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Abstract: Spatial models are effective in obtaining local details on grassland biomass, and 
their accuracy has important practical significance for the stable management of grasses and 
livestock. To this end, the present study utilized measured quadrat data of grass yield across 
different regions in the main growing season of temperate grasslands in Ningxia of China 
(August 2020), combined with hydrometeorology, elevation, net primary productivity (NPP), 
and other auxiliary data over the same period. Accordingly, non-stationary characteristics of 
the spatial scale, and the effects of influencing factors on grass yield were analyzed using a 
mixed geographically weighted regression (MGWR) model. The results showed that the 
model was suitable for correlation analysis. The spatial scale of ratio resident-area index (PRI) 
was the largest, followed by the digital elevation model, NPP, distance from gully, distance 
from river, average July rainfall, and daily temperature range; whereas the spatial scales of 
night light, distance from roads, and relative humidity (RH) were the most limited. All influ-
encing factors maintained positive and negative effects on grass yield, save for the strictly 
negative effect of RH. The regression results revealed a multiscale differential spatial re-
sponse regularity of different influencing factors on grass yield. Regression parameters re-
vealed that the results of Ordinary least squares (OLS) (Adjusted R2 = 0.642) and geograph-
ically weighted regression (GWR) (Adjusted R2 = 0.797) models were worse than those of 
MGWR (Adjusted R2 = 0.889) models. Based on the results of the RMSE and radius index, 
the simulation effect also was MGWR > GWR > OLS models. Ultimately, the MGWR model 
held the strongest prediction performance (R2 = 0.8306). Spatially, the grass yield was high in 
the south and west, and low in the north and east of the study area. The results of this study 
provide a new technical support for rapid and accurate estimation of grassland yield to dy-
namically adjust grazing decision in the semi-arid loess hilly region. 
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1  Introduction 

Grass yields of grasslands are fundamental for maintaining the longevity of these ecosys-
tems, and a direct indicator of grassland ecological health. As an important aboveground 
material basis of grassland, it is an ideal place for grazing livestock. Due to its good palata-
bility, natural grassland forage has high nutritional value for improving the production per-
formance of herbivorous livestock. Further, yields have important implications for analyses 
of grass-livestock balances within natural grasslands across the globe. Indeed, biomass es-
timations of natural grasslands have long been a research hotspot corresponding fields of 
grassland management (Niu et al., 2003; Xie et al., 2009; Wright, 2010; Vasilis et al., 2018; 
Cao et al., 2019). An accurate understanding of the spatiotemporal distribution of grassland 
biomass also provides an important scientific basis for determining the livestock carrying 
capacity, and establishing sustainable animal husbandry production (Huang et al., 2021).  

Ningxia is located in the ecotone of agriculture and animal husbandry in the inland of 
Northwest China and is a temperate continental arid and semi-arid climate area. Ningxia is 
also a key area for the construction of “two screens and three belts” ecological security sys-
tem in China. The grassland area, which belongs to the temperate grassland region, is 
244.33×104 ha (Ji et al., 2020). Temperate grassland is distributed in the loess hilly area, 
south of Ningxia, mainly in Yuanzhou, which is located in the central and western parts of 
the Loess Plateau. Yuanzhou District is a semi-arid, loess hilly region, with a large grassland 
area mainly consisting of temperate grasslands, including temperate meadow and typical 
temperate grasslands varying by region; however, desertification commenced across the 
grasslands of Yuanzhou as early as 2000, and large-scale disorderly reclamation and planting 
led to the destruction of ~466.67 km2 of natural grassland. Further destructive behaviors, 
such as overgrazing, Rodent hazards, poor grassland management and indiscriminate har-
vesting of Chinese medicinal materials, have further led to the degradation of grassland 
production capacity. Approximately 31% of the total grassland area in Yuanzhou District has 
been damaged by reclamation, followed by “grazing prohibition and house feeding,” which 
has become the primary animal husbandry mode for all local farmers; whereas measures for 
“returning farmland to forest and grassland” are also being implemented gradually (Yu et al., 
2009; Dai et al., 2012; Bai et al., 2015). The implementation of such grassland management 
measures for over 20 years has greatly improved the local ecology (Wang et al., 2016); 
however, not all grasslands have been developed or utilized. Additionally, there has been 
withdrawal of cultivated land, shrinking of the main source of livestock diet, and a persistent 
competition between people and livestock for food. Accordingly, the necessity of dynami-
cally adjusting grassland management policies to alleviate the pressure of farmers' livestock 
feeding on forage is an important debate; therefore, it is particularly important to reevaluate 
the biomass of these temperate grasslands for informing any policy adjustments. Presently, 
the grass and livestock industry represents one of the three largest industries in Yuanzhou, 
and has gradually formed a development pattern of grass planting and livestock rearing. 
There are 2458 large beef cattle breeding households with more than 10 heads, accounting 
for 38% of large-scale beef cattle breeding. 

Traditional grass yield estimates employ the sample method for site data measurement. 
Although this method produces more accurate first-hand data of grass biomass through an 
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abundance of sample quadrat measurements, it is time- and labor-intensive with a low esti-
mate accuracy; moreover, the estimation method of grass yield per unit area cannot meet the 
practical needs of unified management across various grassland types, and it is difficult to 
popularize and apply on a macro scale (Cao et al., 2018; Xin et al., 2020). The recent exten-
sive application of remote sensing technology has become an obvious solution to addressing 
previous limitations when estimating grass yield (Liu et al., 2018). Compared with tradi-
tional methods, it is advantageous on a spatiotemporal scale. An ever-increasing number of 
relevant research results and remote sensing-based models of grass yield, including statisti-
cal (Ren et al., 1998; Roy et al., 2002) and comprehensive models (Tucker et al., 1985; An-
derson et al., 1993), have been put forth (He et al., 2015); however, according to the first 
regularity of geography, grass yield is related to adjacent environmental variables, and varies 
by geographical location. Since the British geographer Fotheringham posited a geograph-
ically weighted regression (GWR) analysis method, the spatial relationship between grass 
yield and influencing factors have been assessed (Brunsdon et al., 1996; Qin et al., 2006; 
Kashki et al., 2021). 

In recent years, novel GWR models have provided a new remote sensing-based approach 
for estimating grass yields. For example, You et al. (2014) introduced the concept of GWR 
modeling into remote sensing estimates of grass yield for the Three-River-Source National 
Park. Elsewhere, Liu et al. (2019) estimated and verified the grass yield in the Xilin Gol 
League based on the improved GWR multi-factor model (Liu, 2019); whereas Li et al. (2016) 
estimated the grass yield of Qinghai Province by constructing a GWR model, combining it 
with ground-measured data, producing higher levels of accuracy than when using a unified 
weighted regression model. At present, however, most remote sensing models of grass yield 
are based on ground-measured sample data and constructed using various linear functions or 
other mathematical relationships to address the limited spatial heterogeneity considered in 
traditional linear regression models; although, these models do not consider the impact of 
model accuracy on a variety of environmental impact factors over different scales, they also 
do not include the spatial heterogeneity scale differences of these influencing factors, thus 
resulting in large deviations of estimates (Fotheringham et al., 2010; Wei et al., 2012; Zeng 
et al., 2016; Otheringham et al., 2017; Chao et al., 2018a; Harris et al., 2018b; Oshan et al., 
2019; Li et al., 2021). Although the GWR model has been widely used among different sci-
entific fields, there are few reports on the analysis of grass yield distributions, or its spatial 
non-stationary characteristics using a mixed GWR model (MGWR), which allows for the 
inclusion of unique bandwidths of different influencing factors, thus improving upon tradi-
tional GWR models (Yu et al., 2020), and providing a novel perspective for estimating grass 
yields.  

