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Abstract
The objective of this study is to assess the impact of spatial variability in the subgrade layer on the critical response of

pavements and the effectiveness of geogrid reinforcement, employing the random field finite difference analysis (RFFDA).

A comprehensive parametric study was conducted to examine the influence of two crucial factors: the coefficient of

variation (COVE) and scale of fluctuation (SOF) of the subgrade modulus. Further investigation was conducted to uncover

the statistical and mechanical mechanisms underlying the impact of subgrade spatial variability with emphasis on the

critical strain distributions and their correlation with both the overall modulus and the local spatial variability of the key

influence zone. Furthermore, this study explored the influence of subgrade spatial variability on the effectiveness of

geogrid in reducing critical strains, considering various placement positions and geogrid moduli. The following main

conclusions are drawn: (a) subgrade spatial variability has a substantial amplifying effect on critical pavement strains due

to low modulus dominating effect, (b) there exists a worst value of SOF that results in the most unfavorable statistics of

critical subgrade strain, (c) the effect of subgrade spatial variability on critical subgrade strain is more pronounced

compared to its effect on critical asphalt strain, (d) the mean value of critical subgrade strain in RFFDA can be significantly

underestimated when assuming fixed location for the strain, and (e) the effectiveness of geogrid in reducing critical strains

is impacted by subgrade spatial variability, with the impact varying with the type of critical strain and geogrid location.

Specifically, when placed at the base course–subgrade interface, the ability of geogrid to reduce critical subgrade strain is

significantly compromised due to the subgrade spatial variability.
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Abbreviations
AASHTO American Association of State Highway and

Transportation Officials

CBR California Bearing Ratio

COV Coefficient of variation

DCP Dynamic cone penetrometer

IRI International roughness index

KIZ Key influence zone

LWD Light weight deflectometer

ME Mechanistic-empirical

RFFDA Random field finite difference analysis

SAR Strain alleviating ratio

SOF Scale of fluctuation

G1 Geogrid with 2500 kN/m secant stiffnesses

(J) at 2% of strain

G2 Geogrid with 5000 kN/m secant stiffnesses

(J) at 2% of strain

L1 Asphalt–base course interface

L1-2 Mid-depth of base course

L2 Base course–subgrade interface

G_L1 Geogrid reinforcement with geogrid (G1 or

G2) placed at L1

G_L2 Geogrid reinforcement with geogrid (G1 or

G2) placed at L2

G_L1-2 Geogrid reinforcement with geogrid (G1 or

G2) placed at L1-2

E Subgrade modulus

EðXiÞ Vector of random variables for the subgrade

modulus

ELocal Arithmetic mean modulus of meshes in the

KIZ
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Edet Deterministic subgrade modulus

lE Mean value of subgrade modulus

COVE Coefficient of variation of subgrade modulus

COVE;1 Coefficient of variation of ELocal

COVE;2 Average coefficient of variation of the moduli

in the six meshes of the KIZ

flnE Mean value of the normal distribution of lnðEÞ
klnE Standard deviation of the normal distribution

of lnðEÞ
dx Horizontal scale of fluctuation

dy Vertical scale of fluctuation

D Width of the uniform contact stress used to

simulate the tire pressure

RL Length ratio of scale of fluctuation (SOF) to

the width of the uniform contact stress (D)

RA Strain amplification ratio

RD;max Deviation ratio of maximum critical strain

RD;min Deviation ratio of minimum critical strain

each Maximum horizontal tensile strain at the bot-

tom of asphalt layer

esubv
Maximum vertical compressive strain on the

top of subgrade layer

P0 Position for each in deterministic scenario

Q0 Position for esubv in deterministic scenario

each;P0 Horizontal asphalt strain at P0 in a spatially

variable case

esubv;Q0
Vertical subgrade strain at Q0 in a spatially

variable case

esubv;det
Critical subgrade strain in deterministic

scenario

e Mean value of the critical asphalt or subgrade

strain in a spatially variable case

edet Critical asphalt or subgrade strain in the

deterministic case

rsubv
Average vertical stress transmitted to the top

of KIZ in a spatially variable case

rsubv;det
Vertical stress transmitted to the top of KIZ in

a deterministic variable case

1 Introduction

The subgrade layer is the natural or prepared soil layer

beneath the pavement structures, and it plays a crucial role

in providing the support and stability required for the

overlying pavement. However, the level of support as

characterized by the subgrade strength or modulus can vary

spatially due to a combination of factors such as natural

deposition processes, variation in construction quality and

environmental change. Spatial variability in the subgrade

layer can have significant impacts on pavement perfor-

mance. Non-uniform settlement and deformation of the

pavement may arise due to this variability [19], resulting in

undesirable and excessive pavement distress such as

cracking, rutting, and roughness [37]. Furthermore, local-

ized bearing capacity failure may also occur in regions

where the subgrade is very weak or soft, leading to the

ingress of moisture and the contamination of the aggregate

base material with underlying soft subgrade soil. All these

consequences can exacerbate the risk of premature failure

of the pavement system.

Spatial variability is a significant contributor to material

uncertainty in geotechnical engineering [32]. It can be

effectively characterized using random field theory, pri-

marily through two key parameters: the coefficient of

variation (COV) and the scale of fluctuation (SOF). The

COV describes the extent of dispersion in material prop-

erties. The SOF, which characterizes the pattern of prop-

erty dispersion, is the distance at which the correlation

between two points in the field decays to a negligible level.

The random field finite element analysis (RFFEA), or the

random field finite difference analysis (RFFDA), both of

which integrate numerical simulation with random field

theory and Monte Carlo Simulation, are probabilistic

frameworks widely employed to characterize the spatial

variability of materials and assess its statistical impact on

the structural response [11, 19, 20, 22, 23, 27, 41].

Numerous studies have investigated the influence of

subgrade spatial variability on the pavement response with

the two probabilistic frameworks. Lua and Sues [27] per-

formed a comprehensive probabilistic analysis that

accounted for various uncertainties, including spatial

variability arising from the asphalt layer and foundation

layers (i.e., the base and subgrade layers). They concluded

that ignoring spatial variability can lead to inaccurate

prediction of pavement life. Ali et al. [4] examined the

impact of subgrade spatial variability on pavement

responses and revealed that the rutting life is more sensitive

to the subgrade spatial variability as opposed to fatigue life.

Vaillancourt et al. [37] investigated the effect SOF of

subgrade stiffness on the roughness of flexible pavements,

as quantified by the International Roughness Index (IRI).

They found that SOF had a direct impact on the wavelength

of the resulting deformations and the IRI value. Alhasan

et al. [3] employed geospatial models to define the spatial

variability and systematic measurement errors of base and

subgrade layers and consequently established a mechanis-

tic-empirical (ME) pavement performance model based on

reliability analysis. They concluded that: (1) when per-

forming risk and reliability analysis, it is essential to dis-

tinguish the inherent spatial variability from other

uncertainties and (2) the location of critical responses can

Acta Geotechnica

123



be different from the deterministic situation described in

the ME pavement design guides such as AASHTO [1].

