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Abstract
The strength of rockfills and waste materials is significantly influenced by their particle size distribution (PSD). For large

waste rockfills, PSD is fundamental to determine the shear behavior. Traditionally, PSD for rockfill, used in materials like

coarse-grained aggregates, has been obtained through physical sieving. However, the particle sizes in hard rockfills can

vary significantly from small particles (\ 20 cm diameter) to large blocks or boulders over 100 cm, with the maximum size

limited by the in situ ground conditions and blasting performance. Essentially, the sieving process is impractical, con-

sidering the scale of the mine waste dumps and the time required. Therefore, in this study, a workflow using digital

detection to estimate the PSD is presented, aiming to quantify the waste dump shear strength using Barton–Kjaernsli

empirical criterion. PSD from UAV is validated using manual field measurements of individual boulders. The error for

coarse characteristic size prediction ranges within ± 4 mm, and the increase in the data collection frequency, area covered,

and resolution of fragmentation measurement for rockfills and waste dumps using UAV allows to improve the statistical

reliability of the PSD and fragmentation measurement.

Keywords Barton–Kjaernsli shear strength criterion � Particle size distribution (PSD) � Photogrammetry �
Slope stability � Unmanned aerial vehicle (UAV) � Waste dumps and rockfill shear strength

1 Introduction

Blasted and crushed waste rocks from surface and under-

ground mines are commonly deposited in waste dumps and

stockpiles. Finer waste materials, further refined during

mineral processing, are stored in Tailing Storage Facilities

(TSF) [44]. To effectively manage these mining by-prod-

ucts, thorough geotechnical characterization is necessary to

anticipate future ground behavior and risk. A key aspect of

this is determining the mechanical properties, particularly

shear strength, of rockfills in waste dumps. Rockfill, fre-

quently used in structures such as embankment dams,

retaining walls, shoring systems, and ground improve-

ments, consists of rock fragments varying in size from

gravels (? 2 mm), cobbles (? 60 mm), and boulders

(? 200 mm), with the largest fragments reaching

1000 mm.

Particle size distribution (PSD) and shape characteristics

are key in geotechnical design and construction of rockfill

and waste dumps. These factors directly affect the strength

and load-bearing capacity of granular materials [109] and

have significant economic implications for construction

projects. PSD role in rockfill structures is multifaceted

[90]. It influences rockfill compaction and must meet

specific design acceptance criteria for construction quality

control [76]. The design of rockfill dams and waste piles

necessitates knowledge of in situ material properties,

including deformation, permeability, shape, and shearing

strength [52]. Nonlinear shear strength behavior for waste

dumps and rockfill correlates PSD and confinement stress

with shear strength and deformability [17, 49, 57, 63].

Well-graded material demonstrates enhanced densities and

shear strength, a result of increased inter-granular contact

[28]. Empirical evidence indicates a decrease in the
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intrinsic strength of larger particles in rockfills

[34, 65, 69, 70], highlighting the vital correlation between

PSD and the shear strength of rockfills and waste dumps

[41].

Investigating the physical and mechanical properties of

rockfill material is critical for the construction of waste

dumps and rockfill dams. However, triaxial testing on

prototype rockfill using conventional laboratory equipment

is often impractical due to the large size of field aggregates

[106]. This necessitates the development of appropriate

methods for determining PSD at a realistic scale [63].

Conventionally, engineering materials PSD is assessed

through physical sieve analysis employing screens with

squared mesh [20]. Rockfill materials PSD is typically

established via visual rock gradation analysis, reliant on

visual examination and engineer expertise for construction

quality control [53]. This method, involving sieving finer

fractions (i.e., up to 60 mm) and measuring larger rocks, is

expensive, time consuming, and not feasible for routine

quality control [87].

Full-scale gradation tests on rockfill and waste dump

samples demand significant field work, often requiring up

to 48 h [64]. These tests are generally conducted by a field

geotechnical engineer and an assistant [77] and need

machinery and safe handling for larger particles (i.e.,

heavier particles) [47]. Therefore, it is imperative to

develop a more efficient, safer, and simpler method for

routine assessment of rockfill material size distribution,

leveraging the latest advancements in computer science

and technology [58].

Small-scale mechanical testing for coarse materials

often involves adjusting the PSD, specifically reducing the

maximum grain size to fit samples within laboratory

devices [76]. This approach presumes that the adjusted

PSD is comparable to the original grading in stress–strain

behavior. However, changes in particle size may alter

individual grain properties, including shape and crushing

strength [25]. Although parallel scaling is a common

technique in rockfill materials [39], the effects of particle

size correlations are not often considered, and their impacts

are not thoroughly understood [29].

Scaling-down techniques yield a modified gradation

compared to the original field material. Contrary to popular

belief, employing parallel scaling-down methods also alters

the physical composition. As a result, both scalping and

parallel techniques can predict the shear strength of field

rockfill by extrapolating laboratory shear test results when

normal stress is high. However, these techniques are inef-

fective for low to intermediate normal stress [37]. Inverse

correlations between particle size and strength can lead to

decreased particle crushing in finer samples, while size–

shape correlations might cause increased crushing in finer

samples comprised of more elongated grains [35]; vertical

and lateral segregation can result in overestimation or

underestimation of the final shear strength; this is due to

significant lateral heterogeneity, which causes considerable

variations in the geotechnical properties of waste rock in

practical scenarios [83]. It follows, by analogy, that friction

angles of field samples, when evaluated using the scalping

scaling-down technique, can be accurately predicted. In

contrast, predictions based on the parallel scaling-down

technique may be deemed unreliable for active mines or

real-case scenarios [36].

