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Abstract
The anisotropic microstructure of granular materials has a profound effect on their macroscopic behaviour and can be

characterised using a fabric tensor. To include of fabric in the critical state theory (CST), anisotropic critical state theory

(ACST) was proposed by modifying the state parameter ðwÞ of CST to a fabric-dependent dilatancy state parameter ðfÞ.
Noteworthy that w showed a very strong correlation with characteristic features (e.g. instability, phase transformation and

characteristic state) of macroscopic behaviour and, as a result, it has been adopted in many constitutive models. While f
aided the inclusion of fabric in ACST models, the correlation between f and characteristic features has not been evaluated

in detail yet, although a large number of works are found on micromechanics and fabric only. In this study, a large number

of discrete element method simulations for drained and undrained triaxial were conducted to evaluate the correlation

between f and characteristic features. To this purpose, the correlation between stress ratio and both classic and dilatancy

state parameter (w and f) were studied in important characteristic features (e.g. instability, phase transformation and

characteristic state). It was found that this correlation was improved using f which might be due to the inclusion of fabric in

our model. This observation is new and significant for inclusion of fabric evolution in constitutive modelling.
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List of symbols
A Fabric anisotropic variable (FAV)

A
0

A measure of the relative orientation of Fij

and nij
Cn Local damping coefficient

DP Stress dilatancy

dij The Kronecker delta

K; n Fitting parameters in Eq. (3)

e Void ratio

e0 Initial void ratio (void ratio before

shearing)

ec Critical void ratio

eCS Void ratios on the CSL at p0

elim Void ratio on CSL at p = 0 kPa

e1 Axial strain

epq Deviator strain (plastic)

epm Volumetric strain (plastic)

g Stress ratio

gc Stress ratio at critical state

F Fabric intensity

F0 Initial fabric

F11; F22; F33 Fabric tensors in three orthogonal

directions

F12; F13; F23 Fabric tensors in the shear directions

Fij Fabric tensor

Fvm von Mises fabric invariant

g hð Þ Interpolation function based on the Lode

angle h
KF Stress-fabric joint invariant

Kn Normal contact stiffness, Kn ¼ K0 � r,

where K0=1 9 105

Ks Shear contact stiffness

M Intrinsic material property corresponding

to stress ratio at critical state

Me Critical state stress ratio in triaxial

extension
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Mc Critical state stress ratio in triaxial

compression

l Interparticle friction coefficient

N Number of contacts in the specimen

NP Number of particles

nij Deviatoric loading direction

nFij Deviatoric fabric direction

nci Unit vector along the normal direction of

the contact plane

m Poisson’s ratio

p0 Mean effective stress

p00 Initial confining pressure

pa Atmospheric pressure

uij Fabric tensor

w State parameter

w0 Initial state parameter

w0�DEM Initial state parameter from microme-

chanics entities of this DEM Study

w0�CM Initial state parameter calculated by con-

stitutive formulation

q Deviator stress

r Particle radius

sij Deviatoric stress tensor

r01; r03 Major principal effective stresses in tri-

axial condition

rij Stress tensor

h The Lode angle

Zm Mechanical coordination number

f Dilatancy state parameter

f0 Initial dilatancy state parameter

f0�DEM Initial dilatancy state parameter from

micromechanics entities of this DEM

Study

f0�CM Initial dilatancy state parameter calculated

by constitutive formulation

1 Introduction

When a soil element is continuously sheared, it eventually

flows as a frictional fluid and reaches a well-defined critical

state, CS [64, 68]. Schofield, Wroth [68], in their definition

of CS, did not make any reference to fabric-related entities

other than the scalar-valued void ratio eð Þ. Therefore, the
CS was fabric independent, i.e. based on fabric isotropy.

These CSs from many tests/conditions form a unique

critical state line (CSL), which is taken as the reference line

to understand/predict a soil element’s behaviour within the

critical state soil mechanics (CSSM) framework. Such a

fabric-independent CS and CSL proved to be sufficient for

many loading conditions for many soils. A mathematical

definition of such a CSL, in terms of mean effective stress

ðp0Þ, deviatoric stress ðqÞ and void ratio ðeÞ, can be pre-

sented by

g ¼ gc ¼ ðq=p0Þc ¼ M ð1Þ

e ¼ ec ¼ becðp0Þ ð2Þ

where, M is the ratio of q and p0 at CS, which is a constant

and intrinsic material property. ec ¼ becðp0Þ is the critical

state void ratio expressed as the function of p0 in e�
logðp0Þ space. For conventional triaxial tests, the p0 and q

can be simplified to p0 ¼ ðr01 þ 2r03Þ=3 and q ¼ r01 � r03
� �

,

respectively; where, r01 and r03 are the axial stress and

effective radial stresses, respectively. Equations (1) and (2)

define a unique CSL in e-q-p0 space. Often, as in this paper,
the name CSL is used to denote the line in the e-p0 space,
expressed by the following power function as proposed by

Li and Wang [34]:

ec ¼ becðp0Þ ¼ elim � K
p0

pa

� �n

ð3Þ

where, elim is the void ratio on CSL at p0 = 1 kPa, K and n
are fitting parameters and pa is atmospheric pressure of

100 kPa. A soil element’s behaviour in shearing is con-

trolled by its current state in relation to its reference state,

i.e. CSL. For example, if a soil element state is above the

CSL in e-p0space, the soil state moves leftward to meet

CSL during undrained shearing. As a result, soil element

exhibits contractive behaviour. On the other hand, if the

state of the soil element is below the CSL, then during

undrained shearing, the state moves rightward to meet

CSL. As a result, soil element displays dilative behaviour.