Accordingly, this study focuses on Yuanzhou District, an area of warm grassland in the 
southern mountainous area of Ningxia Hui Autonomous Region, China. At the same time, 
the Liupan Mountain in Yuanzhou contains a large area of temperate meadow and temperate 
grasslands, which are an important part of Ningxia temperate grassland. Livestock farmers 
heavily depend on the loess hilly area represented by the Liupan and Yunwu mountains, 
which are studied for the remote sensing estimation of grass yield of temperate grassland. 
Therefore, measured sample point data of these grassland were collected by establishing 
experimental quadrats for carrying out multiscale research and accuracy verification on the 
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grass yield of temperate grassland in combination with concurrent hydrological data, a digi-
tal elevation model (DEM), estimates of net primary productivity (NPP), and other auxiliary 
data. To this end, an MGWR model was used to decipher the spatial non-stationary charac-
teristics and inform the management of local grass and forage-livestock balance dynamic 
policies. 

2  Material and methods 

2.1  Study area and quadrat setting 

2.1.1  Study area 

Yuanzhou District is located in the northern part of Guyuan city, in the mountainous area of 
southern Ningxia along the northwest edge of the Loess Plateau in China and is an important 
ecological barrier in the region. It is a typical semi-agricultural and semi-pastoral area, con-
taining primarily temperate grasslands (Wang et al., 2012). Yuanzhou is the largest temper-
ate grassland area in Ningxia. The grasslands, comprising the largest area of temperate 
grassland in the montane areas of southern Ningxia, can be predominantly categorized into 
seven types: cold Artemisia, Miscanthus, oxtail Artemisia, iron Artemisia, Baili herb, tiger 
stick, Miscanthus thyme. Located between 105°58ʹ–106°32ʹE (50 km) and 35°46ʹ–36°38ʹN 
(~100 km), it has a total area of 2739.01 km2, accounting for 4.51% of Ningxia. Located in 
the transition zone between the central plains agricultural area and the frontier grassland area, 
the town has long been an important stop along the Silk Road and maintains an extensive 
history and culture (Figure 1). Yuanzhou has two important nature reserves on the Loess 
Plateau, namely the Liupan Mountain and Yunwu Mountain. The Yunwu Mountain National 
Nature Reserve in this study area is the first Grassland Nature Reserve established in the 
Loess Plateau. Liupan Mountain, known as the “Green Island” of the Loess Plateau, is an 
important forest ecosystem type of nature reserve in Northwest China (Han et al., 2020). 
The Yunwu Mountain in Yuanzhou contains the largest reserved area of temperate grassland 
in the semi-arid area of the Loess Plateau, and represents the unique temperate grassland 
natural ecosystem of the Loess Plateau. The Yunwu Mountain is the natural ecological 
“background” of the Loess Plateau, the reservoir of biological resources, and a natural 
“treasure house” for studying the occurrence, development, and evolution law of temperate 
grassland ecosystem in the semi-arid area of the Loess Plateau. Yuanzhou District governs 
11 townships namely Sanying, Tanshan, Huangduobao, Pengbao, Touying, Zhaike, Guanting, 
Zhonghe, Hechuan, Zhangyi, and Kaicheng, 149 administrative villages, and three urban 
sub-district offices: Beiyuan, Nanguan, and Guyan Streets. Its climate and hydrological en-
vironment are deeply affected by the northwest wind circulation because of its location in 
the middle latitude zone, and finally forms a temperate semi-arid continental climate type 
under the atmospheric mass influence of the Qinghai Tibet Plateau. The average annual 
temperature is 6.8℃, with an average annual rainfall between 300‒550 mm, and a large in-
terannual variation in precipitation rate. Qingshui River, the largest and longest tributary 
flowing into the Yellow River in Ningxia, originates at the foot of Liupan Mountain in Yu-
anzhou and is also the largest river in Guyuan city. Due to the elevation of Liupan Mountain, 
the Qingshui River system is formed by the Jinghe and Weihe river systems. Further, the 
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Ruhe River here belongs to the Jinghe River basin; whereas the Zhangyi River belongs to 
the Weihe River Basin.  
 

 
 

Figure 1  Location and sample distribution of the study area (Yuanzhou District, Guyuan, Ningxia, China) 
 

2.1.2  Quadrat sample locations 
August typically comprises the primary growing season in temperate grasslands. Under the 
guidance of the field investigation method of grassland resources, and in accordance with 
the sample plot setting principle of Ren et al. (1998), a total of 149 experimental sample 
plots were arranged with the administrative village in August 2020 as the basic sampling 
units of grassland biomass statistics to sample across various administrative boundaries, 
grassland types, landforms, typical landscape characteristics, and accessibility of herbivo-
rous livestock in Yuanzhou District (Figure 1). The quadrat setting covered all grassland 
areas in Yuanzhou, and field positioning was carried out using a GPS locator. A 1 m2 plot 
was mowed to the ground for sampling, all herbaceous plants in the plot, and recorded along 
with location (village and geographic coordinates), altitude, and fresh weight of each sample 
plot. This sampling was repeated three times using the diagonal method, for a total of 447 
measured quadrats used to obtain the global grass yield through Kriging interpolation. In 
addition, using the previous research results for reference, downscaling of the quadrat data 
was performed to match the 30-meter resolution of grass yield inversion results (Arshad et 
al., 2021). In this study, 2698 random sample points were used as observation values for 
modeling and accuracy verification. 

2.2  Data processing and analysis 

2.2.1  Variable optimization 

There are numerous influential factors on grass yield, and three requirements must be con-
sidered when selecting variables for multiple linear regression modeling: first, only those 
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influencing factors with a significant impact on the distribution of grass yield should be 
considered; second, the spatial heterogeneity of these influencing factors must be accounted 
for; third, there must not be multicollinearity among the influencing factors selected. Here, 
SPPS v. 26.0 was used to analyze the correlation between all possible influencing fac-
tors—ratio resident-area index, temperature data, Air humidity data, NPP, topographic data, 
night light—and grass yield in the ground-measured samples. Correlation analyses were 
used to statistically analyze the dependency between variables, and the Pearson correlation 
coefficient (r) was used as an evaluation index to determine linear correlation. The correla-
tion calculation results are shown in Figure 2. This correlation thermodynamic diagram is 
made by R software (v. 3.6.3). 
 

 
 

Figure 2  Pearson correlation analysis of influencing factors on grass yield 
 
Among the 12 influencing factors, only slope and aspect did not pass the significance test 

(p < 0.05); whereas all other 10 were significant at the p < 0.01 level. The highest Pearson 
coefficient was the DEM (0.695), followed by the relative humidity (RH; 0.596). 