Recent developments in image processing technology

present new opportunities for determining the PSD of

rockfill and waste dump materials [105]. Similar to tradi-

tional visual assessments, this method uses computer

algorithms to inspect and measure visible particles in dig-

ital photographs [56]. This approach enhances the effi-

ciency of geotechnical characterization for rockfills and

waste dumps by reducing data collection time and

increasing time for engineering analysis [60]. The inte-

gration of UAV technology with advanced image pro-

cessing marks a significant shift, enabling aerial

photogrammetry for PSD estimation, a technique previ-

ously used in topographical surveys and geological map-

ping and is now a viable alternative to conventional sieve

analysis [93].

Based on the established background, this study

employs UAV technology and advancements in computer

image processing for PSD determination in aerial pho-

togrammetry, focusing on waste dumps and rockfill shear

strength characterization. The integration of UAV tech-

nology has enabled increases in measurement frequency,

area coverage, and resolution in fragmentation measure-

ments for rockfills and waste dumps. This method has

improved the statistical reliability of both PSD and frag-

mentation measurements, enhancing the precision of

geotechnical characterization methods.

2 Material and methods

2.1 Previous shear strengths for granular
materials—rockfills and waste dumps.

The shear strength of granular materials, including rockfills

and mine waste dumps, quantifies the resistance manifested

when particles are induced to move in the shear direction

under a specified normal load. This resistance, often

referred to as friction, is notably influenced by particle size,

shape, intrinsic strength, and surface roughness [98].

Newland and Allely [72] employed a nonlinear function to

characterize the shear strength of granular materials. Under

a specific normal stress, the shear stress is influenced by

both the angle of frictional sliding resistance between
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particles and the mean deviation angle of particle dis-

placements from the applied shear direction.

De Mello [67] presented an empirical power curve

envelope ideally suited for characterizing the strength

envelope of rockfill materials in dam embankments.

Charles and Watts [28] adopted the power law envelope for

shear strength representation. Barton–Kjaernsli [74]

devised a shear strength criterion for rockfills, drawing

inspiration from the empirical joint shear criterion pro-

posed by Barton in 1973. Gonzalez [45] derived a loga-

rithmic strength envelope based on published findings from

large-scale triaxial and direct shear box tests.

Sarac and Popovic [89] conducted an extensive analysis

of numerous large-scale direct shear tests executed at the

Institute for Geotechnics and Foundation Engineering. The

tested materials primarily comprised limestone, sandstone,

serpentinite, and slate, sourced from a combination of

natural rock debris and quarry rockfill. Testing was pre-

dominantly conducted on materials intended for embank-

ment dams, with stress ranges spanning from 0.05 to

2.0 MPa.

Charles [27] determined that the shear strength of den-

sely compacted rockfill is markedly influenced by both

placement density and stress level. A simple power

regression, sf ¼ Ar0bn, generally provides an accurate rep-

resentation of the failure envelope. The parameters A and

B can be derived from a series of drained triaxial com-

pression tests conducted on the compacted rockfill under

suitable confining pressures. Doruk [40], utilizing both

published data and data from fractured rocks, modified the

original Hoek and Brown criteria for rockfill materials by

setting the rockfill compressive strength to zero (S = 0).

Indraratna [48, 50] formulated a nonlinear equation of sf ¼
Ar0bn applicable to both shear stress and principal stress

under both static and dynamic triaxial loading conditions.

The findings underscored that while shear strength and

particle degradation (breakage) are influenced by the

materials particle size distribution, they are primarily

affected by the imposed confining pressure. Additionally,

employing large-scale triaxial equipment, Indraratna gen-

erated specific geotechnical data on the shear strength and

the angle of internal friction of ballast relative to particle

size distribution. This led to the development of a nonlinear

relationship elucidating the fluctuations in shear strength,

angle of internal friction, dilation rate, and extent of par-

ticle crushing at varied confining pressures and principal

stress ratios [49].

Xu [103] proposed a methodology to estimate the shear

strength of rockfills and granular materials using the fractal

model for particle crushing. Nonetheless, the derived out-

comes often diverged from experimental findings, primar-

ily due to the challenges in procuring the PSD and

estimating the fractal dimension. In subsequent research,

Xu [102] introduced a shear strength function anchored in

the fractal model for particle fragmentation. This model

advocates a power law function as the optimal represen-

tation for the shear strength criterion of granular materials.

Experimental data from municipal solid waste incineration

confirmed the model validity.

In addressing the complexity of shear strength in rockfills

and waste dumps, Table 1 plays a critical role. This

table provides an overview of the previously studied shear

strengths of granular materials and their respective mathe-

matical formulations. Among the 11 previous shear strength

criteria reviewed, it is evident that 10 of these are not ade-

quately suited for large-scale applications, primarily due to

limitations in their methodologies or the scope of their val-

idation. For instance, DeMello [67], Charles, andWatts [28],

who presented the current power law for general applica-

tions. However, the A and B parameters in their formula are

not truly general and require extensive site-specific data for

accurate definition, thus posing limitations for broader

applications. Sarac and Popovic [89] methodology fails to

consider the nonlinear relationship between normal stress

and uniaxial compressive stress, leading to inaccuracies in

their formulation, especially in unit consistency.

Similarly, Gonzalez [45] approach necessitates a large

amount of triaxial data, which is often impractical for real-

case scenarios. Charles [27] method presents another

challenge in the estimation of constants C1 and C2, as it

requires a substantial volume of triaxial results for site-

specific accuracy. Xu [103] methodology, while based on

the fractal model for particle crushing, often resulted in

outcomes that diverged from experimental findings,

underscoring the challenges in procuring the particle size

distribution and accurately estimating the fractal

dimension.

Utilizing the criteria from Table 1 and acknowledging

the Barton–Kjaernsli criterion effectiveness, this study

combines it with UAV technology for precise PSD esti-

mation. This fusion targets shear strength characterization

in large-scale rockfills and waste dumps. By aligning UAV

photogrammetry with this established empirical approach,

the study aims to enhance the accuracy and applicability of

geotechnical analysis in these crucial areas, offering a

balanced blend of technological innovation and proven

methodology.

