandlodia, Vijaynagar, Ramdevnagar and 
Parvati Nagar. On the river’s eastward side, residential development focused on Hansol, 
Sardarnagar and Sukharamnagar. The industrial growth was concentrated around Naroda and 
Odhav. Most new developments followed the city’s main transportation routes, infilling 
around existing developed areas. The fastest urban expansion occurred between 2000–2010. 
In 2010, Forbes magazine placed Ahmedabad as the third-fastest growing city globally 
(DNA, 2010). Rapid industrial growth and job opportunities attracted people from different 
parts of the state and country. Large scale urban (residential and commercial) development 
trailed Chandkheda and Ranip in the North and Thaltej, Sarkhej, Changodar and Bopal in 
the South. The development of new roads and civic infrastructure also attracted people to 
occupy outer semi-urban and sub-urban areas encouraging further expansion. Further, 25.6% 
of the city’s population lived in slums and informal settlements in 1990. This figure fell to 
4.5% in 2011 due to better work opportunities and Ahmedabad’s municipal corporation’s 
slum-housing and networking project (Bhatt 2003; Wikipedia 2021a). During 2010–2019, 
several manufacturing, pharmaceuticals and information technology companies opened 
along the Thaltej-Sarkhej highway in the city’s south. The economic sector also benefitted 
from the expansion and re-development of the city’s international airport. The eastern indus-
trial belt along Kathwada, Naroda, Chiloda, and Odhav has expanded further.  

Besides many socio-economic benefits, Ahmedabad’s rapid urbanization has produced 
several unintended consequences. Rapid urbanization infilling around developed areas in-
creased urban density in older city areas. The higher urban density restricts local administra-
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tion ability to provide necessary health and sanitation facilities to city dwellers creating sev-
eral social and health challenges. For instance, urban slums face higher vulnerability to 
heatwaves, floods and shortage of potable water. Due to faster transmission rates, the 
densely urbanized regions are hit hardest during pandemics. Next, the outward urban expan-
sion beyond existing city boundaries has destroyed many bare and agricultural lands. Ini-
tially, most farmlands get encroached by low-density urban development, and gradually 
these sparsely-populated areas become high-density zones due to rising industrial, residen-
tial, and business activities. The higher market value of agricultural lands near urban areas 
encourages farmers to sell their lands for urban development. Relaxed land-use laws allow-
ing fragmentation of farmlands also harm surrounding farms’ physical and chemical proper-
ties. Noteworthy, the decline in agricultural lands size and productivity threatens regional 
food security for the future. 

Further, between 1990–2019, most areas have shifted towards higher LST. Prevailing 
trends suggest substantial increments of 18.8% and 31.45% to the city’s population and ur-
ban extents by 2030. Thus, there is a looming need to develop sustainable urban develop-
ment policies to balance future growth and environmental harm. Sustainable policies must 
decrease forests and cultivate land exploitation, consolidation and reclamation. Tax, loan 
preferences and financial subsidies should be given to companies having low land demands, 
and high capital taxes can be imposed on low land output efficiency and poor land use. De-
centralized urban spaces (e.g. satellite towns) can reduce urban density and prevent large 
UHI zones in the future. Further, large-scale urban greening measures can also limit UHI 
effects. 

5  Conclusions 

This study performed a spatio-temporal assessment of Ahmedabad’s urban growth during 
the past three decades (1990–2019). The Maximum Likelihood Algorithm classified four 
(1990, 2000, 2010, 2019) coarse resolution (30 m × 30 m) satellite images into Built-up, 
Vegetation, Water body and “Others” land-use (LU) classes. During 1990–2019, the city’s 
urban area grew substantially in extent and density from 132 km2 in 1990 to 305 km2 in 
2019. Urbanization engulfed large swaths of open spaces, bare lands, and uncultivated farms, 
plummeting total “Others” LU area from 641 km2 in 1990 to 357 km2 in 2019. The green 
cover grew moderately from 161 km2 in 1990 to 227 km2 during 2019, and water bodies did 
not show much fluctuation. New urban development appears to follow the main transporta-
tion routes, infilling and expanding existing developed areas. 

A rapidly rising population is the primary driver for Ahmedabad’s fast urban growth. The 
city is adding almost 3.9 km2 additional built-up space to accommodate every 1 lakh 
(100,000) new residents into the city. Rising urban density stresses the city’s infrastructure, 
hampering the supply of essential services like housing, health and sanitation. Moreover, the 
destruction of open spaces and farmlands for new development has reduced food production 
and increased urban heating. The application of an MLP-MCA model predicts a 25% in-
crease in Ahmedabad’s total urban area up to 383 km2 in 2030. In comparison, the “Others” 
LU class area is expected to fall by 24% to 271 km2. Moreover, the city’s population is ex-
pected to swell by 19%, from 78.70 lakhs in 2019 to 93.5 lakhs in 2030. Unchanged, these 
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trends shall give rise to several socio-economic and environmental problems.  
Future urban development policies must balance further development and environmental 

damage. A strong commitment and coordination is necessary between different government 
agencies to strictly implement land laws. Financial incentives for industries displaying high 
levels of land output efficiency and strict penalties on illegal land encroachments should be 
imposed. Urban greening such as parks, lakes and sustainable building construction can also 
help reduce UHIs. Notably, this study used past urban growth trends to develop future pre-
dictions. Several advanced modelling techniques can also predict future development based 
on alternative urban development theories. Thus, follow up studies should predict Ahmeda-
bad’s urban growth under “Environmentally Conscious”, “Business as Usual” and “Envi-
ronmentally Wasteful” scenarios.  
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