2.2.2  Variable determination 

Based on the above Pearson coefficient calculation results, excluding the uncorrelated slope 
and aspect factors to grass yield, and considering the delayed impact of climate factors on 
grass yield (Liu et al., 2019), 10 factors were selected for the influencing factors: average 
July rainfall, RH, net primary productivity of vegetation (NPP), ratio resident-area index 
(PRI), elevation (DEM), daily temperature range, distance from gully, and distance from 
road (Table 1). As the constants in classical GWR and MGWR modeling represent the in-
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fluence of different locations on the dependent variable when other independent variables 
are fixed, they can capture the influence of other external factors to a certain extent. 

 
Table 1  Influencing factors and descriptions included in the analysis of grass yield 

Variable Abbreviation Unit Variable description 

Intercept Intercept g Intercept term of the model 

Average rainfall in July AJR mm Average July rainfall 

Relative humidity RH % Percentage of water vapor pressure in the air vs. saturat-
ed water vapor pressure at the same temperature 

NPP NPP gC·m‒2·a‒1 

Net primary production capacity of vegetation, refers to 
the total amount of organic matter accumulated by pho-
tosynthesis in unit area and unit time of green plants, 
minus the remaining part after autotrophic respiration 

Ratio resident-area 
index PRI – 

Proportion of impervious surface in the surface area per 

unit area: BLUEPRI
NIR

= , where blue and NIR are the 

pixel reflectance values of blue and near infrared wave-
lengths, respectively 

Elevation DEM m Altitude of sample point 

Daily temperature range DTR ℃ Difference between maximum and minimum daily tem-
peratures 

Distance from gully DS m Distance from sample point to valley 

Distance from road DP m Distance from sample point to road 

Distance from river DR m Distance from sample point to river 

Night light NL – Night light distribution in the study area 

 
In order to quickly realize the estimation of grass yield of temperate grassland in 

semi-arid loess hilly region of Ningxia, so as to guide local rational grazing, and at the same 
time, it is necessary to meet the unity of quadrat setting and spatial data of influencing fac-
tors. All data select the cross-sectional data in August 2020 as the basic data of model opera-
tion. The August 2020 data used for variable optimization included rainfall amount, eleva-
tion, RH, impervious surface index, and city light brightness (http://www.cma.gov.cn/ 
2011qxfw/2011qsjgx/). As one of the leading climatic factors of grassland growth, rainfall 
has a certain delay to plant growth, hence the month of rainfall is selected as July (Liu et al., 
2019). Climatological station observation data of RH, daily temperature range, and annual 
rainfall in the study area were acquired from China National Meteorological Data Center; 
elevation and remote sensing images came from the scientific data center geospatial data 
cloud of the computer network information center at the Chinese Academy of Sciences 
(http://www.gscloud.cn/sources/); NPP data of vegetation for 2020 were collected from 
NASA (https://search.earthdata.nasa.gov/search); spatial distribution of rivers and roads 
were recorded by Open Street Map (OSM) foundation (http://download.geofabrik.de/ 
asia/china.html); night lighting data was provided by the Institute of Aerospace Information 
Innovation at the Chinese Academy of Sciences (http://satsee.radi.ac.cn/cfimage/nightlight/). 
Kriging interpolation was required for meteorological station data, the DEM required further 
surface analysis to obtain the slope and aspect; spatial distribution of the valley was obtained 
through hydrological analyses; the impervious surface index of remote sensing imagery was 
obtained using band math following initial preprocessing. Specifically, ENVI software was 
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used to preprocess Landsat OLI remote sensing data of the United States (atmospheric cor-
rection, geometric correction and orthography correction) to extract urban land information. 
All data for the 10 influencing factors in Yuanzhou can be seen in Figure 3. 
 

 
 

Figure 3  Spatial distribution of influencing factors across Yuanzhou District (NPP: Net primary production; PRI: 
Ratio resident-area index; DEM: Elevation; AJR: Average rainfall in July; NL: Night light; DP: Distance from 
road; DS: Distance from gully; DR: Distance from river; DTR: Daily temperature range; RH: Relative humidity) 
 

2.2.3  Multicollinearity test 

Considering the likelihood of multicollinearity between the influencing factors selected, a 
local variance expansion factor (VIF) was selected for testing this feature, to limit any devi-
ation of estimation results caused by their interaction when estimating the grass yield of 
temperate grasslands (Eq. (1)): 

                              
2

1
1 i

VIF
R

=
−                              

(1) 
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where 2
iR  is the square of the determination 

coefficient. Thus, VIF is the reciprocal of tol-
erance, where the greater the VIF, the lower the 
tolerance between variables, and the greater the 
problem of collinearity. It is generally accepted 
that VIF should not be ≥5, or it can be relaxed 
to ≤10; otherwise, multiple collinearities are 
present among the independent variables (i.e., 
an independent variable can be expressed by the 
linear expression of one or several other inde-
pendent variables; Marquardt et al., 1970). All 
influencing factors VIF were ≤5, and their 
tolerance values were small (Table 2); thus, it 

was concluded that no serious multicollinearity phenomenon was present among model’s 
influencing factors. 

2.3  Methods 

2.3.1  OLS model 

Ordinary least squares (OLS) is a linear regression model where the weight between each 
observation point is equal. The OLS model is used to study the relationship between de-
pendent and explanatory variables (Golub, 1980; Bergen et al., 2013; Jelinek et al., 2019), 
the starting point of all spatial regression analyses. Assuming that the linear regression rela-
tionship meets the global spatial stationary condition, the basic criterion is to find the best 
parameters by minimizing the residual sum of squares (RSS) between the predicted and ob-
served values (Eq. (2)): 

 
0i k ik i

k

y xβ β ε= + +∑
 

(2) 

where yi is the value of the dependent variable at point i, β0 is the intercept, xik is the value of 
the k-th explanatory variable at point i, βk is the slope or regression coefficient of the k-th 
explanatory variable, and εi is the residual. 

2.3.2  GWR and MGWR regression models 

The GWR model is a geostatistical method. It was first put forth by Fotheringham et al 
(1998), where the geographical location of data is incorporated into the regression parame-
ters based on the traditional global regression model and considering the spatial weight of 
adjacent points when estimating a local parameter (Brunsdon et al., 1996; Fotheringham et 
al., 1996; Fotheringham et al., 1998). Its expression is calculated according to Eq. (3): 

 
( )

0 0

,
n m

i j i i ij i
i j

y u v xβ ε
= =

= +∑∑   (3) 

where yi is the dependent variable, xij is the j-th independent variable of observation point i, 
βj(ui, vi) is the regression coefficient of the j-th independent variable in position (ui, vi), and 
εi is the random error term. 

Table 2  Multicollinearity diagnosis results 
among influencing factors 

Variable Tolerance VIF 

AJR 0.244 4.092  

RH 0.248 4.029  

NPP 0.459 2.180  

PRI 0.755 1.325  

DEM 0.445 2.249  

DTR 0.248 4.025  

DS 0.792 1.262  

DP 0.804 1.243  

DR 0.754 1.327  

NL 0.877 1.140  
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The GWR model is a special case of a global regression model; whereas the parameters in 
OLS are constant in space, those of GWR vary spatially, and the parameters of each obser-
vation point may be different, more accurately reflecting the spatial heterogeneity. The 
GWR expression indicates that each calibration point has its own regression model, and the 
corresponding parameter estimation of each calibration point is more affected by the data of 
nearer observation points (Qin et al., 2021). Notably, the observation data near each calibra-
tion point of the GWR model usually maintain similar properties (i.e., are spatially autocor-
related), and the selection of an appropriate bandwidth range is particularly important.  