2.2 Shear Strength model for rockfill, stockpiles,
and mine waste dumps—Barton–Kjaernsli
criterion.

Estimating shear strength in coarse materials, with particle

sizes ranging from a few to several dozen centimeters,

poses a challenge due to the limitations of commercial
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laboratory testing devices. These devices are typically

designed for samples with particles up to a centimeter [16].

Consequently, shear strength estimation often relies on the

empirical model by Nick Barton and Bjorn Kjaernsli

(1981) [74], known as the B–K criterion. This model

accounts for the nonlinearity of the shear strength envel-

ope, particularly in coarse granular materials under high

loads [78]. The B–K criterion parameterizes shear strength

using equivalent roughness (R) and equivalent strength

(S) [14].

The B–K empirical model, presented as Eq. (1), defines

s as the shear strength. This nonlinear model is particularly

suited for characterizing coarse materials such as rockfill

and blasted rocks, known for their nonlinear shear strength

envelope [17]. Within this model, the effective friction

angle of waste rock is determined by the roundness of the

particles and the porosity of their arrangement [97]. The

friction angle, at minimum, equals the basic friction angle,

varying by a magnitude R for a tenfold increase in the ratio

of S
rc
[15].

Table 1 List of shear strengths for granular materials and their mathematical form

Author/failure

criterion

Mathematical form Parameters Remarks References

Newland and

Allely, 1957

s ¼ rn0 ub0 þ ið Þ rn: Normal stress

ub: Basic friction angle

i: Average deviation angle of

particle

Empirical curved envelope

Following the principle for discontinuities

[72]

De Mello, 1977

Charles and

Watts, 1980

s ¼ ArBn A, B: Fitting parameters

rn: Normal stress

Empirical curved envelope

Laboratory test required to calibrate A and B

[28, 67]

Barton and

Kjaernsli,

1981

u0 ¼ Rlog S
rn

� �
þ ub

R: Equivalent roughness

S: Equivalent particle strength

rn: Normal stress

ub: Basic friction angle

Extension Barton, 1973

Parameters based on trial-and-error fitting on triaxial

data, Leps, 1973

Applicable at large scale with limitations

[74]

Sarac and

Popovic, 1985
smax ¼ A rn

r0

� �B A, increases when rc " Cu "
c " d50 ", 0.7 to 1.5

B, increases when rc " Cu "
c #, 0.419 to 0.911

Developed from large-scale direct shear tests (up to

rn = 2 MPa) on rockfill and gravels

[89]

Gonzalez, 1985 u0 ¼ u0 � jlog10
rnf
rc0

� �
j,: Constant for specific
materials and conditions

rnf : Normal stress

rc0: Unconfined Strength

Logarithmic based on published results

Required large amount of triaxial data

[45]

Charles, 1991 u0 ¼ C1log
C2

r3 0

� �
þ ub0 ub: Basic friction angle

C1, C2: Constants

Similar approach, Barton and Kjaernsli, 1981 [27]

Doruk, 1991 r10 ¼ r30 þ mr3 0
rc

� �a

rc
m, a: Hoek and Brown

parameters

Developed from Hoek and Brown [40]

Indraratna,

et al., 1993

Indraratna, 1994

r1 0
rc

¼ a r3 0
rc

� �b a, b: 0.4, 0.62 (lower bound,

0.1 to 1 MPa)

a, b: 0.78, 0.65 (upper bound,

0.1 to 1 MPa)

a, b: 2.71, 0.96 (lower bound,

1 to 7 MPa)

a, b: 3.58, 0.90 (upper bound,

1 to 7 MPa)

Alternative for principal stresses [48, 50]

Indraratna,

et al., 1998

r1 0
r3 0 ¼ ar30b a, b: 84.98–0.49 (gradation A)

a, b: 125.17–0.56 (gradation

B)

Developed empirically for two gradations

Non-convergence rn ¼ 0, low stress

[49]

Xu, et al., 2015 sf ¼ arbn a ¼ k
D
3 l

6�2Dð Þ
3

b ¼ D
3

Based on fractal fragmentation–D

k: Constant

[103]

Xu, 2018 sf ¼ arbn b ¼ 2 2D�3ð Þ
3 D�1ð Þ

Based on fractal fragmentation–D

‘‘a’’ parameter estimation is not clear

[102]
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s ¼ rn tan RLog10 S=rnð Þ þ ub½ � ð1Þ

where

rn = Effective normal stress.

ub = Basic friction angle of waste (dump) particles.

R = Equivalent roughness of waste (dump) particles.

S = Size-dependent equivalent strength of waste (dump)

particles.

rc ¼ Uniaxial compressive strength of the intact rock.

In the Barton–Kjaernsli model, the parameter R is linked

to the roundness and porosity (n) of particle arrangements,

determined from Barton–Kjaernsli chart. R values range

from 0 to 15, representing loose arrangements of rounded,

smooth particles to dense arrangements of very angular and

rough particles. The S parameter depends on the uniaxial

compressive strength (rc or UCS) of the rock and its

characteristic particle size, denoted as PSD (D50). D50

refers to the median particle diameter in the cumulative

distribution, indicating that 50% of particles are larger and

50% smaller than this size. D50 is typically used to repre-

sent a group of particles size [14].

2.3 UAV photogrammetry in particle size
distribution analysis

Research on particle size measurement using machine

vision has been active since the 1980s [5, 75]. Gallagher

[43] introduced an early image processing system for

analyzing the size distribution of fragmented particles on

conveyor belts, using a chord sizing method for edge

delineation. Nyberg [104] developed a similar system,

scanning chord sizes on edges of fragmented rock images

in muck-piles, furthering the application of this technology.

Feng [62] described a method for segmenting ore ima-

ges into regions to estimate fragment size distributions. Wu

and Kemeny [100] developed an automated system for

sizing rock fragments post-blasting. Lin [59] employed

edge detection algorithms to identify particles and estimate

sieve size distributions using measured chord lengths.