Choudhuri and Chakraborty [13] investigated how the

horizontal and vertical SOF of the subgrade soil affect the

pavement bearing capacity using an anisotropic random

field.

The above studies focus on the influence of spatial

variability in subgrade layers on pavement performance,

consistently revealing the adverse impact of such vari-

ability on the structural response of pavements. However,

there are limited studies effectively delving into the sta-

tistical and mechanical mechanisms behind these effects.

Additionally, it remains uncertain whether there exists a

specific ‘‘worst’’ SOF that leads to the most unfavorable

statistical consequences for pavement response.

Moreover, the impacts of spatial variability in subgrade

layers have received scant attention in various practical

scenarios commonly encountered in practice. For example,

the use of geogrid reinforcement is a widely adopted

practice in pavement engineering due to its potential to

improve pavement performance, such as reducing critical

strains, mitigating rut depth and crack development

[15, 16, 21]. However, the impact of subgrade spatial

variability on the efficacy of geogrid reinforcement

remains largely unexplored. The effectiveness of geogrid

reinforcement relies on various design variables, such as

the type and properties of geosynthetic [10, 33], the

placement position of geosynthetic [29, 43], the thickness

of design section [15], the loading magnitude and condi-

tions [10, 33], and the subgrade strength [9, 16, 39]. Cor-

reia et al. [16] found that the reduction in the asphalt

surface vertical displacements resulting from the geogrid-

reinforced asphalt layers was more significant for pave-

ment on comparatively weak subgrades. Notably, contra-

dictory findings have been reported regarding the impact of

subgrade strength on the effectiveness of geogrid rein-

forcement used in the base course layer. Cancelli et al. [9]

observed a reduction in the reinforcement benefit as sub-

grade strength increases, while Webster [39] found that a

higher California Bearing Ratio (CBR) in the subgrade

resulted in a greater reinforcement benefit. Given the lim-

ited number of studies available, it remains inconclusive

whether or not the geogrid reinforcement in the base course

layer is more beneficial on a weaker subgrade. Addition-

ally, the impacts of weak subgrade on the geogrid rein-

forcement placed at other positions within the pavement

system have not been adequately explored. The situation

becomes more complex when considering a subgrade with

spatial variability, as it introduces different strain and stress

distributions within the multilayer pavement system com-

pared to deterministic conditions. These variations can

significantly influence the effectiveness of geogrid rein-

forcement. Nevertheless, it remains unclear whether the

subgrade spatial variability enhances or hampers the geo-

grid reinforcement. This knowledge gap highlights the

necessity for further research to address these issues.

This study investigates the effects of subgrade spatial

variability on critical pavement responses and the effec-

tiveness of geogrid reinforcement using the random field

finite difference analysis (RFFDA). The critical pavement

response variables analyzed are the maximum horizontal

tensile strain at the bottom of the asphalt layer (each ) and the

maximum vertical compressive strain on top of the sub-

grade layer (esubv Þ. These strains are normally used to esti-

mate the pavement fatigue life (using each ) and rutting life

(using esubv ), respectively, i.e., the respective number of

load repetitions for fatigue and rutting failures [1, 7]. To

avoid the complex coupling effect of different sources of

uncertainties, only the subgrade modulus is considered as

spatially variable, assuming all other parameters to be

homogeneous and deterministic. Parametric studies were

conducted to examine the effects of two key influencers,

namely the coefficient of variation (COVE) and the scale of

fluctuation (SOF) of subgrade modulus. Further investiga-

tion was conducted to uncover the statistical and mechan-

ical mechanisms underlying the impact of subgrade spatial

variability by analyzing the critical strain distributions and

their correlations with both the overall modulus and the

local spatial variability of the key influence zone. Finally,

the influence of subgrade spatial variability on the effec-

tiveness of geogrid reinforcement in mitigating critical

strains is also explored, considering various locations and

moduli of the reinforcements.

2 Random field finite difference analysis
(RFFDA)

2.1 Finite difference model of the pavement
structure

A typical three-layer pavement structure subjected to a load

of 53 kN from a single-tired single-axle was chosen for

analysis in this study. The load is represented by a uniform

contact stress of 800 kPa over two areas with a width of

D = 204.8 mm spaced by 2130 mm [7]. Though the

deformation of pavements under wheel loading is a 3D

problem, 2D pavement models are often employed in

numerical simulations for simplification [6, 16, 21, 28]. To

enhance the computational efficiency of RFFDA, the

pavement structure is simulated with a plane strain model

by constraining it to a 2D plane in FLAC3D software. As

shown in Fig. 1, the mesh sizes of the pavement model are

0.05 m horizontally and vary vertically depending on their

distance from the loading and the thickness of the layer.
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The vertical boundaries are fixed in horizontal directions

and the bottom is fixed in all directions. The base and

subgrade layers are simulated with the Mohr–Coulomb

constitutive model, and the asphalt layer with a linear

elastic material [5, 16, 31]. The material properties are

listed in Table 1.

In deterministic scenarios, the critical strains (each and

esubv ) would occur along the vertical axis directly beneath

the tire pressure [7]. However, in probabilistic analysis

incorporating spatial variability, the occurrence of critical

strains may not necessarily align with the locations

observed in the deterministic scenarios. This issue will be

thoroughly investigated and discussed in the following

sections.

To investigate the impact of subgrade spatial variability

on geogrid reinforcement, this study incorporates six types

of reinforcement arrangements. These arrangements con-

sider two levels of geogrid stiffness (G1 and G2) and three

placement positions (L1, L1-2, L2). Specifically, L1 rep-

resents the location at the interface between the asphalt and

base course, L1-2 the middle of the base course, and L2 the

interface between the base course and subgrade. The secant

stiffnesses (J) at 2% of strain are 2500 kN/m and 5000 kN/

m for G1 and G2, respectively. Linear shear behavior is

assumed for the interfaces between the geogrid and the

surrounding materials.

Table 2 lists the detailed simulation scheme and the

interface properties of the six geogrid reinforcements.

These geogrid parameters were determined based on

existing field and laboratory tests [2, 10, 14, 30]. The shear

moduli of the soil/aggregate–geogrid interface are influ-

enced by multiple factors [10, 34], including geogrid type,

interface type, vertical pressure on the geogrids, and even

environmental temperature. These factors are not examined

in this study but will be explored in future research to

explore their possible impact on geogrid’s strain alleviation

capacity under subgrade spatial variability. The geogrids

are simulated with geogridSEL in FLAC3D.