OLS, GWR, and MGWR all belong to the linear distribution regression method; however, 
because there is only one bandwidth in GWR, the local relationship in each model is limited 
to the same spatial scale and does not consider the conditional relationship between each 
independent and dependent variable on different spatial scales. Alternatively, the MGWR 
method allows the conditional relationship between predictor and response variables to 
change on different spatial scales (Geniaux et al., 2008; Wang et al., 2014; Fotheringham et 
al., 2019); that is, each variable changes on the surface of the parameter to allow the repre-
sentation of different bandwidths (Zeng et al., 2016). MGWR minimizes over-fitting and 
reduces bias and collinearity in parameter estimation by eliminating the constraints of all 
relationships that vary on the same spatial scale; therefore, when GWR is being used to 
study spatial heterogeneity, the MGWR is the most ideal local model specification (Wei et 
al., 2012a). The parameter calibration process of MGWR commonly uses a back-fitting al-
gorithm to calibrate the generalized additive model (Lianfa et al., 2019; Yu et al., 2019), 
defined according to Eq. (4): 

 
( )

0 0

,
n m

i bwj i i ij i
i j

y u v xβ ε
= =

= +∑∑
 

(4) 

where βbwj is the regression coefficient corrected by the effective bandwidth of the j-th in-
dependent variable. 

The MGWR model is primarily established through the process of spatial weight function 
setting, bandwidth selection, model testing, and visual expression of coefficients. 

(1) Space weight function setting 
There are many types of spatial weight functions, among which bi_square and Gaussian 

kernel functions are the most widely used. The distance threshold kernel function sets all the 
weight values of observation points other than the distance threshold (bandwidth b) to 0. The 
Gaussian kernel function is continuous and uses all observation point data. The bi_square 
kernel function can be considered as a combination of these two kernel functions. Therefore, 
bi_square kernel function was selected as the spatial weight function in view of this charac-
teristic. Within the bandwidth b of the calibration point i, the weight of each observation 
point is calculated by the continuous monotone decreasing function bi_square. The equation 
is as follows: 

 

22

1 ,

0,

ij
ij

ij

ij

d
d b

b

d b

ω

   − <  =    
 ≥

                   (5) 

Similar to the Gaussian kernel function, the weight values of all observation points are 
within the range of [0,1] when the bandwidth b is determined. When the distance dij=0, the 
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weight value of the corresponding observation point takes the maximum value 1. When dij 
increases, the weight value of the corresponding observation point gradually decreases; 
when dij increases to the bandwidth b, the weight value approaches 0. 

(2) Bandwidth selection 
The cross-validation method (CV) and Akaike Information Criterion (AIC) are two widely 

used bandwidth determination methods. Specifically, CV is an effective method for the cri-
terion of least squares sum of squares when the limiting bandwidth value is 0 (Cleveland et 
al., 1979). The equation corresponding to this method is as follows: 

 

 ( )
2

1

n

i i
i

CV y y b≠
=

 = − ∑
 

(6) 

where ( )iy b≠ is the predicted value (excluding the calibration point) when the bandwidth is 
equal to b. This method can ensure that in the case of very small bandwidth b, the model is 
calibrated on the sample close to the calibration point, rather than on the sample with only 
the calibration point. 

Akaike proposed a model selection criterion to measure the goodness of statistical model 
fitting in 1974, which is called AIC. AIC provides a standard to balance the complexity of 
regression model and the goodness of fitting data (Akaike et al., 1974). This criterion is one 
of the commonly used indicators in forecasting models using trend estimation. Its mathe-
matical expression is: 

 2 2ln( )AIC k L= −  
(7) 

where L is the likelihood function and k is the number of parameters of the regression model. 
The larger the likelihood function is, the better the model fit will be, and the larger the 
number of parameters k is, the higher the model complexity will be. In general, when the k 
of the model increases (that is, the complexity of the model increases), L is likely to also 
increase, making AIC smaller. However, when K is too large (that is, the model is too com-
plex), the growth rate of the function L slows down, resulting in the increase of AIC; thus, 
the model is too complex and can easily cause over-fitting. The objective of model optimi-
zation is to find the model with the lowest AIC value. Using AIC can not only improve the 
applicability of the model, but also introduce penalty terms so that the model parameters are 
as small as possible, which helps reduce the possibility of over-fitting. 

(3) Model test 
Some scholars improved AIC and applied it to kernel function bandwidth selection in 

GWR analysis (Brunsdon et al., 2002). This criterion is called AICc, which is the test index 
of spatial non-stationarity of commonly used MGWR model. The AICc is calculated using 
the following equation: 

 
( ) ( ) ( )2 log

2 ( )e e
n tr SAICc n niog n

n tr S
σ π

 +
= + +  − − 

  (8) 

where σ is the sample standard deviation, n is the sample content, tr(S) is the trace of matrix 
S, which is the cap matrix of the model. 

The Bayesian Information Criterion (BIC) proposed by Schwarz in 1978 is similar to AIC 
and can also be used to select the optimal bandwidth (Schwarz et al., 1978). The BIC was 
applied to GWR kernel bandwidth optimization selection (Nakaya et al., 2001). Similar to 
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AIC, BIC also introduces penalty terms related to the number of model parameters; however, 
the penalty degree of BIC is greater than that of AIC. When the sample size is too large, the 
model can be effectively prevented from being too complex. The formula is as follows: 

 ( ) ( )ln 2lnBIC k n L= −  (9) 
where L is the likelihood function, n is the number of samples, and k is the number of model 
parameters; kln(n) is the penalty term, and the larger the sample size, the larger the penalty 
term. Under the condition of constant sample number, the model with fewer parameters is 
optimal. 

(4) Visual representation of coefficients 
Arc GIS ordinary Kriging interpolation method was used to visualize the coefficient val-

ues of spatial sample points obtained by model regression. This method can predict the spa-
tial law within the whole research range based on the finite spatial sample points. Specifi-
cally, this model includes the positioning relationship between sample points and spatial 
structure characteristics into the analysis, which is the optimal linear unbiased method to 
predict the unknown from the known. The formula is as follows: 

 
( )0

1

( )
n

i iR x R Xλ=∑  (10) 

where R(x0) is the value of the unknown sample point, R(Xi) is the value of known points 
near the unknown point, λi is the weight of the first sample point to other unknown points, 
and n is the number of known points. 