Many researchers realised this attribute [e.g. 4,5–7], and

they tried to evaluate it by different measures of states such

as state parameter [4], state index [19], stress ratio [26],

pressure index [79], and modified state parameter [5].

Among these measures, the most commonly used param-

eter is the state parameter w suggested by Been, Jefferies

[4]. w is the difference of void ratio at the current (e) state

and critical state (ec) at the same p0. This can be presented

by the following equation:

w ¼ e� ec ð4Þ

It was found that w correlate with characteristic beha-

viours of granular materials, e.g. peak failure stress ratio

[81], stress ratio at phase transformation (gPT) [38, 90],

instability stress ratio (gIS) at peak q [28, 58, 60], cyclic
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instability type liquefaction [2, 3, 56, 63]. Therefore, sub-

sequently, w is used in constitutive modelling

[9, 10, 14, 22, 31, 38, 81] by improving/modifying the

correlation of characteristic features as a function of w.
However, many studies revealed that the granular soil

response during almost all stages of loading history is

fabric anisotropic [42, 50, 65, 88]. Therefore, CS without

fabric, except for a scalar value of e, may be sufficient in

many conditions but cannot be complete. Indeed, when

introducing their w, Been, Jefferies [4] suggested that the

CS in soil may be fabric-dependent or anisotropic. Both

experimental and numerical studies attempted to define

fabric anisotropy by linking them to the arrangement of soil

particles, voids and interparticle contacts and the effect of

applied loads on these microstructures

[1, 6, 41, 48, 67, 70, 87]. Li, Dafalias [32] proposed a fabric

anisotropic variable (A) to capture fabric anisotropy and its

fabric evolution as below-

A ¼ Fijnij ð5Þ

where, Fij is the deviatoric fabric tensor and nij is the unit-

norm deviatoric tensor-valued direction, both of which are

defined later in this study (refer to Sect. 2.2). Li and

Dafalias [32] also proposed the anisotropic critical state

theory (ACST) by extending the definition of CSL with the

inclusion of A in Eq. (6). The third term is the extension of

original definition of CSL in Eq. (1) and Eq. (2).

g ¼ gc ¼ M; e ¼ ec ¼ bec p0ð Þ; A ¼ Ac ¼ 1 ð6Þ

This allows an extension of w for fabric with the

inclusion of A to the dilatancy state parameter, DSP (f). Li,
Dafalias [32] used a combined norm of the distance for the

current value of both e and A to their corresponding critical

state as shown below-

f ¼ w� wA ¼ w� beAðe; p0ÞðA� 1Þ ð7Þ

where beA e; p
0� �

is a function on e and p0. However, Li,

Dafalias [32] used a constant value for simplicity and left

open the possibility for other expressions, in particular, to

achieve better simulations while maintaining the basic

premises of f ¼ w when A = ACS = 1 at CS are satisfied.

Along this line, Rahman, Dafalias [57] modified the DSP

by defining beA e; p
0� �

as below-

beA e; p0ð Þ ¼ eA
helim � ei
elim � ecð Þ ð8Þ

where, eA is a fitting parameter. The Macauley brackets

define the operation ‹a› = a for a[ 0 and ‹a› = 0 for a B 0.

Thus, for (elim � e\0), Eq. (7) yields f ¼ w.
However, further research is needed to verify the above-

proposed equation using micromechanical approaches. The

main motivation of the current study is to provide further

evidence and to evaluate the above model using three-di-

mensional Discrete Element Method (DEM) simulations.

DEM can be a useful micromechanical tool to under-

stand granular soil anisotropic response and its evolution

with loading [35, 39, 44, 47, 48, 75, 80, 83, 93]. It allows

the examination of particle-scale interaction, contact, or

fabric to establish a link with the macro-response. Many

previous studies effectively capture fabric anisotropy evo-

lution but may not directly translate or connect to contin-

uum mechanics, especially within the context of ACST,

which is the focus of the current study. In this study, the w
(classic state parameter without fabric Been, Jefferies [4]),

DSP f Li, Dafalias [32] and modified DSP f [57] were

utilised to evaluate their link with characteristic features

(e.g. instability, phase transformation and characteristic

state) and to explore the effect of microstructural fabric

anisotropies on macroscopic shear behaviour. It also

enhances understanding of fabric evolution in constitutive

modelling.

2 Dem modelling

2.1 Triaxial test simulation

The DEM software, PFC3D [21], was used in this study to

perform the numerical simulation. The specimen was rep-

resented in a cubic space confined with three pairs of stress

or strain-controlled friction-less walls, as shown in Fig. 1a.

Wall stiffness should be much larger than particles to avoid

unnecessary wall deformation and to ensure constant vol-

ume during undrained tests. Therefore, the wall stiffness

was 1 9 107 kN/m [21, 30]. The soil particles are mod-

elled as spheres with the particle size distribution (PSD) of

Toyoura sand [19] and with a linear force–displacement

contact law (see Fig. 1b, c). It should be noted that in

definition of the contact model, the force–displacement law

is not applied to inactive contacts (refer Fig. 1a for parti-

cles with less than two contacts). Non-spherical particles

may be a more realistic representation of soil assembly

[46, 62], but have not been adopted in this study to avoid

intensive computation and excessive complexity. The

contact stiffness varied on orders in literature

[16, 17, 29, 36, 40, 69, 72, 74]. However, Li [30] showed

that the contact stiffness would not have a significant

impact on soil behaviour at large strains. In this study, the

most commonly used normal and tangential stiffnesses

have been adopted as kn
r ¼ ks

r ¼ 105 kN=m2 [16, 25, 84].

The simulation parameters are summarized in Table 1.

Triaxial specimens, prior to the consolidation, were

prepared as the following procedure:
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• Specimen generation: The random distribution method

has been adopted to generate specimens with 13,570

spheres (the effect of the number of particles is

discussed in the appendix). Initially, particles over-

lapped greatly, and strong repulsive forces arose.