2.2 Validation of finite difference modeling

Correia et al. [16] performed 2D finite element analyses on

a large-scale paved model test, and the results showed the

efficiency of using a 2D model to simulate the 3D problem

when proper models and material properties are adopted.

The 3D large-scale paved model test by Correia et al. [16]

was employed to check the validity of the constitutive

models used in this study. Figure 2 shows the finite dif-

ference model of the test under plane strain assumption in

FLAC3D software. The material properties reported by

Correia et al. [16] are used in the validation simulation.

Fig. 1 Finite difference model of the three-layered pavement

Table 1 Material properties of the pavement model [7]

Material Asphalt

layer

Base

layer

Subgrade

layer

Thickness (mm) 100 200 3000

Young’s modulus

(MPa)

4000 200 60

Poisson’s ratio 0.4 0.35 0.28

Cohesion (kPa) – 5 30

Friction angle (�) – 40 25

Unit weight (kN/m3) 24 20 18.2

Table 2 Simulation programs of the six reinforcement arrangements and interface properties of the geogrids [2, 10, 14, 30]

Simulation

program

Reinforcement

type

Reinforcement location Interface properties

Shear stiffness, Ks (MPa/

m)

Cohesion

(kPa)

Friction angle

(�)

G1_L1 G1 L1: Asphalt–base course interface 600 300 45

G2_L1 G2 1200 300 45

G1_L1-2 G1 L1-2: Middle of base course 600 5 40

G2_L1-2 G2 1200 5 40

G1_L2 G1 L2: Base course–subgrade

interface

600 30 25

G2_L2 G2 1200 30 25
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The maximum asphalt surface displacement reported in

the test was 1.8 mm [16]. The numerical prediction shows a

close result of 1.9 mm, representing a 5% deviation. Fig-

ure 3 compares the experimental and predicted vertical

stress distribution across pavement layers and the geogrid

strain distribution. Figure 3a demonstrates that the finite

difference model accurately predicted the vertical stress

observed in the experiment. A good match has been

observed at four critical locations: the interface between

asphalt layers, the bottom of the lower asphalt layer, the

middle of the base course, and 10 cm below the top of the

subgrade layer. In Fig. 3b, the strain distribution of the

numerical model aligns well with the experimental results.

The geogrid strain peaks right beneath the wheel load

center and decreases with distance from the wheel load.

However, discrepancies between numerical predictions and

experimental findings are noticeable near the wheel load

and in regions extending 400 mm to 600 mm from it. These

inconsistencies might stem from the limitations of linear

elastic models in simulating volumetric changes in AC

material and the nonlinear behavior of geogrids [26].

Despite this, the numerical model well predicts both the

magnitude and location of the peak geogrid strain. Addi-

tionally, it shows no geogrid mobilization beyond 300 mm

from the wheel load, aligning with the experimental

findings.

Thus, the 2D finite difference model accurately pre-

dicted the key performance of the 3D large-scale paved

model test. This validation confirms the efficacy of the

finite difference modeling procedure, including the plane

strain assumption and constitutive models, to represent the

actual 3D geogrid-reinforced pavement model.

2.3 Modeling and discretization of random field

The spatial variability of subgrade modulus is simulated

with a continuous and stationary 2D random field. This

field is characterized by a vector of random variables EðXiÞ
following the lognormal distribution with its mean lE = 60

MPa and different coefficients of variation (COVEÞ. The
lognormal distribution is chosen to avoid the generation of

negative material properties [14]. The exponential auto-

correlation function adopted by Huang et al. [24] is used to

define the correlation of the random variables EðXiÞ at two
locations:

q x; yð Þ ¼ exp �2 xj j=dxð Þ exp �2 yj j
�
dy

� �
ð1Þ

where dx represents the horizontal scale of fluctuation

(SOF), while dy represents the vertical SOF. The variables

x and y denote the relative horizontal and vertical coordi-

nates of any two points, respectively. This study focuses

only on the 2D isotropic random field of the subgrade layer.

The spatial variation along the alignment direction is not

considered. Consequently, the horizontal and vertical scale

of fluctuation (dx and dy) are assumed to be equal and will

be collectively referred to as SOF henceforth.

The random field EðXiÞ is obtained through two steps:

(a) Generating a group of normally distributed random

field GðXiÞ using zero mean, unit variance, an

Fig. 2 Finite difference model of the large-scale paved model test by

Correia et al. [16]

Fig. 3 Comparison of experimental and predicted results: a vertical stress distribution; b geogrid strain distribution
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autocorrelation function q x; yð Þ, and an appropriate

Monte Carlo simulation number. The Karhunen–

Loève expansion method is chosen to generate the

random field for its excellent approximation to the

original random field and computational efficiency in

high-dimensional problems [25, 42].

(b) Deriving the lognormally distributed random field

EðXiÞ from GðXiÞ using the following transformation

equations:

flnE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnð1þ COV2

EÞ
q

ð2Þ

klnE ¼ lnlE � 1

2
f2lnE ð3Þ

E Xið Þ ¼ exp klnE þ flnEGðXiÞ½ � ð4Þ

where flnE and klnE are the mean and standard deviation of

the normal distribution of lnðEÞ, respectively.
Generally, the required number of Monte Carlo simu-

lations depends on precision requirements and available

computational resources. A convergence analysis was

conducted by progressively increasing the simulation

number from 20 to 1400 in RFFDA with COVE =0.5 and

SOF = 0.25 m. It was observed that, when the number of

simulations exceeds 200, the mean and COV of both crit-

ical subgrade strain (esubv ) and critical asphalt strain (each )
stabilize with an error percentage below 1.5%. Hence, 200

Monte Carlo simulations are utilized for subsequent

RFFDA.

2.4 Key influence zone (KIZ)

In probabilistic analysis, the magnitudes of critical strains,

particularly esubv , exhibit variations among different real-

izations due to the spatially variable modulus in the sub-

grade. The magnitude of esubv is primarily governed by the

magnitude and spatial distribution of subgrade modulus in

the vicinity of its critical location, known as the key

influence zone (KIZ) for esubv . Outside the KIZ, the distri-

bution of subgrade modulus makes an insignificant con-

tribution to the difference of pavement responses between

spatially variable and deterministic cases, as it is statisti-

cally equivalent to the deterministic case and far away

from the critical location.

To locate the KIZ, Fig. 4 presents the contour of vertical

compressive stress in the subgrade within 1 m of the base’s

underside. At a horizontal distance of 0.15 m (equivalent to

0.75D) from the loading centerline at the subgrade top, the

stress reduces to less than 60% of the maximum value. This

indicates that the critical subgrade strain and stress are

predominantly within a width region of 0.3 m (i.e., 1.5D)

beneath the loading area. Therefore, the region depicted in

Fig. 4, with a width of 1.5D and a thickness of 35 mm, is

identified as the KIZ. The random distribution of Young’s

modulus of the subgrade may slightly affect the local mean

values in the KIZ, but may not greatly change the ratio

between the moduli of the base course and the subgrade

within the KIZ. The size of the KIZ is mainly affected by

the ratio between the asphalt, base course and subgrade

moduli, and the thicknesses of the asphalt and the base

course layers. As long as the ratios and the thicknesses do

not vary too much, the size of KIZ will not vary signifi-

cantly. For simplification, in the analyses, the size of the

KIZ was kept constant in all the analyses. However, if the

thickness and moduli of the pavement layers significantly

differ from those in Table 2, the dimensions of KIZ may

change accordingly.