2.3.3  Model evaluation 
Here, mean error (ME), mean absolute error (MAE), and root mean square error (RMSE) 
were used to evaluate the accuracy of the model (Qiu et al., 2016), and calculated according 
to Eqs. (11–13): 
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where n is the number of observation points used for verification, Z(xi) is the measured value, 
and Z*(xi) is the modeled value. Theoretically, the closer the MAE and RMSE are to 0, the 
better the prediction effect of the grass yield model. In some prior analyses, it has been dif-
ficult for the three indices to reach a single optimal solution; therefore, in addition to the 
above indices, the radius index (Eq. 14) proposed by Yang et al. (2019) was introduced to 
help identify the optimal model: 

 
( ) ( ) ( )2 2 2100 S S SRadius ME MAE RMSE= + +  (14) 

where Radius is the radius-index, and MES, MAES, and RMSES are the respective values 
standardized by the Z-score method. The lower the radius-index, the better the model effect. 
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3  Results 

3.1  Comparative analysis of model parameters 

The calculation result parameters of the OLS global, GWR, and MGWR models are shown 
in Table 3. The goodness-of-fit R2 of the GWR model was as high as 0.801 compared with 
OLS model (0.643), and the AICC of this model was much greater than 3000 compared to 
the OLS model (ΔAICC = 457.844), the adjusted R2 increased from 0.642 to 0.797, further 
supporting that the fit of the GWR model was significantly higher than that of the OLS 
model. Moreover, the analysis of variance of the residuals of the two models showed that the 
RSS of the GWR model decreased by 722.856. When comparing the parameters of GWR 
and MGWR, it was found that the goodness-of-fit R2 of the MGWR model was higher 
(0.891), and the AICC value was significantly lower (2951.878), revealing that the MGWR 
results were superior to those of the GWR model. Further, the sum of squares of the residu-
als of the MGWR model was 23.701, an order of magnitude lower than the GWR model 
(236.960), indicating that more accurate regression results were obtained by using fewer 
influencing factor parameters. The adjusted R2 increased from 0.797 to 0.889 for the 
MGWR model, further supporting the superior fit compared to that of the GWR model. 
Overall, the significantly better performance of the MGWR model was found to be sufficient 
for explaining the spatial distribution of grass yield. 

 
Table 3  Comparison of statistical parameters of different linear regression models: ordinary least squares (OLS), 
geographically weighted regression (GWR), and mixed GWR (MGWR) 

Parameter OLS GWR MGWR 

Residual sum of squares 959.816 236.960 23.701 

–2 log-likelihood 3697.432 3138.206 2558.904 

Classic AIC 3731.432 3270.442 2159.397 

AICc 3731.660 3273.816 2951.878 

BIC/MDL 3831.737 3660.555 2331.959 

CV 5863.375 4370.185 – 

R2 0.643 0.801 0.891 

Adjusted R2 0.642 0.797 0.889 

 
Local R2 have intuitively expressed the local model performance and mapping its distri-

bution reveals that the performances of the GWR and MGWR models were superior to OLS 
(Figures 4d and 4e). The local R2 value of the GWR model was between 0.55–0.92, whereas 
that of the MGWR model was between 0.55 and 0.98; however, the spatial distribution of 
local R2 indicates that the MGWR model predicted a larger area more accurately, with less 
area of low-value local R2. Figures 4a–4c shows the local residuals of the OLS model (–2.59 
to 3.89), the GWR model (–0.546 to 0.76), and the MGWR model (–0.18 to 0.13). The 
staggered structure of OLS residuals (Figure 4c) is readily apparent, whereas the high-low 
staggered structure in the residual distributions of the GWR and MGWR models (Figures 4a 
and 4b, respectively) is less obvious; however, that of the GWR model is the more of the 
two owing to the fixed bandwidth of the GWR model. Accordingly, the unique bandwidths 
of different independent variables in the MGWR model led to lower spatial distribution 
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characteristics of residuals, higher prediction accuracy, as well as decreased noise and errors 
caused by a single-scale model. 
 

 
 

Figure 4  Fitting results of different linear regression models 
 

Table 4 presents the estimates of the OLS model parameters, which resulted in the fol-
lowing expression for grass yield of temperate grasslands (Eq. (15)): 
 Grassyield=366.649+(20.505×AJR)–(14.883×RH)–(7.321×NPP)–(6.363×PRI)+(74.194×  
 DEM)–(40.112×DTR)–(17.548×DS)+(3.870×DP)+(9.427×DR)–(7.397×NL) (15) 
No sample sizes exceeded the reasonable limit, all data were valid, and all influencing fac-
tors were significant (p < 0.05). AJR, DEM, DP, and DR were significantly positively cor-
related with grass yield; whereas RH, NPP, PRI, DTR, DS, and NL were significantly nega-
tively correlated with grass yield. Although the OLS model does not consider local spatial 
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non-stationarity, the parameter estimate results show that it can adequately explain the ef-
fects of influencing factors (Table 5). The R2 of the OLS model was 0.643, indicating that 
the fitting degree of the model, although notable, was not optimal (Table 4). As the spatial 
information of the OLS model was not completely extracted, it is incapable of adequately 
explaining the spatial heterogeneity between grass yield and the influencing factors. 

 
Table 4  Estimates of OLS model parameters 

Variable Coefficient T-test Significance (p) 

Intercept 366.649 8.482 0.000 

AJR 20.505 3.867 0.000 

RH –14.883 –2.593 0.010 

NPP –7.321 –2.305 0.021 

PRI –6.363 –2.580 0.010 

DEM 74.194 27.200 0.000 

DTR –40.112 –7.649 0.000 

DS –17.548 –5.498 0.000 

DP 3.870 1.490 0.004 

DR 9.427 4.379 0.000 

NL –7.397 –1.181 0.004 

 
The optimal bandwidth of the GWR model was determined at 1,218, according to the 

minimum AICC value, and the variable coefficients were obtained (Table 5). Each influenc-
ing factor was inconsistent with the grass yield in space, and each parameter value varied 
within a certain range, thus objectively verifying the existence of spatial non-stationarity in 
grass yield observation points for temperate grasslands. The parameter estimates of influ-
encing factors (such as AJR, DEM, DP, and DR) were positive under the OLS model, but 
this directionality varied in the GWR model, indicating the spatial dependence of the influ-
encing factors on the distribution of grass yield. Comparing the 10 variables, the regression 
coefficients of five indexes—AJR, RH, NPP, DEM, and DP—were mostly positive; whereas 
the regression coefficients of PRI, DTR, DS, DR, and NL tended to be negative. 

 

Table 5  Estimates of GWR model parameters 

Variable Min Max Lwr Quartile Median Upr Quartile 

Intercept   664.366 165.834 373.563 451.646 

AJR –49.684 92.181 –12.087 6.980 35.114 

RH –39.418 144.282 –11.053 8.416 27.694 

NPP  –6.232 32.852 10.403 15.679 23.962 

PRI –7.563 2.873 –3.637 –2.698 –1.007 

DEM –13.540 99.800 –3.165 33.316 59.446 

DTR –95.718 54.511 –24.421 –3.836 12.769 

DS –32.859 –0.367 –20.809 –10.443 –4.266 

DP –38.467 41.975 –7.914 0.182 8.727 

DR –56.344 59.046 –18.597 –2.029 18.442 

NL –53.406 56.678 –10.603 –1.480 10.847 
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As shown in Figure 4 and Table 3, MGWR model performance was superior OLS and 
GWR for multiple parameters. The explanatory ability of introducing spatial effects with the 
GWR model reached 0.797, 15.50% higher than that of the OLS model (R2=0.642); however, 
the explanatory ability of the MGWR model provided an additional increase of 9.2% (to 
88.9%). Notably, the explanatory power of the OLS, GWR, and MGWR models improved 
gradually. Additionally, the AICC value of the MGWR model was 2159.397, the minimum 
among the three models, further suggesting the superiority of the MGWR model to explain 
the spatial differentiation characteristics and estimation results of grass yield. The regression 
coefficient values of the different influencing factors varied greatly in space (Table 6). 
Standard deviation values were generally small, indicating that the correlation between the 
influencing factors and grass yield deviated slightly. 