Therefore, some cycles were needed by the system to

reach equilibrium and generate a specimen without

overlap. Interparticle friction coefficient lð Þ was tem-

porarily set to zero during this stage.

• Initial state: Since all specimens were generated by the

same mechanism, therefore the contact forces through-

out the assembly are expected to be similar, resulting in

an isotropic uniform network of contact forces similar

to the radii expansion method [16, 23, 53]. An isotropic

stress of 10 kPa by servo control of the walls was

applied to the specimen. During this stage, different l
were used to generate specimens with different densi-

ties [82, 84]. Generally, a low value of l generates a

dense specimen, while a high l value generates a loose

specimen. This was an effective technique of sample

generation since it allows the generation of a homoge-

neous network of contact forces and particle distribu-

tion within the created samples [61]; it is

computationally efficient and avoids the onset of high

lock-in contact forces.

• Isotropic consolidation: Upon finishing this stage, l was

changed to 0.5, and the specimen was cycled again to

an equilibrium state. Now, the specimen was assumed

at its initial state and is ready for isotropic consolida-

tion. As summarised in Table 2, a total of 108

specimens have been prepared in different confining

pressures under undrained and drained conditions (54

specimens each).

• Monotonic shearing: For the drained triaxial test, the

strain-controlled top and bottom walls were compressed

(axial strain), while the stresses on the side walls were

kept constant using a servo mechanism simulating

constant cell pressure. On the other hand, the undrained

triaxial test was simulated by a constant volume test, in

which the total volume of the specimen remains

constant by servo control of the walls and the stresses

of the wall are assumed to be effective stresses [21, 30].

Hence, the excess pore water pressure during the

shearing equals the difference between the current

effective stress and initial confining pressure on the

vertical walls.

Fig. 1 a Specimen with particles in the simulation, b particle size distribution, c contact model

Table 1 The input parameters of DEM modelling

Particle density

(kg/m3)

2650 Number of

particles

13,570 *

Interparticle friction

coefficient, l
0.5 Wall-particle

friction

0

Wall stiffness (kN/m) 1 9 107 Normal

contact

stiffness

Kn (kN/m)

kn = k0 9 r,
where

k0 = 1 9 105

Local damping

coefficient, Cn

0.7 Shear contact

stiffness Ks

(kN/m)

Ks = Kn

Particle size

distribution

Toyoura

sand

*The effect of the number of particles are further discussed in the

Appendix

Acta Geotechnica

123



2.2 Stress tensor and fabric tensor

In order to quantify the macroscale response of a DEM

assembly, the stress tensor must be defined in terms of

discrete quantities such as particle displacements, contact

normal, and contact forces by means of an averaging

procedure [37, 51]. In a granular assembly, boundary loads

are distributed among the intergranular contacts. The bal-

ance between boundary loads and internal forces leads to

the expression for stress tensor as proposed by Christof-

fersen et al. [8]:

rij ¼
1

V

X

c2Nc

f ci l
c
j ð9Þ

where, rij is the stress tensor, V is the volume of the

assembly, Nc is all contact points in V, f ci is the corre-

sponding force vector between particles, lci is the branch

vector joining the centres of two contacted particles. By

calculating the stress tensor components, it would be pos-

sible to calculate effective confining pressure (p0) and

deviatoric stress (q) based on Eqs. (10) and (11).

p0 ¼ rii
3

ð10Þ

q ¼
ffiffiffiffiffiffiffiffiffiffiffiffi

3:sijsij
2

r

ð11Þ

where, sij ¼ rij � dijp0 and dij is the Kronecker delta.

The spatial distributions (i.e. anisotropies) of the contact

normal and contact forces play a significant role in the

shear behaviour of granular soil, which can be charac-

terised using fabric tensor in DEM. Among the various

definitions of fabric tensor [e.g. 18, 24, 33, 48], the contact

normal-based proposition by Satake [67] and Oda [49] was

adopted here:

uij ¼
1

N

X

c2Nc

nci n
c
j ð12Þ

where, uij is the fabric tensor, n
c
i is the unit vector along the

normal direction of the contact plane; and N is number of

contacts in the specimen.