To quantify the overall modulus of the KIZ, a local

modulus, ELocal, is defined as the arithmetic mean modulus

of meshes in the KIZ. The statistics of critical strains in

spatially variable cases are significantly influenced by

ELocal and the internal spatial variability within the KIZ.

Further elaboration on this aspect will be provided in

subsequent sections.

2.5 Parametric study

A parametric study was conducted to explore how changes

in the subgrade spatial variability affect the critical pave-

ment responses (each and esubv ). Two key input parameters,

namely the coefficient of variation (COVE) and the scale of

fluctuation (SOF) of the subgrade modulus, are systemati-

cally varied within predefined ranges. The coefficient of

variation is site-specific and can vary depending on factors

such as the soil type, testing methods employed, and the

inherent variability in the subgrade material

[18, 32, 36, 40]. Timm et al. [36] reported a COVE ranging

from 5 to 50%. White et al. [40] found the COVE to be

within 38–97% based on the light weight deflectometer

Fig. 4 Key influence zone (KIZ) for the critical subgrade strain
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(LWD) tests and dynamic cone penetrometer (DCP) tests.

Phoon and Kulhawy [32] revealed COVE ranging from 9 to

92% for various types of soil. Considering the typical

range, this study assumes COVE values of 0.3 and 0.5 for

the parametric analysis. In comparison, information on

SOF is relatively limited.

Typical values of SOF can range from 0.1 to 60 m for a

variety of geotechnical parameters [8, 32]. The strength

and variability of subgrade soil within 1 m below the base

course is usually assessed to determine the subgrade design

parameters (such as modulus and CBR), and the subgrade

within 1 m of the underside of the base often shows vertical

stratification [7]. To capture the stratifications within this 1

m depth, the SOF of the subgrade layer adopted in the

simulations need to be less than 1 m. When SOF is set

larger than 1 m, it cannot capture the spatial variability

within this crucial 1 m depth subgrade region. A prior study

conducted by Lua and Sues [27] adopted SOFs ranging

from 0.1 to 1 m for investigating the impact of subgrade

spatial variability on pavement performance. Therefore, the

SOF is selected between 0.1 and 1 m in this study.

Table 3 presents the parameter combinations for 24

spatial variable cases with SOF ranging from 0.1–1.0 m

and COVE values of 0.3 or 0.5. A length ratio RL ¼ SOF=D

is defined to assess the relative length of SOF over the

loading areas. Specifically, the SOF of Case 1–3 and Case

2–3 equals D, the width of the loading area; and the SOF in

Case 1–5 and Case 2–5 equals 1.5D, the widths of KIZ.

Figure 5 shows 6 realizations of random fields with

COVE ¼ 0:5 at different SOF levels. All SOFs considered

in this study exceed the maximum subgrade mesh size

within 1 m below the base layer, ensuring that the dis-

cretization of the random field does not introduce

substantial inconsistency with the continuous solution in

this region [12].

3 Result and analysis

3.1 Effect of spatial variability on the statistics
of critical strains

Table 4 lists the statistics of critical strains for the 24

spatial variable cases in Table 3, including the mean val-

ues, COVs, and extremes. The corresponding deterministic

values are 1.283 millistrain for each and 3.709 millistrain for

esubv . All the strains in Table 4 are within reasonable range

of pavements [7].

Subsequent sections will assess the influence of SOF and

COVE on these statistics and the locations of critical

strains. The analysis aims to elucidate the statistical and

mechanical mechanisms underlying the impacts of sub-

grade spatial variability.

3.1.1 Critical locations

This section aims to investigate and assess the influence of

subgrade spatial variability on the critical locations of the

maximum tensile strain in the asphalt layer (each ) and the

maximum vertical compressive strain in the subgrade layer

(esubv ). Figure 6 shows the potential critical positions, where

P0 and Q0 represent the critical positions for each and esubv in

deterministic scenarios, respectively. Note that P0 is not

located at the centerline of the loading area, as the cen-

terline of the loading area differs from the centerline of the

pavement model.

Figure 7 presents the distribution of critical subgrade

strain at different locations for different values of SOF and

COVE. In the majority of cases, more than 50% of real-

izations show a critical subgrade strain occurring away

from Q0, suggesting that assuming Q0 as the critical

location may result in an undervalued esubv with a likelihood

of over 50%. Additionally, when SOF is 0.3 m, i.e., the

width of the KIZ, the number of realizations with esubv at Q0

reaches the minimum regardless of COVE. When SOF

increases beyond 0.3 m, the number of realizations with a

Q0 critical strain tends to increase. This can be attributed to

the homogenization of the KIZ, as SOF transitions from a

value smaller than 1.5D to a significantly larger value. On

the other hand, the comparison of Fig. 7a and b indicates

that, at a larger COVE, the likelihood of the critical sub-

grade strain occurring at Q0 reduces.

It is anticipated that the critical locations of each would be

relatively unaffected by the subgrade spatial variability.

This is attributed to the spatial averaging effect, where

Table 3 Parameter combinations of the 24 spatial variable cases

Group 1

COVE=0.3

Group 2

COVE=0.5

SOF(m) RL = SOF/D

Case 1–1 Case 2–1 0.10 0.50

Case 1–2 Case 2–2 0.15 0.75

Case 1–3 Case 2–3 0.20 1.00

Case 1–4 Case 2–4 0.25 1.25

Case 1–5 Case 2–5 0.30 1.50

Case 1–6 Case 2–6 0.35 1.75

Case 1–7 Case 2–7 0.40 2.00

Case 1–8 Case 2–8 0.50 2.50

Case 1–9 Case 2–9 0.60 3.00

Case 1–10 Case 2–10 0.70 3.50

Case 1–11 Case 2–11 0.80 4.00

Case 1–12 Case 2–12 1.00 5.00
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larger areas or longer distances tend to smooth out local

variations, resulting in a more homogeneous and deter-

ministic response [38]. This expectation is confirmed by

Fig. 8. For COVE values of 0.3 and 0.5, P0 is determined

as the critical location in 99% and 97% of the realizations,

respectively. Noticeable deviations from P0 are observed

only when both SOF and COVE are of considerably high

values, as shown in Fig. 8b.