Koizumi [54] in 1994 addressed the issue of partially

obscured particles, fitting circular approximations to two-

dimensional projections of particle edges. Yen [107]

developed a watershed segmentation algorithm, although

results were not completely satisfactory, even with well-

sorted particles and good backgrounds.

Since 2000, image processing for fragmented rock par-

ticles has gained significant research interest, with various

algorithms developed for measuring rock fragment sizes in

applications like gravitational flows, conveyors, muck-

piles, and laboratories [104]. Casali [26] implemented

machine vision and image segmentation for ore sorting and

particle size distribution in mining processing. Matthew

[94] offered a mathematical and image analysis method to

determine rock pile size distribution, focusing on surface

size class proportions. Bujak and Bottlinger [22] designed a

system for three-dimensional particle shape measurement

using free-fall analysis, capturing particles from three

orthogonal directions for 3D reconstruction.

In 2009, Thurley [95] introduced an automated system

for measuring limestone fragment size distribution on

conveyor belts using 3D range data. This technology aimed

to enable automatic control of particle breaking or aggre-

gation processes, enhancing energy efficiency and product

quality. Sanchidrian [88] evaluated the performance of

image analysis on photographed materials, comparing it to

sieve-obtained size distributions. He also investigated the

efficacy of various functions in fitting the data and

extrapolating toward finer particle sizes.

In 2012, Zhang [110] estimated the particle size distri-

bution of overlapped coal particles using image segmen-

tation. This process involved image enhancement

algorithms to distinguish overlapped particles by darkening

material in lower layers. Subsequently, in 2014, Hamzeloo

[46] employed image processing and neural network

techniques to determine the particle size distribution in a

copper concentrator crushing circuit.

In 2016, a study [6] introduced laboratory-scale rock

fragment measurements using a quadrotor UAV with a

camera, highlighting aerial fragmentation analysis’ pre-

diction accuracy and time efficiency. Bamford in 2017 [7]

investigated UAVs with artificial lighting for measuring

rock fragmentation in poor lighting, typical of night shifts

in surface mines or underground mines. This research

conducted both indoor and outdoor experiments using a

quadrotor UAV for rock fragmentation analysis.

In 2018, Cardona [24] introduced a framework for

processing images from inline imaging probes, adding a

focus evaluation to exclude out-of-focus particles and

extract accurate shape and size data. Stauder in 2018 [92]

estimated PSD by combining 3D surface and 2D image

analysis, aiming to reduce manual post-processing and user

interaction. Jang in 2019 [51] presented a 3D rock frag-

mentation measurement system (3DFM) overcoming the

limitations of traditional 2D photograph-based methods,

validated through laboratory comparisons with 100 ran-

domly collected rock fragments.

In early 2020, Bamford [9] demonstrated the use of

UAV systems for monitoring and improving blasting pro-

cesses in open-pit mines, focusing on post-blast analysis of

rock piles for fragmentation assessment. In 2021, Bamford

[8] had progressed to evaluating rock fragmentation mea-

surement using deep learning, employing a deep neural

network to predict rock fragment sizes from 2D images. In

2022, Abderrazak [86] applied the Kuz–Ram empirical

model and digital image processing, utilizing softwares like
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WipFrag and Split-Desktop, for analyzing particle size

distribution in a limestone quarry.

In this study, the limitations of existing PSD estimation

methods and 2D image processing software, including

IPACS, TUCIPS, and GoldSize, are addressed. These

conventional approaches, while popular, require object

scaling, are time consuming for manually splitting fine

fragments, and are mainly effective on a smaller scale.

They have not been used for full-scale rockfill and waste

dump analysis, nor for estimating shear strength. To

overcome these challenges, UAV technology was used to

acquire high-resolution (effective pixels: 12 M) [55] ima-

ges of multiple waste dumps. These images were analyzed

with Fragmenter from 3GSM [42], and a field survey

measuring 50 rock boulders validated the image-derived

particle sizes, ensuring accurate PSD and shear strength

estimation (Fig. 1).

The workflow outlined in Fig. 2 includes four steps: (1)

reconstructing a 3D model using UAV digital photogram-

metry, (2) selecting and discretizing the area for analysis,

(3) automatically characterizing the PSD, and (4) produc-

ing PSD plots and conducting a grain size analysis.

Figure 2 is structured to estimate the D50 of waste dump

particles, essential for calculating their size-dependent

equivalent strength (S). This methodology is critical for a

comprehensive analysis of particle behavior in waste

dumps, ensuring a precise and thorough assessment of

particle size distribution (PSD).

3 Results and discussion

3.1 Geography and climate overview of the site.

Waste dump materials for this study were sourced from an

open-pit project in the Caribbean archipelago, situated at

an altitude between 300 and 500 m above sea level. The

mine experiences a tropical climate, with average annual

rainfall ranging from 1843 to 1956 mm. Rainfall is year-

round, with the wet season (May to November) seeing

nearly double the precipitation of the drier months, often in

the form of intense tropical storms [12].

3.2 Geological and geomorphological setting
of the site.

In the mine district, gold mineralization is associated with

early Cretaceous volcanic domes [30]. Since mining started

in 1975, two main deposits and several smaller ones have

been sources of ore [71]. The near-surface materials in this

region are often highly weathered and saprolitic. The

Caribbean commonly features thick saprolite sequences or

residual soils, reaching up to 20 m [96]. The geological

formation comprises a lower complex with various vol-

canic features and is overlain by volcaniclastic sedimentary

rocks, representing a lower Cretaceous intra-oceanic set-

ting [18].

The Hatillo Thrust Fault (HTF) in the region dips

approximately 30� southwest, with directions ranging from

200� to 225�, and runs parallel to the Cordillera Central

axis [66].