Table 2 Summary of the test simulations

No Test ID e0 No. Test ID e0

1 CIU-30–0.736 0.736 55 CID-30–0.736 0.736

2 CIU-30–0.726 0.726 56 CID-30–0.726 0.726

3 CIU-30–0.715 0.715 57 CID-30–0.715 0.715

4 CIU-50–0.731 0.731 58 CID-50–0.729 0.729

5 CIU-50–0.721 0.721 59 CID-50–0.721 0.721

6 CIU-50–0.710 0.710 60 CID-50–0.709 0.709

7 CIU-70–0.725 0.725 61 CID-70–0.725 0.725

8 CIU-70–0.716 0.716 62 CID-70–0.715 0.715

9 CIU-70–0.705 0.705 63 CID-70–0.705 0.705

10 CIU-90–0.720 0.720 64 CID-90–0.719 0.719

11 CIU-90–0.711 0.711 65 CID-90–0.710 0.710

12 CIU-90–0.701 0.701 66 CID-90–0.700 0.700

13 CIU-100–0.718 0.718 67 CID-100–0.718 0.718

14 CIU-100–0.709 0.709 68 CID-100–0.708 0.708

15 CIU-100–0.690 0.690 69 CID-100–0.689 0.689

16 CIU-100–0.660 0.660 70 CID-100–0.659 0.659

17 CIU-100–0.631 0.631 71 CID-100–0.630 0.630

18 CIU-100–0.611 0.611 72 CID-100–0.610 0.610

19 CIU-100–0.574 0.574 73 CID-100–0.574 0.574

20 CIU-300–0.675 0.675 74 CID-300–0.674 0.674

21 CIU-300–0.668 0.668 75 CID-300–0.667 0.667

22 CIU-300–0.652 0.652 76 CID-300–0.651 0.651

23 CIU-300–0.626 0.626 77 CID-300–0.625 0.625

24 CIU-300–0.601 0.601 78 CID-300–0.599 0.599

25 CIU-300–0.583 0.583 79 CID-300–0.582 0.582

26 CIU-300–0.549 0.549 80 CID-300–0.548 0.548

27 CIU-500–0.640 0.640 81 CID-500–0.639 0.639

28 CIU-500–0.633 0.633 82 CID-500–0.633 0.633

29 CIU-500–0.619 0.619 83 CID-500–0.619 0.619

30 CIU-500–0.597 0.597 84 CID-500–0.596 0.596

31 CIU-500–0.574 0.574 85 CID-500–0.573 0.573

32 CIU-500–0.557 0.557 86 CID-500–0.556 0.556

33 CIU-500–0.526 0.526 87 CID-500–0.526 0.526

34 CIU-700–0.609 0.609 88 CID-700–0.608 0.608

35 CIU-700–0.603 0.603 89 CID-700–0.602 0.602

36 CIU-700–0.590 0.590 90 CID-700–0.590 0.590

37 CIU-700–0.571 0.571 91 CID-700–0.570 0.570

38 CIU-700–0.549 0.549 92 CID-700–0.547 0.547

39 CIU-700–0.534 0.534 93 CID-700–0.533 0.533

40 CIU-700–0.505 0.505 94 CID-700–0.505 0.505

41 CIU-1000–0.567 0.567 95 CID-1000–0.567 0.567

42 CIU-1000–0.562 0.562 96 CID-1000–0.561 0.561

43 CIU-1000–0.551 0.551 97 CID-1000–0.550 0.550

44 CIU-1000–0.534 0.534 98 CID-1000–0.533 0.533

45 CIU-1000–0.515 0.515 99 CID-1000–0.514 0.514

46 CIU-1000–0.502 0.502 100 CID-1000–0.501 0.501

47 CIU-1000–0.476 0.476 101 CID-1000–0.475 0.475

48 CIU-2000–0.454 0.454 102 CID-2000–0.454 0.454

Table 2 (continued)

No Test ID e0 No. Test ID e0

49 CIU-2000–0.451 0.451 103 CID-2000–0.451 0.451

50 CIU-2000–0.443 0.443 104 CID-2000–0.442 0.442

51 CIU-2000–0.432 0.432 105 CID-2000–0.432 0.432

52 CIU-2000–0.419 0.419 106 CID-2000–0.418 0.418

53 CIU-2000–0.410 0.410 107 CID-2000–0.409 0.409

54 CIU-2000–0.391 0.391 108 CID-2000–0.390 0.390
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The deviatoric fabric tensor can also be defined as

below:

Fij ¼ uij �
1

3
dij ð13Þ

In order to characterise the fabric anisotropy, a scalar

value obtained from deviatoric fabric tensor is usually used

to quantify the degree of fabric anisotropy. This scalar

value can then be used together with the scalar valued

stress ratio g ¼ q=p0ð Þ and void ratio (e) to define the

conditions for a critical state outlined in Eq. (6).

To examine whether the unique critical state features

can be identified for fabric anisotropy at CS, a number of

variables such as FAV A as expressed by Eq. (5), von

Mises invariant Fvmð Þ of fabric tensor proposed by Huang

et al. [18] and stress-fabric joint invariant KFð Þ defined by

Zhao and Guo [91] are adopted in this study, all of which

are further discussed in the following sections.

3 Results and discussions

3.1 Simulation program

Table 2 summarises the test program in this study. Each

test is identified by the loading condition, initial confining

pressure p00ð Þ and initial void ratio (e0) of the specimen.

For example, CIU-70-0.725 indicates isotropic undrained

compression (CIU) test on a specimen that was under a p00
of 70 kPa and had an e0 of 0.725 at the end of consolida-

tion. For the same token, CID means isotropic drained

compression test.

3.2 Macromechanical behaviour

The undrained behaviours of specimens with the same p00
of 100 kPa but at different e0 are shown in Fig. 2. All

specimens, including in Fig. 2, reached/approached CS at a

large strain.

As can be seen in Fig. 2, the typical undrained

mechanical behaviours comparable to the experimental

observations [76] can be identified in the simulation. CIU-

100-0.574, CIU-100-0.631 and CIU-100-0.660 show dila-

tive behaviours, CIU-100-0.709 shows phase-transforma-

tion behaviour, and CIU-100-0.718 shows static

liquefaction. Accordingly, the specimens with e0 of 0.574,

0.631 and 0.660 can be considered as very dense to dense

specimens, and the specimens with e0 of 0.709 and 0.718

can be considered as medium dense and very loose speci-

mens, respectively. As expected by the theory of critical

state soil mechanics, a unique CSL can be drawn for these

states, as shown in Fig. 2b.

The drained behaviours of the specimens with the same

p00 of 100 kPa but at different e0 are presented in Fig. 3.

The dense specimen exhibits a softening behaviour after

reaching an initial peak, whereas the loose specimen shows

a continuous hardening behaviour. As expected, all speci-

mens finally reach a unique CS with constant values of e, p0

and q by either dilation or contraction.

Figure 4a shows the critical state lines deduced from

108 undrained and drained tests in this study. The best-fit

relation can be presented by the power function expressed

in Eq. (3) in which elim ¼ 0:723, K ¼ 0:018 and n ¼ 0:9.