Overall, subgrade spatial variability has a much greater

impact on the critical locations of esubv compared to each . This
effect highlights the potential underestimation of esubv when

assuming a fixed location for maximum subgrade strain in

RFFDA. The upcoming section will evaluate the extent of

underestimation resulting from this assumption.

3.1.2 Mean values of critical strains

Since the magnitudes of critical strains vary among dif-

ferent realizations due to the spatially variable modulus in

the subgrade, their mean values could be different from

their deterministic counterparts. To assess the impact of

spatial variability on the mean critical strains, a relative

strain amplification ratio RA is defined as:

RA ¼ e=edet � 1ð Þ � 100% ð5Þ

where e denotes the mean value of the critical strains in a

spatially variable case, and edet represents the correspond-

ing critical strains in the deterministic case.

Figure 9a shows how the variation of SOF affects RA for

esubv under different values of COVE. In the figure, two

kinds of critical subgrade strain are presented for each case:

the actual critical strain (esubv ) and the strain at Q0 (esubv;Q0). It

shows that the impact of SOF on RA is more pronounced

for esubv compared to esubv;Q0. For esubv , the value of RA

increases as SOF increases from 0.05 to approximately 0.3

m and then decreases as SOF increases from 0.3 to around

0.7 m. Subsequently, RA remains relatively stable. On the

other hand, RA for esubv;Q0 increases as SOF increases from

0.05 m to approximately 0.3 m and then stabilizes. Nota-

bly, the maximum RA values for esubv and esubv;Q0, as well as

the greatest discrepancy between RA for esubv and esubv;Q0, are

observed when SOF is approximately 0.3 m. Specifically,

when SOF = 0.3 m and COVE ¼ 0:5, the mean values of

esubv and esubv;Q0 are increased by 22% and 13%, respectively,

relative to the deterministic strain. This indicates that the

amplifying effect of subgrade spatial variability on esubv;Q0

can be as low as 60% of that on esubv . Hence, the subgrade

strains extracted at Q0 might not represent the actual

critical subgrade strains and can result in a significant

underestimation of the amplifying impact resulting from

subgrade spatial variability. These findings highlight the

need for careful determination of the critical strain location

for subgrade strain when considering the subgrade spatial

variability, particularly in situations where SOF is

approximately 1.5D.

Figure 9b depicts the variation of RA for each with SOF.

The value of RA initially increases with increasing SOF and

maximizes at SOF = 0.4 m (i.e., 2D), after which it

remains relatively stable. Compared with esubv , the impact of

SOF on mean each is minimal, with RA values ranging from

Fig. 5 Random fields of Young’s modulus in the subgrade layer of different SOFs (COVE = 0.5)
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1.8% to 2.7% for COVE = 0.3 and from 5.0% to 7.6% for

COVE = 0.5. Furthermore, there is a negligible discrepancy

between each and the tensile strain at P0 (each;P0), which

confirms that the critical location of each is relatively unaf-

fected by the subgrade spatial variability.

The underestimation of critical strains, particularly for

esubv , is substantial when assuming the same critical loca-

tions in spatial variable cases as in deterministic case.

Therefore, the actual critical strains, rather than solely

those at the P0 or Q0 positions, will be considered for the

analysis in the subsequent sections.

3.1.3 Coefficient of variation (COV) of the critical strains

Figure 10 shows the variations in the coefficient of varia-

tion (COV) for the critical strains as SOF increases under

different values of COVE. The figure reveals that increas-

ing spatial variability, as characterized by the higher

COVE, leads to an elevated COV for the critical strains,

particularly for esubv . This observation aligns with Ali et al.

[4] who found a proportional relationship between the

variability of pavement response and that of the

Table 4 Statistics of critical strains of the 24 spatial variable cases

Case No. Statistics for each Statistics for esubv

Mean COV Maximum Minimum Mean COV Maximum Minimum

Case 1–1 1.305 0.6% 1.331 1.287 3.838 6.6% 4.610 3.197

Case 1–2 1.309 1.0% 1.352 1.269 3.894 10.5% 5.471 2.953

Case 1–3 1.314 1.3% 1.355 1.266 3.952 13.1% 5.432 2.754

Case 1–4 1.317 1.5% 1.387 1.276 3.976 14.8% 5.347 2.404

Case 1–5 1.316 1.9% 1.393 1.248 4.002 16.4% 6.545 2.525

Case 1–6 1.317 2.1% 1.408 1.253 4.008 16.7% 5.801 2.424

Case 1–7 1.318 2.1% 1.388 1.242 3.975 18.1% 6.404 2.588

Case 1–8 1.317 2.6% 1.415 1.228 3.953 19.4% 6.904 2.298

Case 1–9 1.318 3.1% 1.472 1.230 3.926 18.1% 6.642 2.504

Case 1–10 1.317 3.7% 1.428 1.179 3.904 16.4% 5.711 2.362

Case 1–11 1.316 3.7% 1.453 1.187 3.902 17.7% 5.954 2.533

Case 1–12 1.317 4.6% 1.532 1.155 3.907 18.5% 6.140 2.058

Case 2–1 1.347 0.9% 1.384 1.317 4.083 9.7% 5.190 2.915

Case 2–2 1.360 1.5% 1.417 1.309 4.201 17.2% 6.887 2.490

Case 2–3 1.370 2.1% 1.452 1.289 4.427 20.8% 7.351 2.573

Case 2–4 1.374 2.6% 1.501 1.274 4.496 24.1% 7.973 2.300

Case 2–5 1.378 3.0% 1.499 1.239 4.524 28.1% 8.838 1.935

Case 2–6 1.379 3.7% 1.543 1.266 4.463 26.8% 8.841 2.206

Case 2–7 1.380 3.4% 1.529 1.273 4.424 27.9% 9.713 2.320

Case 2–8 1.377 4.1% 1.532 1.221 4.346 27.6% 9.390 2.152

Case 2–9 1.378 5.3% 1.575 1.215 4.304 26.1% 8.216 1.909

Case 2–10 1.379 6.0% 1.633 1.196 4.248 26.8% 7.440 1.775

Case 2–11 1.376 5.8% 1.615 1.227 4.262 28.3% 8.433 2.063

Case 2–12 1.372 7.0% 1.661 1.165 4.239 29.2% 8.469 1.946

The unit for the critical strains is millistrain

Fig. 6 Possible critical locations for each and esubv in spatial variable

cases
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subgrade modulus. Moreover, the COV of esubv exhibits

much higher values and displays a distinct trend with SOF

compared to that of each . Specifically, the COV of esubv

initially rises with increasing SOF and peaks at SOF = 0.3

m, after which it stabilizes. On the other hand, the COV of

each generally increases with SOF, but the impact of

Fig. 7 Distribution of esubv at different locations for different SOF under a COVE= 0.3 and b COVE= 0.5

Fig. 8 Distribution of each at different locations for different SOF under a COVE= 0.3 and b COVE= 0.5

Fig. 9 Variation of RA for a esubv and b each with increasing SOF under different values of COVE
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subgrade spatial variability is negligible for small SOF

values due to the spatial averaging effect. Notably, the

COVs for both each and esubv are considerably smaller com-

pared to COVE. For example, for COVE ¼ 0:5, COV for

each is below 7% and COV for esubv is below 30%. The

findings suggest a reduction of uncertainty during the

uncertainty propagation from material properties to struc-

tural performance. So, in a probabilistic analysis of pave-

ments that incorporates spatial variability, it is

inappropriate to directly equate the COV of material

properties with the COV of critical structural responses.