The volcanoclastic sedimentary unit has experienced

significant seawater metamorphism, leading to spilitiza-

tion. This has resulted in lithologies being identified as

spilite and keratophyre [66]. Notably, in the Seibo tectonic

terrane, Albian carbonate deposition overlays the volcan-

oclastic formation unconformably, evident in the central

and eastern parts of the site [82].

3.3 Characteristics of waste dump materials.

This study investigates five waste dumps, both blasted and

quarried. The characteristics of these waste dump materials

are outlined in Table 2, and the gradation curves for the

rockfill are presented in Fig. 3. The intact rock uniaxial

compressive strength ranges from 14 MPa (WD-1) to

a

Particle Size using metric tape (PSTape)

b

Particle Size using drone image (PSUAV)

Fig. 1 Particle size measurements using manual and image processing. aManual measurements using metric tape for particle size. b Particle size

measurements using image processing
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40 MPa (WD-5), informed by long-term testing at the mine

site. The five waste dumps (Fig. 4) described in the study

are characterized as follows:

• WD-1: Characterized by a high potential for acid

generation and significant sulfide content, this carbona-

ceous-sediment mudstone exhibits a uniaxial compres-

sive strength of 14 MPa. Particle sizes in this mudstone

have been observed to reach as large as 2155 mm.

• WD-2: In tropical conditions, the limestone exhibits

low to medium physical alteration. Its geological fabric

influences the maximum particle size, observed post-

dumping to be 622 mm. Composed predominantly of

gravel and sand, the brittle nature of the limestone and

its jointed or blocky geological structure are significant.

It possesses a geological stress index (GSI) of 70.

• WD-3: Notable for its high potential acid generation

(PAG) capacity and rich sulfide content, this

Fig. 2 Workflow for PSD using UAV photogrammetry

Table 2 Properties of waste dump materials

Site Uniaxial compressive strength

rc (MPa), intact rock

Density q (g/cm3), intact rock D10 (mm) D30 (mm) D50 (mm) D60 (mm) Cu Cc

WD-1 14 2.65 8.5 83.1 199.7 267.4 31.6 3.1

WD-2 30 2.80 37.4 77.2 135.3 165.0 4.4 1.0

WD-3 18 2.77 3.2 48.8 109.2 151.8 47.9 5.0

WD-4 35 2.79 186.6 468.5 787.6 845.4 4.5 1.4

WD-5 40 2.80 47.7 121.6 248.3 310.3 6.5 1.0
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carbonaceous-sediment mudstone is also marked by

laminar mineralization associated with micaceous min-

erals. The mudstone uniaxial compressive strength is

18 MPa, with particle sizes documented up to

1057 mm.

• WD-4 and WD-5: Comprising volcanoclastic and PAG

materials, these samples are distinguished by their

coarse, rocky nature, and a low proportion of fines.

Particle sizes for WD-4 have been measured up to

1978 mm and for WD-5 up to 2761 mm. The intact

rock, andesite, shows a uniaxial compressive strength

ranging from 35 to 40 MPa, classified from brittle to

semi-brittle, with noticeable faults and joints. The GSI

stands at 60.

3.4 Techniques for 3D model reconstruction
using UAV imagery.

The red/green/blue (RGB) images captured by an unman-

ned aerial vehicle (UAV) serve as the input for recon-

structing a 3D model in the form of a point cloud. This is

achieved using the Structure-from-Motion (SfM) tech-

nique, a form of photogrammetry that employs computer

algorithms to identify key points in overlapping images

taken from multiple angles, facilitating the creation of 3D

models [99]. By applying a mask to the area of interest, as

outlined in Fig. 2, vegetation is effectively filtered out from

the point cloud [1].

SfM (Structure-from-Motion) processing reconstructs a

three-dimensional structure of a stationary scene from a

collection of two-dimensional images captured from vari-

ous positions and angles. This technique involves motion

estimation of the camera corresponding to each image [80].
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Fig. 3 Comparative particle size distribution across the five waste
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Fig. 4 3D views from UAV photogrammetry of the five waste dumps
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A variety of software packages for generating 3D point

cloud models are currently available. For the purpose of

this study, Fragmenter (accessible at https://3gsm.at/pro

dukte/bmx-fragmenter/) was employed, in accordance with

the workflow showed in Fig. 2.

For image acquisition in the field, a DJI Mavic Pro

quadrotor drone was utilized. This quadcopter platform is

equipped with a 1/2.300 CMOS sensor, boasting 12.35

million effective pixels (total pixels: 12.71 million), suit-

able for photogrammetric surveys [108]. The UAV system,

featuring a remote flight controller, establishes a wireless

connection to a DJI controller or a cellphone. Details

regarding the UAV system and the on-board camera are

presented in Table 3. The primary field activities com-

prised three stages: (1) designing the flight mission, (2)

placing and acquiring ground control points (GCPs), and

(3) conducting flight operations and collecting aerial

images.

3.5 Particle size validation: Comparing digital
analysis with field measurements.

In order to validate the digital measurements, manual

assessments of rock boulder diameters were conducted

across all five waste dumps. During the field investigation,

boulder locations were marked to ensure they were fully

captured in the drone photographs. For the validation of the

digital particle size distribution (PSD) results, a sample

comprising 50 boulders (10 per waste dump, as indicated in

Table 4 and illustrated in Fig. 5) was used. To improve

their visibility during image processing, boulders and

fragments that could be captured in the UAV photographs

were painted blue and positioned in the crest area of the

waste dumps.

For each waste dump, the comparison between manually

measured and digitally determined particle sizes revealed

the following results:

• WD-1: Average deviation of 12.3 mm and standard

deviation of 16.9 mm, with a mean difference of

14 mm.

• WD-2: Average deviation of 43.3 mm and standard

deviation of 42.4 mm, with a mean difference of 1 mm.

• WD-3: Average deviation of 21.7 mm and standard

deviation of 14.2 mm, with a mean difference of 6 mm.