As seen in Fig. 4b, the CS data points can be described by a

single line with a slope of 0.78 in q–p0 space which is

actually the stress ratio, M, as expressed in Eq. (1). These

CS parameters will be used in following sections for cal-

culation of classic and dilatancy state parameters.

The above results indicate that the DEM simulations are

able to capture all features of the macroscopic density- and

pressure-dependent behaviours of granular soils. To

explain the macroscopic behaviour at the grain-scale, the

microstructure and its evolution during shearing, including

contact numbers, contact forces, contacts distribution and

microscopic geometry, are discussed using contact- and

fabric-based variables in the following sections.

3.3 Micromechanical behaviour

3.3.1 Evolution of contact number

To explain the behaviour of granular soil in micro-scale, the

contact density of the model is studied using the mechanical

coordination number Zmð Þ. It should be noted that Zm

excludes the particles with zero or one contact, as they do not

contribute to a stable state of stress during shearing. Particles

with less than two contacts are shown in Fig. 1.

Figure 5 shows the evolution of Zm in the undrained and

drained tests. As expected, the initial Zm of a specimen

increases with increasing initial density. During the

undrained tests, the Zm of dense specimens (e0 = 0.574 and

0.631) decrease rapidly first and thereafter increase grad-

ually with further shearing. Regarding the medium-dense

specimen (e0 = 0.660), the Zm gradually decreases to a

minimum value at quasi-steady state and then increases

with further shearing due to an increase of p0. For a very

loose specimen (e0 = 0.718), the Zm decreases continu-

ously to a limited value of around 8.0 and then suddenly

drops to zero. This can be considered as a sign of soil

collapse and the occurrence of static liquefaction. The Zm

value of specimens in the drained tests increases slightly

first and then decreases continuously until reaching a crit-

ical state with identical Zm, which is consistent with

numerical observations by Duran [11] and Rothenburg

[66].
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Therefore, to some extent, coordination number may be

an intrinsic variable characterising soil density and insta-

bility potential. However, in an undrained test, the Zm after

the instability of a very loose specimen does not make

much sense (decreasing while the specimen is contracting).

This would suggest that the Zm cannot solely capture the

behaviour of granular soil at the particle scale and shall be

combined with fabric anisotropy (i.e. contact normal,

contact forces, contact distribution and microscopic

geometry) to properly describe the soil density at the par-

ticle scale.

3.3.2 Evolution of anisotropies

The structural anisotropy can be characterised by the sec-

ond-order fabric anisotropy tensor (Fij) as expressed in

Eq. (13). A scalar quantity of fabric can be presented by

the von Mises fabric Fvmð Þ, which is derived from the

invariant of Fij as expressed below:

Fvm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3

2
FijFji

r

ð14Þ

which can be rewritten as:

Fig. 2 Undrained behaviours of specimens with different densities: evolutions of a deviatoric stress vs e1; b effective stress path; c excess pore
water pressure vs e1

Fvm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

2
F11 � F22ð Þ2 þ F11 � F33ð Þ2 þ F22 � F33ð Þ2 þ 6 F2

12 þ F2
13 þ F2

23

� �

h i

r

ð15Þ
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Fig. 3 Drained behaviours of specimens with different densities: evolutions of a deviatoric stress vs e1; b void ratio vs p0; c volumetric

strain vs e1; and d stress ratio vs dilatancy factor, D

Fig. 4 Critical state lines in a e� p0 plane and b q� p0 plane
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here, F11, F22, and F33 are fabric tensors in three orthog-

onal directions; and F12, F13, and F23 are fabric tensors in

the shear directions.

It is interesting to examine whether the unique critical

state features can be identified for fabric anisotropy at CS.

Figure 6a, b show the relationships between Fvm and p0 and
Fvm and e at CS. A non-linear relationship for Fvm at CS is

observed, which implies the uniqueness of CSL. The

evolution of Fvm during the undrained shearing process for

four samples with different p0 is also presented in Fig. 6a, b

to demonstrate the stress dependency of the evolution path.

However, as shown by several past studies, fabric ani-

sotropy is intimately related to the loading path and contact

forces [e.g. , 1373. Due to this dependency, an anisotropy

variable defined based on both loading direction and fabric

tensor may offer a more accurate characterisation of soil

anisotropies.

Therefore, the following scalar values are also examined

in this study:

1. Joint invariant of stress tensor and fabric tensor (KF)

proposed by Zhao and Guo [91]:

KF ¼ sijFij ð16Þ

where Fij is the deviatoric fabric tensor described by

Eq. (13) and sij is previously defined in Eq. (11).

2. The scalar measure of relative fabric orientation, FAV

A of Eq. (5) (A ¼ Fijnij).

where nij is the deviatoric loading direction, and for

monotonic loading conditions in this study, can be defined

by a unit-norm deviatoric tensor, nij along the normal to the

yield surface in deviatoric stress space:

Fig. 5 Evolutions of mechanical coordination numbers Zm vs e1 a undrained tests; b drained tests

Fig. 6 FvM values at CS and the evolution of FvM during undrained shearing: a FvM–p
0 space; b FvM–e space
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nij ¼
sij
ffiffiffiffiffiffiffiffi

sijsij
p ð17Þ

Additionally, von Mises invariant, Fvm of fabric tensor

proposed by Huang et al. [18] and stress-fabric joint

invariant, KF, proposed by Zhao and Guo [91] are also

adopted in this study to further investigate the fabric ani-

sotropy and its evolution in DEM. This is further discussed

in the following sections (Fig. 7).