3.1.4 The maximum and minimum critical strains

The extreme values, i.e., the maximum and minimum

critical strains, depict the range of distribution and provide

insight into the dispersion of critical strains in probabilistic

analysis. To assess the relative deviation of these extreme

values from the deterministic strains, two deviation ratios,

RD;max and RD;min, are introduced. These ratios are calcu-

lated as follows:

RD;max ¼ emax=edet � 1 ð6Þ

RD;min ¼ 1� emin=edet ð7Þ

where emax and emin correspond to the maximum and

minimum critical strains observed in a specific case.

Figure 11 depicts the variations of RD;max and RD;min for

the critical strains as SOF increases at different values of

COVE. The figure shows that RD;max consistently exceeds

RD;min for both esubv and each . For instance, when COVE=0.3,

RD;max for esubv ranges from 24.3 to 86.1%, whereas Rmin

ranges from only 13.8% to 44.5%. Moreover, as the degree

of spatial variability intensifies with higher values of

COVE, the disparity between RD;max and RD;min widens

even further. These findings indicate that the maximum

strains deviate more significantly from the deterministic

strains than the minimum ones, suggesting left-skewed

distributions for both each and esubv . Notably, a smaller esubv is

associated with a stiffer key influence zone (KIZ), while a

higher esubv corresponds to a softer KIZ. Hence, the left-

skewed distribution of esubv implies that the softer KIZ has a

greater impact on critical strain compared to the stiffer

KIZ, a phenomenon known as the low modulus dominating

effect [19]. A detailed explanation of this effect will be

provided later.

Figure 11a and b also reveals notable distinctions

between each and esubv in terms of the deviation ratios. In

Fig. 11a, RD;max and RD;min show non-monotonic patterns

as SOF increases, with the highest deviation ratios

observed at intermediate levels of SOF within the prede-

fined ranges. Conversely, in Fig. 11b, the deviation ratios

of each show increasing trends with SOF. Additionally, the

deviation ratios of each are significantly lower than those of

esubv in each case. This confirms that the impact of subgrade

spatial variability on critical subgrade strain significantly

surpasses its effect on critical asphalt strain.

3.2 Statistical and mechanical explanation
for amplifying effect and worst SOF for esubv

As found in Sect. 3.1, subgrade spatial variability signifi-

cantly amplifies the pavement response, particularly the

critical subgrade strain, esubv . Additionally, both the highest

amplification ratio (Rmean) and COV for esubv are observed

when SOF is approximately 0.3 m (i.e., 1.5D). This section

aims to uncover the statistical and mechanical mechanisms

of these observations by examining the correlations among

esubv , ELocal, and the local spatial variability within the key

influence zone (KIZ). Figure 12 illustrates the correlation

between ELocal and esubv for Case 2–5 (SOF = 0.25 m and

COVE= 0.5). The data points are fitted using a power

regression model and divided into four quadrants based on

the deterministic subgrade strain (i.e., 3.71 millistrain,

denoted as esubv;det) and deterministic subgrade modulus (i.e.,

60 MPa, denoted as Edet). The number of data points in

each quadrant is shown in the figure. Additionally, the

results from 200 deterministic analyses are included,

encompassing subgrade moduli ranging from 20 to 150

MPa.

In Fig. 12, the critical subgrade strain esubv demonstrates

an increasing trend as ELocal decreases in spatial variable

situations, which is consistent with the deterministic situ-

ations. However, despite the statistical equivalence of the

subgrade modulus between spatially variable and

Fig. 10 Variation of COV for critical strains with increasing SOF

under different values of COVE
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deterministic cases, the number of realizations with

esubv above esubv;det far exceeds the number below esubv;det. Among

200 realizations, esubv exceeds esubv;det in 151 realizations.

Specifically, for realizations with ELocal � Edet, 98% of

esubv is greater than esubv;det, while for realizations with

ELocal [Edet, 48% of them still exhibit esubv higher than

esubv;det. Consequently, the number of realizations with esubv

above esubv;det (i.e., 151) significantly surpasses that with

ELocal below Edet(i.e., 110). This discrepancy is due to the

combined impact of the low modulus dominating effect

and the local spatial variability within the KIZ. As

discussed by Fenton and Griffiths [19], the low modulus

dominating effect indicates that the softer regions exert a

greater influence on critical strain compared to the stiffer

regions. This claim is also supported by the power

regression trend observed in Fig. 12, where esubv increases

at an accelerating rate with decreasing ELocal. It is worth

noting that even when ELocal is very close in certain real-

izations, the corresponding esubv can exhibit substantial

variations. This can be attributed to the local spatial vari-

ability within the KIZ. Generally, a substantial degree of

local spatial variability intensifies the low modulus domi-

nating effect, consequently exacerbating the impairment of

the deformation resistance of the KIZ.

To further explore the mechanical and statistical reasons

behind the varying impact of subgrade spatial variability

Fig. 11 Variation of deviation ratios for a esubv and b each with increasing SOF under different values of COVE

Fig. 12 Correlation between ELocal and esubv for Case 2–5 (SOF = 0.25

m, and COVE = 0.5)

Fig. 13 Effects of SOFs on COVE;1 and COVE;2
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for different SOF, the coefficient of variation of ELocal

(denoted as COVE;1) and the average coefficient of varia-

tion for the moduli (denoted as COVE;2) in the six meshes

of the KIZ (Fig. 4) are plotted against SOF in Fig. 13. Note

that COVE;2 quantifies the extent of local spatial variability

within the KIZ. Figure 13 shows that COVE;1 rapidly

increases with SOF when SOF\ 0.25 m and reaches its

maximum at SOF = 0.3 m. Subsequently, COVE;1 gradu-

ally approaches the coefficient of variation in the subgrade

modulus (i.e., COVE=0.5). As for COVE;2, it exhibits a

swift increase with SOF when SOF\ 0.15m and reaches

its maximum at SOF = 0.15 m. Afterward, COVE;2 grad-

ually declines with increasing SOF. Although COVE;1 and

COVE;2 cannot reach their respective maximum at the same

SOF due to their different trends, their combined value

reaches its maximum at SOF = 0.3 m. Therefore, the SOF

of 0.3 m signifies a situation where both the variation of

ELocal and the local spatial variability within the KIZ are

notably significant. Consequently, this explains why an

SOF value of 0.3 m induces the most unfavorable effect on

esubv , such as the maximum amplification ratio and the

highest variability.