 
Table 6  Estimates of MGWR model parameters 

Variable Mean STD Min Median Max 

Intercept 0.827 1.170 –1.119 0.817 2.834 

DEM –0.040 0.165 –0.340 0.001 0.188 

NL 0.456 2.361 –4.255 0.002 8.176 

PRI 0.003 0.003 –0.001 0.003 0.012 

NPP  0.077 0.112 –0.213 0.042 0.585 

DS –0.011 0.054 –0.245 –0.013 0.237 

DP –0.073 0.156 –0.415 –0.054 0.301 

DR 0.180 0.300 –0.757 0.232 0.859 

DTR –1.227 1.316 –4.145 –0.715 0.561 

RH –3.013 1.329 –4.979 –2.750 –1.274 

AJR 1.687 1.313 –0.267 1.498 3.938 

 

3.2  Spatial heterogeneity of influencing factors 

In the practical discussion of the relationship between grass yield and environmental impact 
factors, both the GWR and MGWR models consider the characteristics of spatial 
non-stationarity, as well as the problem of spatial scale; however, the MGWR model incor-
porates different spatial scales for each influencing factor. While spatially predicting grass 
yield, MGWR also locally estimates the regression parameters of different influencing fac-
tors at each spatial location. To reduce the influence of the number of influencing factors on 
the relative size of the regression coefficient in the modeling process and consider the im-
pact of influencing factors under different spatial scales on the grass yield, the local regres-
sion coefficient standardized by the MGWR model was used to describe the spatial 
non-stationary characteristics after comparing the different degrees of influence of each fac-
tor across the locations (Figure 5). Overall, from the regression coefficients of the indices 
examined, it was shown that: AJR had a positive effect on grass yield; DEM has a positive 
effect on alpine grassland, but a negative effect on river valley and platform area; the global 
effect of RH on grass yield was negative, and NL had a strong negative effect in most areas, 
whereas the effect of PRI on grass yield was limited. 
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Figure 5  Spatial patterns of regression coefficients for influencing factors of grass yield based on the mixed 
geographically weighted regression (MGWR) model (a. AJR: Average rainfall in July; b. PRI: Ratio resident-area 
index; c. DEM: Elevation; d. RH: Relative humidity; e. NL: Night light; f. DP: Distance from road; g. DS: Dis-
tance from gully; h. DR: Distance from river; i. DTR: Daily temperature range; j. NPP: Net primary production) 

 
The MGWR model makes full use of different bandwidth scales for each variable to create 

a more accurate regression analysis of grass yield in these temperate grasslands. Applying 
Kriging interpolation to the regression coefficient surface can approximate the trends of dif-
ferent influencing factors at higher spatial densities (Figure 5). The value of the influencing 
factor coefficient of the MGWR model aligned with the true values, and thus reflected the re-
lationships between different variables and grass yield. Specifically, Figure 5d shows the 
regression coefficient for AJR of the MGWR model, ranging from –0.28 to 3.94, with high 
distribution patterns in the south, and low in the north. The spatial distribution of the posi-
tive and negative values was divided in half across the study area, with a clear boundary be-
tween the two, thus indicating the varying effect of July rainfall on grass yield across Yu-
anzhou District. Figure 5b shows the regression coefficient of PRI for the MGWR model,  
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which ranged from –0.001 to 0.012, with positive values in the northwest, and negative val-
ues in the central and southern regions, as well as in most other areas. Figure 5c shows the 
regression coefficient of the DEM for the MGWR model, ranging from –0.34 to 0.188, and 
maintaining a spatial pattern of high in the south, and low in the north; thus, the higher alti-
tudes of Liupan Mountain in the south, and Yunwu Mountain in the east tend to correlate to 
greater grass yields, while the higher the altitudes of the Qingshui River valley plain tend to 
have the opposite effect. Figure 5j shows the regression coefficient of RH for the MGWR 
model, ranging from –4.98 to –1.25, where all negative values indicate that the greater the 
RH, the lower the grass yield, especially in the south of the town of Touying. The negative 
correlation effect of RH on grass yield was the largest observed among all variables. Figure 
5e presents the regression coefficient of NL for the MGWR model, ranging from –4.25 to 
8.17, with a generalized spatial pattern of high in the east, low in the west, and maintaining a 
notably large negative value area. Although NL was positively correlated with the Yunwu 
Mountain area, the stronger the night light in other areas, the lower the observed grass yield. 
The positive correlation effect of night light on grass yield was the largest observed among 
all variables. Figure 5f shows the regression coefficient of DP for the MGWR model, with a 
coefficient value ranging from –0.4 to 0.27, and displaying mixed positive and negative ge-
ographic patterns. The results showed that the road network between the towns of Sanying, 
Zhangyi, Guanting, and Yuanzhou District was developed, and the grass yield decreased as 
the distance from the road network increased; whereas the inverse was true with other mon-
tane roads. This is consistent with remote sensing interpretation and reality. Figure 5g shows 
the regression coefficient of the DS for the MGWR model, with a coefficient value ranging 
from –0.222 to 0.217, and generally presenting a spatial pattern of medium high and low 
values in the north and south, respectively. In the central Qingshui River Basin, the grass 
yield increased with increase in proximity to the valley, while the opposite pattern was ob-
served in the Liupan and Yunwu Mountain Areas of the loess hilly area. Figure 5h shows the 
regression coefficient of DR for the MGWR model, with a coefficient value ranging from 
–0.756 to 0.857. Generally, the northwest of Kaicheng, Zhaike, and Huangduobao Towns 
were negative, while all other areas were positive. Figure 5i shows the regression coefficient 
of DTR for the MGWR model, with a coefficient value ranging from –4.145 to 0.56, and 
showing a general pattern of high values in the east, and negative in the west. The positive 
area accounts for the majority of space, and the daily temperature range in the southeast was 
the largest. Further, the daily temperature range in the northwest was the smallest, the cor-
responding correlation coefficient was also the smallest, and the degree of negative correla-
tion was the strongest. Figure 5a shows the regression coefficient of NPP for the MGWR 
model, with coefficient values ranging from –0.2 to 0.513, and most areas maintaining nega-
tive values, with patterns of high in the central region, low at north and south ends. The 
higher NPP values in the core area of Yunwu Mountain and the western mountainous area of 
Yuanzhou District, the greater was the grass yield; whereas in other areas, especially in the 
Qingshui River Basin, higher NPP values were associated with lower yields, with the lowest 
NPP coefficient values were recorded in the town of Zhangyi. 

To intuitively understand the spatial scale of different models for each variable, the opti-
mal bandwidths for each of the influencing factors in the GWR and MGWR models were 
analyzed and compared (Table 7). The two models maintained fundamentally different 
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characteristics, where a constant bandwidth of the 
GWR model was 1218, and each bandwidth of the 
MGWR model was specific to the influencing 
factor, indicating their varied scales of spatial 
non-stationary characteristics; whereas the GWR 
model did not reflect the effects of these different 
spatial scales. Indeed, the ability of the MGWR 
model to accurately reflect the differential spatial 
scale of each influencing factors, while the GWR 
model only reflects the average value of the in-
fluencing factors, leads to a significantly im-
proved accuracy effect. The bandwidth of the 
GWR model was consistent for all influencing 
factors (1218); whereas the spatial scales of dif-
ferent influencing factors varied greatly through 

the operation of the MGWR model, with PRI maintaining the largest value. The large spatial 
scales of DEM and NPP are marked by small spatial heterogeneity, and the relatively smaller 
spatial scales of all other variables (<50) is indicative of the significant spatial heterogeneity 
present in Yuanzhou District. In the MGWR model results, all regression coefficients of the 
10 influencing factors were significant (P < 0.05). 