3. A pure measure of the relative orientation of the two

fabric and stress tenors, A0, proposed by Zhao and Guo

[91]:

A
0 ¼ nFijnij ð18Þ

where, nij is deviatoric loading direction expressed in

Eq. (17) and nFij is deviatoric fabric direction defined

below:

nFij ¼
Fij
ffiffiffiffiffiffiffiffiffiffiffi

FijFji

p ð19Þ

The correlation between KF and p0 and KF and e at CS

by power-law fitting is shown in Fig. 8a and b. The evo-

lution of KF during the undrained shearing process for four

samples with different confining pressures is also provided

to show the stress dependency of the evolution path. A non-

linear relationship for both KF at CS is observed which

implies on the uniqueness of CSL and is consistent with the

concept of CS as explained in ACST by Li and Dafalias

[32].

The fabric evolution during shearing in both drained and

undrained tests is studied using the FAV A as defined in

Eq. (5). Figure 8a, b indicate that A not only evolved to a

CS value (i.e. A = 1) but also first rose beyond CS (slight

rise for loose specimen) and only returned to CS at rela-

tively large strains, which is different from the evolution of

Fig. 7 KF values at CS and the evolution of KF during undrained shearing: a KF � p0 space; b KF � e space

Fig. 8 Evolutions of fabric anisotropy variable for specimens with different densities a in undrained tests; b in drained tests
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A and F originally presented by Li and Dafalias [32]. A

similar observation was previously reported for dense

samples by Fu and Dafalias [13] and Nguyen et al. [44],

and was later quantified by Yang et al. [86].

Figures 9a, b shows the relationships between A and p0

and A and e at CS and its evolution path for four samples

with different p0 during the undrained shearing process. As

expected and defined by Li and Dafalias [32], when A

approaches the critical state value 1 for both cases. This

special behaviour of the critical fabric structure can be

further demonstrated through plotting A versus stress ratio

g ¼ q=p0ð Þ and stress dilatancy (DP ¼ �depm=de
p
qÞ, as

shown in Figs. 9c, d. Similar evolution of fabric anisotropy

was previously reported by Wang et al. [78] and Yuan et al.

[89].

A normalised anisotropy variable A0ð Þ as defined in

Eq. 18 has also been proposed by Zhao and Guo [91] as a

pure measurement of the relative orientation of the two

fabric and stress tensors. This variable is used in this study

to further examine the fabric evolution during the shearing

process. The evolution of A0ð Þ for five samples with dif-

ferent confining pressures during the undrained shearing

process is shown in Fig. 10a, b. The evolution path indi-

cates that the stress and the fabric tensor always tend to

become coaxial, and A0ð Þ approaches unity shortly after the

application of shear and then stays at this value until

reaching the CS. This behaviour is also reported by Zhao

and Guo [91], which is indeed a very special property of

the critical fabric structure and is consistent with Li and

Dafalias [32].

However, valuable as it may be, the proposed variable is

indeed a normalised quantity of the FAV A and may not be

an appropriate parameter to characterise the fabric aniso-

tropies due to the exclusion of fabric intensity

Fig. 9 A values at CS and the evolution of A during undrained shearing: a A–p0 space; b A–e space; c A–stress ratio, d A–stress dilatancy
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(F ¼
ffiffiffiffiffiffiffiffiffiffiffi

FijFji

p

) from the measurement. It is evident that A

tends toward 1 at critical state because both F and A0 tend
toward 1. Thus, A of Eq. 5 is the fabric variable that in

conjunction with stress ratio, g; and void ratio, e, can be

used to define the necessary and sufficient conditions for a

critical state to occur (i.e. the conditions listed in Eq. (6)).

The correlation between KF at CS and initial FAV A0, is

shown in Fig. 11. As expected, due to the same nature of

both parameters (both defined on the basis of fabric and

loading orientation), a unique non-linear relationship is

observed. This implies the suitability of FAV A to inves-

tigate the degree of anisotropy provided that this

micromechanical fabric-based parameter can be incorpo-

rated into the constitutive model using DSP f and properly

linked to the characteristic features of granular soil

behaviour.

In addition, it is understood that the FAV A of ACST

was purposefully defined to be related to the unit norms

with the normal n on the yield surface or even more general

(for theories that do not use yield surface, i.e. hypoplas-

ticity), along the plastic strain rate direction n. This would

enable the change of A to -A upon reversal of loading (i.e.

cyclic loading). Such reversal behaviour is of cardinal

importance for the description of the response of sands, i.e.

between triaxial compression (dilatant) and extension

(static liquefaction). All other relevant indices used in this

study (i.e. FvM and KF) are of restricted value in a theory

that must address also the reversal of loading, while they

do not change sign upon reversal of stress rate because the

stress is still along the direction of the fabric. In addition, it

is not possible that these quantities to be correlated to

important Dilatancy State parameter DSP f. Therefore, the
constitutive modelling presented in the following section is

based on the FAV A to further explore the effect of fabric

within the context of ACST.

3.4 Constitutive formulation

Rahman, Dafalias [57] proposed a new expression of DSP

f by combing Eqs. (7) and (8), which is presented in the

following equation. f enables the ACST constitutive model

[32] to better account for fabric for prediction of mac-

robehaviour for Toyoura sand and Sydney sand with silts.

However, such a new f has not been evaluated yet in the

light of micromechanics and fabric entities.

Fig. 10 Evolution of A0 during shearing process towards CS at various p0

Fig.11 Correlation between initial fabric anisotropy variable and

stress fabric joint invariant at CS
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f ¼ w� eA
helim � ei
elim � eCSð Þ A� 1ð Þ ð20Þ

An attempt is made in this study for the first time to

calculate the initial dilatancy state parameter, DSP

f0�DEMð Þ, from micromechanical entities of this DEM

Study. For this, the initial FAV A0 was calculated using the

initial values of the unit-norm deviatoric tensor nij
(Eq. (17)) and deviatoric fabric tensor Fij (Eq. (13)). To

evaluate the performance of Eq. (20), it was compared with

f0�CM was calculated by constitutive formulation (CM) as

outlined below.