Notably, all the statistics of each , especially the COVs and

the extreme values (as shown in Fig. 10 and Fig. 11),

display a similar trend to that of COVE;1 as SOF increases.

This similarity can be attributed to the spatial averaging

effect, which smooths out the local variations in the KIZ.

Consequently, the effect of subgrade spatial variability on

each is primarily governed by COVE;1 rather than COVE;2.

3.3 Effect of subgrade spatial variability
on the effectiveness of geogrid
reinforcement

3.3.1 Difference of the effectiveness of geogrid
between deterministic and spatially variable
scenarios

Previous studies have shown that geogrid reinforcement in

pavements can alleviate critical pavement strains, as evi-

denced by laboratory tests and deterministic numerical

simulations [8, 12, 23]. It is reasonable to expect that these

benefits can also apply to situations involving subgrade

spatial variability This section compares the effectiveness

of geogrid reinforcement between deterministic and spa-

tially variable scenarios. The objective is to investigate

whether subgrade spatial variability enhances or reduces

the efficacy of geogrid reinforcement in reducing critical

strains. To achieve this, further analysis was conducted

based on Case 2–2 (SOF = 0.25 m, COVE=0.5) from

Table 3. Six types of geogrid reinforcement (G1_L1,

G2_L1, G1_L1-2, G2_L1-2, G1_L2, G2_L2) will be

evaluated. For brevity, G_L1 refers to geogrid reinforce-

ment positioned at the interface between the asphalt and

base layer, and similar nomenclature applies to the other

configurations. To evaluate the effectiveness of geogrid in

reducing critical strains, a strain alleviating ratio (SAR) is

defined as the percentage of critical strain reduction

achieved by the geogrid reinforcement. A higher value of

SAR indicates a greater ability of the geogrid reinforcement

to alleviate critical strains.

Figure 14 shows the variation of mean SAR under dif-

ferent geogrid conditions in both deterministic and spa-

tially variable scenarios. The results indicate that,

regardless of subgrade spatial variability, G_L1 performs

better in reducing each compared to esubv . Conversely, G_L1-

2 exhibits good performance in reducing both each and esubv .

In comparison, G_L2 is more effective in reducing esubv

than each . Comparing the results of deterministic and spa-

tially variable scenarios reveals that the strain-alleviating

ability of the geogrids is greatly affected by subgrade

spatial variability, and the nature and level of the influence

depend on the type of critical strain and the placement

position of the geogrid. Figure 14a shows that due to the

subgrade spatial variability, the effectiveness of G_L1 in

reducing each is slightly promoted while G_L1-2 and G_L2

are slightly undermined. Figure 14b indicates, due to the

subgrade spatial variability, that the effectiveness of G_L1

in reducing esubv is slightly enhanced, while geogrids placed

at the other two positions, particularly G_L2, are signifi-

cantly impaired. Specifically, in the deterministic case,

G1_L2 reinforcement reduces esubv by 20.6%, whereas in

spatially variable cases, the reduction is only 10.9%. Fur-

thermore, the stiffer for G_L1-2 and G_L2, the greater the

difference in their ability to reduce esubv between the

deterministic and spatially variable scenarios.

3.3.2 Statistical and mechanical explanation
for the detrimental impact of subgrade spatial
variability on the effectiveness of G_L2

Figure 15 depicts the relationship between ELocal and the

strain alleviating ratio (SAR) of G1_L2 reinforcement for

esubv . It reveals the SAR values of most realizations (187 out

of 200) in the spatially variable scenario are lower than the

deterministic value (i.e., 20.6%, denoted as esubv;det). More-

over, among the 200 realizations, 110 of them have ELocal

lower than Edet, and 2.7% of those (3/110 = 2.7%) have a

SAR value higher than SARdet. On the other hand, in the

remaining 90 realizations with ELocal greater than Edet,

11.1% of them (10/90 = 11.1%) have a SAR value higher

than SARdet. These findings suggest that as the key influ-

ence zone (KIZ) becomes stiffer, there is an increased

probability of the SAR value being higher than the
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deterministic value, which is also supported by the linear

regression trend in Fig. 15. This implies that a higher

subgrade modulus, especially within the KIZ, enhances the

capacity of G_L2 to reduce critical subgrade strains.

In general, it has been widely reported [16, 43] that large

deformations facilitate the mobilization of geogrid rein-

forcement and improve the performance of reinforced

pavement. However, the amplified critical subgrade strains

observed in this study do not result in greater strain alle-

viating effects of G_L2 compared to the deterministic case.

One possible explanation is that the locally weak KIZ not

only induces greater subgrade strains but also alters the

magnitude of stresses transmitted to the KIZ or the base

course–subgrade interface, which might negatively affect

the geogrid performance. To verify this hypothesis, the

average stress transmitted to the top of KIZ (rsubv ) was

computed, and its relationship with ELocal and the strain

alleviating ratio (SAR) are demonstrated in Fig. 16. Fig-

ure 16a shows that, in most realizations (154 out of 200),

rsubv is lower than the deterministic value (i.e., rsubv;det).

Specifically, for realizations with ELocal � Edet, 100 out of

110 have rsubv lower than rsubv;det, whereas for the other 90

realizations with ELocal [Edet, 54 of them have rsubv higher

than rsubv;det. Consequently, the number of realizations with

rsubv below rsubv;det (154 out of 200) is significantly higher

than the number of realizations with ELocal below Edet(110

out of 200). This indicates that a softer and spatial variable

KIZ reduces the vertical pressure transmitted to the top of

KIZ. Mechanically, this can be attributed to the fact that a

softer KIZ induces higher vertical subgrade strain, causing

more vertical stress to be transmitted to the relatively

stiffer area outside the KIZ, and eventually resulting in

reduced rsubv . Note that this reduction in rsubv in turn miti-

gate the large subgrade strain, but not to the extent of fully

reversing the strain amplifying effect of subgrade spatial

variability.

Figure 16b indicates an increasing trend of SAR with

increasing rsubv For the 154 realizations with rsubv lower than

the deterministic value (rsubv;det), only 3.9% have a SAR

higher than SARdet (i.e., 20.6%), while for the other 46

realizations with rsubv [ rsubv;det, 15% of them have a SAR

higher than SARdet. Figures 15 and 16b collectively indi-

cate that high levels of strain and stress in the proximity of

base course–subgrade improve the strain-alleviating ability

of G1_L2, which is in accordance with previous studies

[16, 43]. However, in the context of subgrade spatial

variability, the adverse impact of reduced vertical stress at

the base course–subgrade interface outweighs the positive

effect of the amplified subgrade strain. Consequently, the

Fig. 14 Mean SAR of a each and b esubv under different geogrid reinforcement schemes

Fig. 15 Relationship of SAR for esubv versus ELocal under G1_L2

reinforcement
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strain-alleviating ability of G1_L2 is generally compro-

mised. Furthermore, out of the 46 realizations with rsubv

[ rsubv;det, only 7 realizations have a SAR higher than SARdet.