• WD-4: Average deviation of 49.9 mm and standard

deviation of 52.5 mm, with a mean difference of 3 mm.

• WD-5: Average deviation of 41.0 mm and standard

deviation of 39.1 mm, with a mean difference of 6 mm.

To assess the errors in field particle size between digital

analysis and manual measurements, a deviation ratio or

error (DR, as per Eq. 2) was calculated. The average DR

values across the five case studies were 6.9, 5.3, 5.7, 4.4,

and 4.7%, respectively (refer to Fig. 6).

The deviation ratio (DR) is calculated using the formula

DR ¼ D PSj j
�
PSTape ð2Þ

In this equation, D|PS| represents the difference in par-

ticle size as determined by digital analysis (PSUAV) and

manual measurement (PSTape), as illustrated in Fig. 1.

The statistical analysis presented in Table 5 indicates

that there is a strong alignment between the manual and

digital measurements. This is significant considering that

field measurements typically have a recorded precision

Table 4 Comparison of results between digital analysis and field

measurements for particle size

Site Method Number of

datasets

Mean value

(mm)

Std. Error

(%)

WD-

1

Field 10 232 16.9 6.9

UAV 218 12.3

WD-

2

Field 10 241 43.3 5.3

UAV 240 42.4

WD-

3

Field 10 205 21.7 5.7

UAV 199 14.2

WD-

4

Field 10 217 49.9 4.4

UAV 220 52.5

WD-

5

Field 10 248 41.0 4.7

UAV 242 39.1

Table 3 UAV system and on-board camera specifications

UAV system specifications

UAV type Weight Diagonal size Max. flight time Satellite positioning Gimbal stabilization

DJI Mavic Pro 735 g 335 mm 27 min GPS/GLONASS 3-axis (pitch, roll, yaw)

On-board camera parameters

Sensor Lens Frequency Photograph IOS range Image size

1/2.300 (CMOS). Pixels: 12 M FOV 78.8� 26 mm 2.4 GHz Video: 100–3200

Photo: 100–1600

4000 9 3000
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range of 50 to 100 mm [2]. The results affirm that UAV–

SfM photogrammetry reliably quantifies particle size

parameters with acceptable deviations. Figure 6 illustrates

the error margin between field data and UAV photogram-

metry, which is less than 10%, signifying a high correlation

between actual data and digital analysis.

3.6 Defining shear strength model parameters.

3.6.1 PSD using UAV.

The application of the Structure-from-Motion (SfM) tech-

nique to the selected waste dumps generated point clouds

ranging from 201,225 to 502,594 points [68]. Optimizing

these point clouds involved aligning them with the ground

control points (GCPs) field arrangement. This alignment

helped minimize reprojection errors and enabled the cre-

ation of dense point clouds, consisting of approximately

190 million and 450 million points for all the sites,

respectively. The drone data collection process entailed

capturing multiple photographs to collect and accurately

represent the geometric details of the rockfill and waste

dump particles [31].

This study involved analyzing coarse materials from five

different waste dumps and rockfill areas, with a focus on a

wide range of gradations. A total of 3,855 images were

taken, encompassing rockfill materials with particle sizes

from sand and gravel to boulders as large as 1000 mm.

These images were captured using a drone equipped with a

GPS and an inertial navigation system, which allowed for

recording the 3D spatial coordinates and the orientation of

the camera. To ensure complete coverage of the areas, the

drone was flown in four vertical paths, with each path

overlapping the next, covering the entire targeted zones

[10].

The photographs were captured from an average dis-

tance of 30 to 120 m from the surfaces of the waste dumps

and rockfill slopes. This approach resulted in an estimated

ground sample distance of approximately 1 cm. In this

study, ShapeMetrix UAV software was employed to geo-

reference the data, manage the point clouds, and quantify

the particle size distribution (PSD) features [11]. Figure 7

illustrates the orientation of the photographs, while Fig. 5

presents the 3D model of waste dump WD-5.

Figure 8 displays the PSD analysis conducted using

UAV imagery. In Fig. 9, the delineation of rockfill parti-

cles is shown using a rainbow scale, which facilitates the

Fig. 5 Variation between digital analysis and field measurements across the five waste dumps

Table 5 Particle size distribution statistics for the five waste dumps: quartiles and extremes

Site Number of datasets Mean Std. Min. Q1 Q2 Q3 Max.

WD-1 26 117.9 53.4 39.3 72.3 107.3 171.0 199.7

WD-2 32 88.6 65.7 43.1 61.1 68.2 73.1 395.9

WD-3 18 89.8 19.2 44.2 82.3 89.8 98.1 126.3

WD-4 7 770.6 35.6 724.0 749.6 763.1 791.0 825.9

WD-5 30 238.1 88.8 78.9 159.3 259.0 311.6 388.5
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discretization of the 3D model for determining the average

D50 of each area. The D50 value is a significant point on

the PSD cumulative curve, representing the size below

which 50% of the materials total volume in the sample is

Fig. 6 Spatial arrangement and orientation of photographs in relation to the point cloud for waste dump WD-5

Fig. 7 3D model segment of waste dump WD-5, featuring over 7 million points and 2.6 million mesh elements. The model highlights the area

encircled by the red line, with red dots indicating sampled boulder locations

Fig. 8 Detailed 3D model of waste dump WD-5, featuring over 7 million points and 2.6 million mesh elements
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found. For instance, as illustrated in Fig. 10, a D50 of

120 mm indicates that half of the sample particles are

120 mm in size or smaller [19].

In the PSD cumulative curve shown in Fig. 10, the ‘‘x’’

axis displays particle sizes in millimeters on a log scale,

and the ‘‘y’’ axis shows the cumulative percentage of

smaller particles. To determine the D50, which is the

median particle size, a horizontal line is drawn at the 50%

mark on the ‘‘y’’ axis. This line is extended to intersect the

PSD curve. From this intersection, a vertical line is drawn

downward to the ‘‘x’’ axis. In this specific case, the vertical

line intersects the ‘‘x’’ axis at 120 mm, indicating the D50

value.