Fij is a second-order fabric tensor representing the ani-

sotropic geometry of the internal structure in soil. For an

initially cross-anisotropic sample with the isotropic plane

coinciding with the x2 - x3 plane and the axis of aniso-

tropy aligning with the x1-axis, Zhao and Guo [91] pro-

posed the following expression for Fij:

Fij ¼
F11 0 0

0 F22 0

0 0 F33

2

4

3

5 ¼
ffiffiffi

2

3

r F0 0 0

0 �F0=2 0

0 0 �F0=2

2

4

3

5

ð21Þ

where, F0 can be obtained according to equation below

F0 ¼
3
p
6ð2t� 1Þ

3 1� 2tð Þ þ ðdq=dpÞðt� 2Þ ð22Þ

m is the Poisson’s ratio (0\ m\ 0.5) for DEM specimen.

As part of this study, a sensitivity analysis considering

the material orthotropy has been carried out to select

suitable values for Poisson’s ratio and as a result of which,

the constitutive model outputs using Poisson’s ratios

ranging from 0.46 to 0.48 show a reasonably good con-

sistency with DEM results. The possible explanation for

such a great range of values in Poisson’s ratio probably lies

in a very high particle stiffness in the DEM specimen.

The deviatoric unit loading direction tensor nij can be

expressed as:

nij ¼
Nij � Nmndmndij=3

kNij � Nmndmndij=3k
;Nij ¼

o
ef

orij
; ef ¼ R=g hð Þ ð23Þ

g hð Þ is an interpolation function based on the Lode angle h
of rij as follows:

g hð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ c2ð Þ2 þ 4c 1� c2ð Þsin3h
q

� 1þ c2ð Þ
2 1� cð Þsin3h ð24Þ

where c ¼ Me=Mc which is the ratio between the critical

state stress ratio in triaxial extension (Me); and that in

triaxial compression (Me); and

h ¼ �
sin�1 9R0 �

2R3

� 	h i

3
with R0 ¼ rijrjkrki

¼ tr r3
� �

� tr r2
� �

tr rð Þ þ 2

9 tr rð Þð Þ3
ð25Þ

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3=2rijrij

q

withrij ¼
r0ij � p0dij

p0
¼ sij=p

0 ð26Þ

Following the determination of Fij and nij, initial FAV

A0 was calculated using Eq. (5) and initial DSP (f0) were
calculated using Eq. (20).

The scatter graph of initial FAV A0 and initial f0 based

on CM and based on DEM are presented in Fig. 12. As can

be seen in Fig. 12a, the initial FAV A0 ranges from - 0.1

to 0.1 for both CM and DEM. Based on Fig. 12b, there is a

good agreement between CM- and DEM-derived values

and the best-fit relation is actually the line of equality

which indicates that the Eq. (20) by Rahman, Dafalias [57]

is likely to provide a reliable method to estimate DSP f.
It should be mentioned that Eq. (20) is based on a

simple form of rate equation for the fabric tensor

(dF ¼ hkic N � Fð Þ ¼ cð�1� FÞjdepqj) in the sense that it

does not allow for the fabric norm to increase above 1 as

observed in DEM studies for dense samples (Fu and

Dafalias [13]), and which requires the introduction of an

additional parameter r\1 in front of F that becomes 1 at

CS (Li and Dafalias [32]). Note, while the use of the above

rate equation in terms of k and depq is common in the lit-

erature (Gao et al. [15]; Zhao and Kruyt [92]), there are

other approaches found in the literature, e.g. combining k
and dilatancy (Wang et al. [78]; Yang et al. [86]), stress

ratio rate and e (Lashkari and Latifi [27]; Wan and Guo

[77]), strain rate and e (Fang et al. [12], Sun and Sun-

daresan [71]). While further investigation is necessary in

regard to the evolution equation for the fabric tensor, in this

paper Eq. (20) has been adopted in order to focus on the

main objective of the constitutive relation between

microstructures and macroscopic behaviour of granular

soils (Fig. 13).

3.5 State parameters and fabric evolution

Previously published works [44, 59, 85] indicate that the

behaviour of granular materials can be characterised by the

initial classic state parameter w0ð Þ. Therefore, it can be of

particular interest in this study to examine if the same

property can be seen for initial DSP f0. Correlation

between instability stress ratio gIS, and initial w0 and f0 are
plotted in Fig. 13 with their best-fit relation presented by

gIS ¼ 0:4805� expð�10:54w0Þ and

gIS ¼ 0:7085� expð�21:77f0Þ, respectively. Based on a

comparison between coefficients of determination, denoted

R2, the relation between gIS and initial state parameter has
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Fig. 12 Scatter graph of a initial FAV A0 and b initial DSP f0 based on CM and based on DEM

Fig. 13 Correlation between instability stress ratio and a initial state parameter; b initial dilatancy state parameter

Fig. 14 Correlation between instability stress ratio at a state parameter at instability state; b dilatancy state parameter at instability state
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slightly been improved using f0. This can be attributed to

the inclusion of fabric entities in our model. It is expected

that similar or better correlations can be identified between

the stress ratio and state parameter at the same state.

The correlation between stress ratio and state parameters

at instability state were also examined in this study which

would be of more use to future fabric-based constitutive

modelling. Figure 14 indicates that there is a reasonable

trend between stress ratio and classic or dilatancy state

parameters at the instability state, which is presented by the

best-fit relations of gIS ¼ 0:4526� expð�12:57wISÞ and

gIS ¼ 0:536� expð�11:88fISÞ. Based on a comparison

between R2 coefficients, the identified correlation between

stress ratio and state parameter at instability has consider-

ably been improved using fIS which may be related to the

inclusion of fabric in dilatancy state parameter.