This discrepancy can be attributed to the local spatial

variability within KIZ. When the subgrade modulus

changes abruptly over a short distance, considerable dif-

ferential deformation or fluctuation of the subgrade surface

occurs. This will adversely affect the generation of the

membrane effects in the reinforcements, ultimately

undermining the strain-alleviating ability of G1_L2.

Overall, when geogrids are placed within or at the bot-

tom of base course, their strain-alleviating ability is nega-

tively affected by the subgrade spatial variability. This

finding has practical implications, particularly when the

subgrade layer exhibits significant spatial variation. To

counteract or compensate for the negative effects caused by

the subgrade spatial variability on geogrid effectiveness,

measures such as using stronger geogrids or implementing

treatments like surface subgrade material replacement and

stabilization should be considered.

4 Conclusions and discussions

The subgrade modulus is one of the most crucial factors in

determining pavement thickness, composition, and perfor-

mance. However, the subgrade modulus can vary spatially,

leading to detrimental effects on pavement performance.

This study employs random field finite difference analysis

(RFFDA) to examine the impact of subgrade modulus

spatial variability on two critical pavement strains: the

critical asphalt strain (each ) and critical subgrade strain

(rsubv ). A parametric study was conducted on two key

influencers: the coefficient of variation (COVE) and the

scale of fluctuation (SOF) of the subgrade modulus. To

uncover the statistical and mechanical mechanisms

underlying the impact of subgrade spatial variability, the

correlations between esubv , the overall modulus (ELocal) of

the key influence zone (KIZ), and the local spatial vari-

ability within the KIZ were analyzed. The study also

explores the influence of subgrade modulus spatial vari-

ability on the effectiveness of geogrid in reducing critical

strains, considering two kinds of geogrid stiffness and three

placement positions: asphalt–base course interface (L1),

mid-depth of base course (L1-2) and base course–subgrade

interface (L2). The geogrid’s efficacy in reducing critical

strains was measured by a strain alleviating ratio (SAR),

which describes the reduction of the critical strains induced

by the geogrid reinforcement. The key findings are as

follows:

1. The spatial variability of the subgrade modulus can

have a substantial amplifying effect on critical pave-

ment strains. Specifically, compared to the homoge-

neous cases, at COVE ¼ 0:5, the critical subgrade

strains can increase by 10–22% depending on the SOF.

This finding suggests that assuming subgrade homo-

geneity can lead to an underestimation of the critical

subgrade strain and, consequently, an overestimation

of pavement life.

2. Subgrade spatial variability introduces considerable

uncertainties in critical strains, posing a significant

challenge for predicting pavement life. Furthermore,

the coefficients of variation (COV) of the critical

Fig. 16 Relationship of rsubv with a ELocal and b SAR for esubv under G1_L2 reinforcement
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strains are lower than COVE, which implies a reduction

of uncertainty during the uncertainty transmission from

material properties to structural performance. Thus,

when performing probabilistic analysis that incorpo-

rates spatial variability, the COV of material properties

cannot be directly used as the COV of structural

response.

3. Subgrade spatial variability also induces notable vari-

ation in the location of maximum pavement strains.

The extent of this variability is influenced by the

magnitudes of SOF and COVE, and the specific type of

critical strains. Therefore, assuming fixed locations for

maximum strains can underestimate critical strains, as

it fails to account for the possibility of maximum

strains occurring at different locations than those

observed in deterministic scenarios.

4. The impact of subgrade spatial variability on esubv is

more direct and pronounced compared to its effect on

each due to the spatial averaging effect. Subgrade spatial

variability leads to a greater amplifying effect, higher

values of COV, and increased variation of the critical

position for esubv compared to each . Additionally, for e
sub
v ,

there exists a worst value of SOF (i.e., 1.5D) that

results in the most unfavorable statistical effect. In

contrast, for each , the maximum mean value is observed

when SOF is approximately 2D, while its COV and

extreme values show an increasing trend as SOF

increases. These findings also imply that subgrade

spatial variability has a more significant impact on the

pavement’s rutting life compared to its fatigue life.

5. The strain-alleviating ability of the geogrids is

impacted by subgrade spatial variability, with the

impact varying based on the type of critical strain and

geogrid location. When positioned at L1, the strain-

alleviating ability of geogrid is enhanced, while

geogrids placed at the other two positions (G_L1-2 or

G_L2), are apparently impaired. Particularly, the mean

values of SAR of G_L2 for esubv in spatially variable

situations are only half of those observed in determin-

istic scenarios. Furthermore, as geogrid stiffness

increases, the disparity in the ability of G_L1-2 and

G_L2 in reducing esubv between deterministic and

spatially variable scenarios becomes more pronounced.

These findings imply that when the geogrid is

positioned within or at the bottom of a base course,

measures such as employing stronger geogrids or

implementing specialized soil treatments should be

taken to compensate for the adverse effects arising

from subgrade spatial variability.

6. The influence of subgrade spatial variability on the

statistics of critical strains can be attributed to the low

modulus dominating effect, which depends on two

factors: ELocal and the local spatial variability within

the KIZ. A KIZ with lower ELocal and higher local

spatial variability results in reduced deformation

resistance, leading to higher esubv but lower vertical

stress transmitted to the KIZ. Higher level of strain or

stress tends to improve the strain-alleviating ability of

geogrid. However, for G_L2, the negative effect of the

reduced vertical stress outweighs the positive effect of

the amplified subgrade strain. Consequently, the ability

of G_L2 in reducing esubv is compromised.

Pavement design methods employ the reliability concept

to compensate for variations and uncertainties in material

properties and loading conditions. This study quantified the

influence of subgrade spatial variability on the two kinds of

critical strains: each and esubv . Since each and esubv are closely

linked to the pavement fatigue life and rutting life,

respectively, the influence of subgrade spatial variability on

both fatigue and rutting life can also be assessed. The

impact of asphalt spatial variability on critical strain and

pavement life has recently been explored by the authors

[41]. The effect of spatial variability in the base course

remains under-researched and will be addressed in future.

All these studies necessitate further study on the coupling

effects of spatial variability across multiple pavement

layers and facilitate a more advanced and refined reliabil-

ity-based design to better capture the spatial variability-

induced uncertainties. Of course, to systematically inte-

grate spatial variability with established reliability princi-

ples, further research is required to ensure accurate

probabilistic characterization of material spatial variabil-

ity for natural soil and man-made asphalt layer.
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