Figure 11 presents a discretized version of the 3D

model, divided into several sections. This approach, as

suggested in [61], is more user-friendly and easier to

comprehend compared to the continuous values of D50.

Such discretization typically results in smaller, more

interpretable D50 values. Additionally, this method can

enhance predictive accuracy for various diameters [38],

including sizes ranging from boulders (larger than

1000 mm) to fines (smaller than 100 mm).

The PSD data obtained from the five waste dumps are

presented in Fig. 12. By subdividing each area into smaller

Fig. 9 Discretization example of the 3D model for WD-2, illustrating the process to determine the average D50 particle size in each area
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Fig. 10 Illustration of the D50 percentile derived from the PSD

cumulative curve for waste dump WD-2

Fig. 11 Discretization of subareas in waste dump WD-2, with subarea A2 segmented into A2-2, A2-2, …A2-n, to analyse PSD variation through

D50 subdivision
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subareas, multiple D50 values for each waste dump are

obtained. This approach, which leverages multiple data

sources, enhances confidence in the model. Consequently,

a substantial dataset of D50 values contributes to higher

accuracy in the results.

To understand the influence of variability, appropriate

values, and sensitivity, Table 5 and Fig. 13 illustrate dif-

ferent ranges of PSD and D50 values, considering the dis-

cretization process.

3.7 Equivalent strength (S/ rc).

The equivalent strength, dependent on particle size, is

calculated using the uniaxial compressive strength (UCS)

of the parental rock and the D50. This is based on the

strength assessment method proposed by Barton and

Kjaernsli [32], as shown in Fig. 14. For instance, the

interpretation of the S value for a D50 of 89.8 mm is

demonstrated using data from WD-3.

Table 6 presents the calculated equivalent particle

strength values based on the mean D50 value for each waste

dump. These values range from 0.20 for very coarse

materials to 0.25 for medium materials (D50\ 100 mm).

Mean values are employed to provide a singular, repre-

sentative figure for estimating the equivalent particle

strength. This approach is particularly useful given the

multiple D50 values that can arise from the subdivision

process. The primary goal of this study is to illustrate how

equivalent strength values can be determined for a large

dataset compiled using UAV for PSD estimation and shear

strength calculation.

3.8 Basic friction angle (ub).

The basic friction angle (ub) is a crucial parameter in

geotechnical analysis. It is typically estimated through

tilting tests on dry, cut surfaces of the parent rock. In

mining scenarios, ub is often derived from direct shear tests

performed on cut samples from drill cores [13]. For this

study, ub was calculated using multiple tilt tests. The

results are presented in Table 7. Figure 15 illustrates the

distribution of ub across each waste dump. Notably, in

coarse materials like WD-2 (limestone), WD-4 (material

with less than 15% fines), and WD-5 (rocky material), ub

exhibits less variability, likely due to the lower fine content

in these materials.

3.9 Dump porosity (n) and equivalent roughness
of waste particles (R).

Waste rock volume typically experiences expansion during

blasting, excavation, and dumping processes, covering a
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Fig. 14 Equivalent strength (S) for a D50 of 89.8 mm (modified [47])

Table 6 Equivalent particle strength for five waste dump sites using

D50 means value

Site Mean S/rc

WD-1 117.9 0.23

WD-2 88.6 0.25

WD-3 89.8 0.25

WD-4 770.6 0.20

WD-5 238.1 0.23
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broad range of particle sizes. This expansion is often

quantified as a percentage increase from the undisturbed,

in situ volume of the rock [50]. During the construction of

dump faces, segregation is a common occurrence, and

material consolidation under increased loading conditions

tends to elevate the density while reducing both porosity

and void ratio [21]. These dynamics pose challenges in

accurately determining porosity, given the limited bench-

mark data available [85].

For this case study, conducting an in situ assessment of

the dump density was not feasible. Consequently, a

porosity value of 25% was assumed, derived from a thor-

ough review of the literature and informed engineering

judgment. The particle shape for all examined cases was

conservatively estimated to have a smooth surface and

moderate angle, with an assumed porosity of 25%. Utiliz-

ing the empirical method developed by Barton and

Kjaernsli, as illustrated in Fig. 16, a roughness (R) value

ranging between 6.0 and 6.5 was determined.

3.10 Shear strength results using Barton–
Kjaernsli criterion.

The key parameters referenced in Eq. (1) are detailed in

Table 8. The shear strength was calculated using the B–K

criterion, as outlined in Eq. (1), and was based on the mean

values of ub (basic friction angle) and D50 [79].

Figure 17 and Fig. 18 present two groups of materials

based on their shear response characteristics. The first

group includes coarse materials with an UCS less than

20 MPa, while the second group consists of materials with

a UCS greater than 30 MPa. This distinction may also

relate to geological compositions. WD-1 and WD-3,

Table 7 Statistical data distribution on the basic friction angle (ub)

from five waste dump sites

Site Number

of

datasets

ub,

Mean

value

Std. Min. Q1 Q2 Q3 Max.