The correlation between state parameters and stress

ratio at phase transformation (PT) in undrained and at

characteristic state (Ch) in drained tests are shown in

Fig. 15. The best-fit relation can be presented by gPT=Ch ¼
0:782� expð�1:977wPT=ChÞ and gPT=Ch ¼ 0:7703� exp

ð�2:486fPT=ChÞ in which the state dependent dilatancy

was elaborated. As can be seen, this relation has been

presented using a single trend suggesting that the PT and

Ch are likely representing the same characteristic of

granular soil behaviour but in different drainage condi-

tions, which is consistent with previous observations by

Nguyen et al. [45]. A similar exponential relation was

proposed by Li and Dafalias [31, 32], respectively, for

both classic and dilatancy state parameters expressed by

gPT=Ch ¼ M � expðmwPT=ChÞ and gPT=Ch ¼ M � exp

ðmfPT=ChÞ. These constitutive relations are also plotted in

Fig. 15 in which m ¼ �2:5. As expected, based on the

consistency between the best-fit curves and constitutive

relations as well as a comparison between R2 coefficients,

a better correlation can be seen between gPT=Ch and

fPT=Ch. Although there is only a marginal improvement in

the comparison of the best-fit curves, when viewed from

the perspective of constitutive modelling and considering

the correlation between gPT=Ch ¼ M � expðmfPT=ChÞ and

the best-fit curves, a noticeable improvement can be seen

which can be attributed to the inclusion of fabric in

dilatancy state parameter.

3.6 Conclusions

The micromechanical and macromechanical characteristic

features of the behaviour under drained and undrained

conditions were examined using DEM simulations. The

major findings are:

• The state-dependent behaviours of granular soil were

observed for loose, medium dense and dense speci-

mens. This includes contraction and static liquefaction

in very loose soil, quasi-steady state or phase transfor-

mation (PT) in medium-dense soil, and dilatancy and

hardening in dense soil. All the specimens reach a

unique CSL in the p0-q-e space regardless of the initial

density, confining pressure and loading mode.

• The initial mechanical coordination number Zm
increases with decreasing initial void ratio e0. However,

there is no unique correlation between Zm and e,

although to some degree Zm reflects the soil density. It

is found that the critical Zm value linearly depends on

the critical p0 value. Meanwhile, the critical Zm value is

generally smaller than the initial one, although the

density or p0 value at the critical state may increase

when compared with the initial one. Moreover, the

quasi-steady state corresponds to the minimum Zm
value during shearing, and the static liquefaction

happens when the Zm value is less than 8.

Fig. 15 Correlation between stress ratio at PT/Ch with a state parameter at PT/Ch; b dilatancy state parameter at PT/Ch

Acta Geotechnica

123



• It was also found that the micromechanical measures,

FvM and KF, evolved toward CS at high e1. The CS

values of these micromechanical quantities from

drained and undrained simulations all terminated in a

single line (CSL).

• A unique relationship between stress ratio at PT/Ch

state (gPT=Ch) and classic and dilatancy state parameters

(wPT=Ch and fPT=Ch) was established. The uniqueness of

this relationship implies that the PT and Ch are likely

representing the same transition state of granular soil

behaviour but in different drainage conditions. How-

ever, this unique relationship cannot properly be

detected in microscale by plotting the von Mises fabric,

Fvm against w and f at PT/Ch state, which can be

associated to the definition of undrained and drained

conditions in DEM simulation.

• The correlation between stress ratio and both classic

and dilatancy state parameter (w and f) were studied in

important characteristic features (e.g. instability, phase

transformation and characteristic state). This correlation

was improved using DSP f which might be due to the

inclusion of fabric in our model. This observation is

new and significant for modelling fabric evolution. This

represents a novel contribution to the understanding of

anisotropic responses in constitutive modelling. Addi-

tionally, this study deviates from the linear variation of

gPT with w found in previous works, such as Manzari

and Dafalias [38]. The exponential correlations pre-

sented, while closely resembling linearity, exhibit better

behaviour, adding a layer of sophistication to the

existing knowledge in this domain.

The findings and recommendations contained within this

study are the results of observations from DEM simulations

and a comprehensive review of pertinent literature. To the

best of authors’ knowledge, they provide a plausible

interpretation of both micromechanical and macrome-

chanical behaviours exhibited by granular materials. This

enhanced understanding contributes significantly to the

quantitative knowledge essential for advancing future

constitutive modelling efforts. To validate and enhance the

robustness of these findings, additional observations using

experimental approaches can be pursued.

Appendix

The effect of number of particles, NP

Rigid boundaries may inflict uncharacteristically large

friction angles in small assemblies and therefore the

accuracy and consistency of results may depend on the

specimen size (Zhao and Guo [91]; Huang et al. [18]. The

specimen size (or number of particles, NP) should be large

enough to minimise the influence of the end-restraint

conditions. The q–e1 and q–p0 responses for undrained

simulations with different number of particles of 13,570

and 25,750 are presented in Fig. 16a and b. Despite the

Fig. 16 Effect of number of particles, NP, on undrained behaviour: a q–e1 space; b q–p0 space
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large difference of NP, two pairs of simulations with

exactly the same p0 and almost the same e0 exhibited

similar responses. The slight difference in their responses is

due to slight variations of their e0 since it is difficult to

achieve exactly the same e0. Similar observations have

been reported by Ng [43] and Nguyen et al. [44] for

specimens with a range of ellipsoid particles varying from

863 to 1170 and 1450 to 5400, respectively. The smaller

number of particles has been adopted in this study to avoid

unnecessary computation in the simulation.
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