3.3  Spatial predictions of grass yield 

According to the above analyses and model parameters, grass yield distribution maps for these 
temperate grasslands were drawn for the OLS, GWR, and MGWR models examined (Figure 
6), and revealing similar spatial trends among each method. The grass yield estimates of the 
GWR and MGWR models (Figures 6b and 6c, respectively) were smoother primarily because 
the incorporation of influencing factors on the spatial non-stationary characteristics of grass 
yield. Conversely, when compared with the MGWR model, the spatial scale effect of various  

 

 
 
Figure 6  Prediction results of grass yield for temperate grasslands according to each linear regression model 

Table 7  Bandwidth comparison between 
classical GWR and MGWR models 

Variable MGWR GWR 

Intercept 43 1218 

DEM 150 1218 

NL 43 1218 

PRI 1348 1218 

NPP 113 1218 

DS 49 1218 

DP 43 1218 

DR 50 1218 

DTR 46 1218 

RH 43 1218 

AJR 46 1218 
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influencing factors on the degree of influence of dependent variables in the OLS model (Fig-
ure 6a) was not well described, resulting in a relatively poor prediction ability. 

For the MGWR model, the estimated grass yield was generally higher in the south and 
west, lower in the north and east, and maintained the highest levels of overall estimation 
accuracy. The highest modeled grass yield estimates were in the south of Kaicheng, and a 
small part of Zhangyi (993–1310 g·m‒2) notably higher than that estimated by the GWR 
model. The second highest yields were seen in the smaller, central areas of Zhangyi and 
Kaicheng (798–992 g·m‒2), also higher than similar regional estimates from GWR. Notably, 
the north of Kaicheng and the west of Zhonghe were low local yield areas (631–797 g·m‒2); 
however, it can be seen from the figure that the grass yield in the southwest of Zhangyi was 
the same as that in the surrounding areas of the urban construction area of Yuanzhou District, 
as there are many aquaculture industries, large cultivated land areas, and relatively flat ter-
rains located here, and the resulting yield is quite different from that of the surrounding 
montane areas. Additionally, most areas of Touying, some areas of Sanying, and a few areas 
of Huangduobao in the Qingshui River Basin also maintained lower grass yields (500–630 
g·m‒2), and the yields across most areas of Hechuan, Guanting, Zhaike, and Tanshan were 
generally the lowest observed (296–499 g·m‒2); The predicted grass yields in smaller mon-
tane regions of these towns were higher than that in the surrounding areas; whereas those in 
Touying to north of Yuanzhou District, were also very low, consistent with the ground ob-
servations. 

3.4  Model accuracy verification 

To further verify the advantages of the MGWR model in the modeled estimates of grass 
yields in these temperate grasslands, model accuracy was assessed. Initially, scatterplots of 
the observed and predicted values for the OLS, GWR, and MGWR models were created 
(Figure 7). 

The OLS model’s fitness accuracy was relatively high (R2 = 0.7816), with relatively 
compact result in areas with lower outputs, and maintaining a clear linear relationship (Fig-
ure 7a). According to the OLS model accuracy test parameters (Table 8), the RMSE was 
104.945; however, in areas with larger grass yields, the results were overgeneralized, and 
held a unique relationship; thus, the OLS model is suitable for remote sensing estimates of 
grass yield in areas <800 g·m‒2. 

The GWR modeled parameter results showed a significantly improved prediction of grass 
yield over the OLS model, with an increase in R2 by 0.0287, and a significantly reduced 
RMSE to 97.6234 (Figure 7b and Table 8). Accordingly, it can be seen from Figure 6b that 
the prediction accuracy of the grass yield using the GWR model was significantly improved, 
its scatterplot was more compact, and the linear trend was stronger. There was no 
over-dispersion, as with the OLS model, in areas with higher yields; thus, the GWR model 
can be applied to yield superior remote sensing estimates across different grass yield areas. 

According to the statistics of the MGWR model parameters (Table 6), and the relevant 
test parameters of the MGWR model (Table 8), the remote sensing estimates of grass yield 
by the MGWR model held clear spatial non-stationary characteristics. Different bandwidth 
scales explained the impact of different influencing factors on grass yield, and the correlated 
R2 reached 0.8306, 0.0203 higher than that of the GWR model. Similarly, the RMSE was 

 



1096  Journal of Geographical Sciences 

 

 
 

Figure 7  Scatterplots of the observed vs. predicted grass yields 
 

Table 8  Statistical parameters for the different linear regression models analyzed 

Model ME MAE RMSE Radius 

OLS Model –7.0112 75.7841 104.9458 184.0735 

GWR Model –4.6232 70.5916 97.6234 156.5453 

MGWR Model –3.9770 65.2953 92.6180 39.0543 
 

 

significantly reduced by 5.0054. The MGWR model highlights non-grassland areas, such as 
buildings and water bodies, and the resulting predicted grass yields were more consistent 
with observations, presenting a more compact linear trend, especially across the areas with 
larger grass yields (Figure 7c). Notably, because the MGWR model considered spatial 
non-stationary and multiscale advantages, produced superior predictions across different 
yield ranges. Overall, the MGWR was more suitable than either the OLS or GWR for remote 
sensing estimation of grass yields in temperate grasslands. 

4  Discussion 

4.1  The performance of MGWR model considering multiscale spatial non-stationarity 
is superior 

In this study, different model methods were used to estimate grass yield, and MGWR model 
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was selected as the method for estimating grass yield of temperate grassland in semi-arid 
loess hilly region. At the same time, the spatial non-stationarity characteristics between dif-
ferent influencing factors and grass yield were analyzed, and the effects of different spatial 
scales were explored. To explore the prediction accuracy of the OLS more comprehensively, 
GWR, and MGWR models, previous research results were summarized, and statistical indi-
ces were introduced to evaluate the models’ fitting effect (Mei et al., 2004; Kumar et al., 
2013; Fotheringham et al., 2017; Mansour et al., 2020; Arshad et al., 2021; Chen et al., 
2021; Liu et al., 2021; Yang et al., 2021). Conventionally, MAE and RMSE are two of the 
most commonly used indicators for measuring model accuracy (Yang et al., 2019). MAE 
represents the average value of the absolute error; whereas RMSE is commonly used to re-
flect dataset dispersion and is the square root of the average differences between predicted 
and observed values, squared.  

The MAE values of the OLS, GWR, and MGWR models were decreased; whereas the 
RMSE values were also decreased, respectively, indicating the superior fitting effect of the 
MGWR model (Table 8). The significantly lower radius value of the MGWR model also 
indicated that the MGWR >>> GWR > OLS when explaining the relationship between in-
fluencing factors and grass yield. For the information criterion indices, where smaller values 
represent superior model effects, the simulated results of the OLS model were AICC 
(3731.660) and AIC (3731.432), those of the GWR model were AICC (3273.816) and AIC 
(3270.442), and those of the MGWR model were AICC (2951.878) and AIC (2159.397; Ta-
ble 3). Accordingly, it was clear that the simulated effects of the MGWR and GWR models 
were superior to the OLS models. The fitting degrees of the three models were 0.643, 0.801, 
and 0.891 for OLS, GWR, and MGWR, respectively, while the adjusted fitting degrees were 
0.642, 0.797, and 0.889. The goodness-of-fit was consistent with the adjusted good-
ness-of-fit results, as well as the radius-index performance results (Figure 7); therefore, the 
MGWR model more effectively calculated the weight values of different variables through 
the kernel function to limit interference factors and noise. Further, the different bandwidths 
provided to explain the spatial influence and distribution of influencing factors on the grass 
yield of temperate grasslands, more effectively revealed the scale of impact for each variable; 
whereas in the GWR model, these scaled effects were masked due to the constant band-
width. 

4.2  The spatial distribution of grass yield is the result of the joint action of climate 
factors and human activities 

The introduction of mixed geographically weighted regression into remote sensing estima-
tion of grass yield is an attempt to improve the accuracy of remote sensing estimation of 
grass yield, and can expand the types of remote sensing estimation models of grass yield. 
Although the variables selected in this study are highly correlated with grass yield (P < 0.01), 
and have a multiscale impact. However, in the traditional sense, the factors affecting grass 
yield are various vegetation indexes, such as normalized difference vegetation index (NDVI), 
enhanced vegetation index (EVI), soil adjusted vegetation index (SAVI), modified soil ad-
justed vegetation index (MSAVI) and optimal soil adjusted vegetation index (OSAVI) (Xu et 
al., 2007; Luo et al., 2015; Luo et al., 2010). Previous studies have introduced meteorologi-
cal factors such as temperature and rainfall into the estimation model as parameters for grass 
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yield estimation (Dong et al., 2018; Wei et al., 2012b). However, other studies have shown 
that the influencing factors of grass yield are not only affected by climate change and mete-
orological factors, but also disturbed by many human factors, such as urbanization, road 
traffic, and light (Dong et al., 2018; Tian et al., 2021). In view of this, the data of PRI, DP 
and NL are introduced in this study. The reality is that the above influencing factors are 
rarely considered in previous studies. Therefore, this study is also an attempt to introduce 
the remote sensing estimation data of grass yield, which integrates meteorological factors 
and human factors. 

4.3  The prospect of future research on the spatial difference method of mountain me-
teorological elements, research scope, grassland type division and so on 

Climate change affects the species composition, growth rate and species accumulation 
process of grassland ecosystem (Mackey, 1994; Qian et al., 2010; Li et al., 2013). Therefore, 
temperature and precipitation are indispensable key climatic factors in the process of 
grassland biomass growth and accumulation (Qiu et al., 2009; Xu et al., 2018), and their 
accuracy is very key to the study of grassland biomass accumulation. As an important means 
of spatial estimation of grassland biomass, remote sensing technology can estimate regional 
grassland biomass from different spatial scales (Sun et al., 2013). However, when estimating 
grass yield, MGWR model needs to consider many key climate factors affecting grassland 
biomass accumulation, and climate factors need to match remote sensing spatial data 
through various spatial interpolation methods. Due to the different accuracy of meteoro-
logical data obtained by different spatial interpolation methods, it may affect the grass yield 
estimation of MGWR model, and then affect the accuracy of the estimation results. Existing 
studies show that different spatial interpolation methods have advantages and disadvantages, 
which need to be optimized in combination with the sensitivity of different research areas, 
especially for areas with large fluctuations of meteorological elements in complex moun-
tainous climate environment (Liu, 2019; Zhang, 2019b). In this study, the methods used 
assume smooth continuity in space, without considering other environmental factors such as 
mountain vertical differentiation (Sun et al., 2008; Wang, 2008; Zhan Shi, 2014). Although 
the area of high-altitude area in the study area is small, there may still be error results of low 
accuracy of meteorological data interpolation results (Liu, 2012). What are the effects of 
different interpolation methods on the accuracy of data, Optimizing the best spatial inter-
polation method of meteorological elements for estimating grass yield of temperate grass-
land, so that the data interpolation results reflect better physical significance, which are 
major scientific problems that must be further studied in the future. 

The sample plots in this study were located the temperate grasslands of the semi-arid loess 
hilly region in Ningxia, and although the prediction accuracy of grass yield in the involved 
regions was high, the sample size of this study is quite limited, and the spatial scale was 
restricted to the temperate grasslands. The temperate grassland in the selected study area is 
typical in the semi-arid loess hilly area; whereas the grassland types in this region of China 
are complex and diverse. Therefore, it is necessary to expand the scope of the study area in 
future research, and include a wider array of different grassland areas, increase the number 
of grass yield sample points observations, and further verify the model prediction in the loess 
hilly area across a large spatial range in an effort to provide greater theoretical and technical 
support for the popularization of the MGWR model in grass yield prediction, and the bal-
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anced management of grassland and forage-livestock within natural grasslands. Future re-
search should promote the remote sensing estimation of grass yield in a larger research scope. 
Using the same technology will expand the application in the same type of semi-arid loess 
hilly area, to guide the monitoring of grassland resources, especially the dynamic adjustment 
of animal husbandry policy in the future. 

5  Conclusions 

The MGWR model was generally superior to the OLS and GWR models in terms of the fit-
ting effect. Its goodness-of-fit (R2) was ≤0.891, and the adjusted R2 was ≤0.889. The AIC 
value and the sum of squares of residuals were significantly lower for the MGWR model 
compared to those of the other two models, indicating that the model is more suitable for the 
correlation analyses between grassland yield and influencing factors in the semi-arid loess 
hilly region of China, and is capable of overcoming limitations with regression weighted 
models used in traditional grass yield estimates. 

The spatial scales varied among the influencing factors of the MGWR model. The results 
further showed that PRI maintained the largest spatial scale on grass yield of these temperate 
grasslands, followed by DEM > NPP > DR > DS > DTR > AJR > DP > RH > NL (with the 
spatial scales of night light, distance from road, and RH being the most limited). In the esti-
mation of grass yield, the spatial scale bandwidths of the above influencing factors were 
1348, 150, 113, 50, 49, 46, 46, 43, 43, and 43, respectively. 

According to the statistical results of MGWR model parameters, and the spatial distribu-
tion of the regression coefficients of influencing factors, the impact of influencing fac-
tor-related indicators was spatially heterogeneous, with different spatial scales on grass yield 
of temperate grasslands in semi-arid loess hilly regions. Among them, RH had a negative 
effect on grass yield; whereas all other influencing factors had both positive and negative 
effects on grass dependent on the location. Thus, the multiscale differential spatial response 
regularity of different influencing factors on grass yield was highlighted, producing more 
realistic and reliable spatial analysis results than those of the GWR model. 

According to the estimated results of temperate grassland yield using different regression 
models, the study area presented a spatial distribution pattern of high in the south and west, 
low in the north and east. The remote sensing estimates of grass yield by the MGWR model 
had obvious spatial non-stationary characteristics, and different bandwidth scales more ac-
curately explained the impact of each influencing factor, as indicated by its larger R2 value, 
increased by 0.0203, and reduced RMSE by 5.0054 compared to the GWR model; thus, a 
superior spatial prediction performance of grass yield was realized, and the varying effects 
associated with the change in geographic position of each influencing factor according to 
their different spatial scales was obtained. This effect change has different spatial scales for 
different influencing factors. 
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