WD-

1

20 26.9 1.6 25.0 26.0 26.5 28.0 30.0

WD-

2

20 30.5 1.1 28.0 30.0 30.5 31.0 32.0

WD-

3

20 26.9 1.5 25.0 26.0 26.5 28.0 29.0

WD-

4

20 31.2 1.3 28.0 30.8 31.0 32.0 33.0

WD-

5

20 31.3 1.1 30.0 30.0 31.0 32.0 33.0
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Table 8 Input parameters for the B–K nonlinear shear strength using

normal stress of 1.0 MPa

Site ub (�) R S/rc rn (MPa) s (MPa) u’ (�)

WD-1 26.9 6.1 0.23 1.0 0.67 33.87

WD-2 30.5 6.4 0.25 1.0 0.90 42.11

WD-3 26.9 6.0 0.25 1.0 0.71 35.27

WD-4 31.2 6.3 0.20 1.0 0.87 41.07

WD-5 31.3 6.5 0.23 1.0 0.94 43.25
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Fig. 17 Nonlinear shear strength envelopes using B–K criterion
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primarily composed of carbonaceous-sediment mudstone

with a high potential for acid generation and significant

sulfide content, represent weaker materials. Conversely,

rocky materials such as limestone (WD-2) and volcanic

andesite (WD-4 and WD-5) are stronger, with higher UCS

values. This suggests that coarser materials, associated

with higher shear stresses, indicate more stable conditions

[101].

To validate and compare this study findings, Fig. 17 and

Fig. 18 also reference the seminal works of Leps [57] and

Sarac and Popovic [89]. Leps research is widely

acknowledged as a standard practice among geotechnical

engineers in the mining sector, especially due to its

endorsement as a guideline by the large open-pit (LOP)

group [33]. This work is considered a standard reference

for practical assessments. Notably, the data for WD-2,

WD-4, and WD-5 are closely aligned with the lower

bounds of Leps results. This alignment indicates that the

B–K criterion is both applicable and consistent with

established industry practices for stability assessments in

hard rock and rocky materials.

Contrastingly, WD-1 and WD-3, characterized by their

composition of carbonaceous-sediment mudstone with high

acid generation potential and significant sulfide content,

fall below Leps minimum shear envelope. This observation

highlights a critical consideration when applying the B–K

criterion to weaker materials, such as sedimentary rocks

with lower UCS. In such cases, while the B–K criterion

might underestimate the shear envelope, it can nonetheless

provide a valuable starting point for preliminary feasibility

assessments in scenarios where laboratory data are not

available.

3.11 Sensitivity analysis of R and S in shear
response using B–K criterion.

To fully comprehend the shear response, as illustrated in

Fig. 17 and Fig. 18, and to address the limitations of this

study, it is essential to analyze the impact of particle shape,

represented by R, and the strength of individual particles,

denoted by S in the B–K criterion. This analysis will help

determine whether segregation, particularly in high-end

waste dumps, is predominantly influenced by particle size

distribution (PSD) or by particle shape.

A key concept here involves understanding how shape

and size polydispersity, which is the variation in particle

size and shape irregularity, affect the strength properties of

granular materials [4]. Studies on granular materials,

especially those composed of pentagonal particles, indicate

that while shear strength is not dependent on particle size,

it does decrease with increased shape polydispersity [84].

This suggests that larger particles tend to bear stronger

forces and are supported by a growing number of smaller

particles. The observed independence of shear strength

with respect to size variation is attributed to the self-or-

ganization of the contact network. This self-organization

leads to a balance where the decrease in contact anisotropy

is offset by an increase in force anisotropy [73].

Shear strength in granular materials is independent of

particle size and is influenced by the shape and polydis-

persity of the particles. In consequence, as particle size

decreases, cohesive forces become more pronounced rela-

tive to gravitational forces, impacting grain-to-grain inter-

actions [3]. In consequence, properties such as grain shape

and fragmentation susceptibility exhibit variation with

particle size, emphasizing the significance of shape in the

determination of shear strength [81].

Understanding the impact of superficial PSD estimation

using UAV for shear strength characterization via the B–K

criterion necessitates a sensitivity analysis, which is pivotal

for identifying the limitations of this study. Analyzing the

sensitivity of Eq. (1) involves examining how changes in

roughness (R) and strength (S) influence shear strength (s).
This examination is conducted by calculating the

derivatives of s with respect to R and S. Sensitivity is

quantified as the derivative multiplied by the ratio of the

parameter to the function value [91], a standard method in

sensitivity analysis. Specifically, this is represented by ds
dR

R
T

for R, with a similar approach for S. These calculations are

essential for understanding how small variations in R and

S affect the overall shear stress as defined by Eq. (1). The

derivatives are expressed as follows:

Partial derivative of s with respect to R:

ds=dR ¼ p=180rn Log S=rnð Þ
� Tan2 RLog S=rnð Þ þ ubð Þp=180þ 1½ �
� � ð3Þ

This derivative assesses the sensitivity of s to changes in
R, considering the nonlinear influence of the tangent

function and the logarithmic relationship.

Partial derivative of s with respect to S:
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ds=dS ¼ p=180Rrn=S

� Tan2 RLog S=rnð Þ þ ubð Þp=180þ 1½ �
� � ð4Þ

This derivative calculates how a small change in S

impacts s, considering the effects of the tangent function

and the logarithmic relationship between S and rn.
Figure 19 demonstrates that the shear strength in WD-2,

WD-4, and WD-5 is more sensitive to the shape of the

particles [23] R than to the strength S. This observation

aligns with the shear response illustrated in Fig. 17 and

Fig. 18. On the contrary, the increased sensitivity to S in

WD-1 and WD-3 can be attributed to their geological

composition, which consists of carbonaceous-sediment

mudstone. This material type, known for its high potential

for acid generation and significant sulfide content, tends to

be weaker.

The findings suggest that variations in particle shape,

represented by R, have a considerable effect on final shear

strength, particularly under higher normal stresses [76]. For

engineering and design in rock mechanics, accurate

assessment, integration of particle shape into models, and

calculations are essential, as it significantly impacts the

stability and safety of waste dump structures. This

emphasizes a limitation in the B–K criterion application,

especially for weak rocks and materials segregated during

dumping sequences, often finer and located at the top crest

of the sequence.

The lesser sensitivity to the scale factor S indicates that,

while still important, its influence on shear strength relative

to the applied normal stress is not as critical as the shape

parameter R. However, this does not diminish S signifi-

cance for weak materials like WD-1 and WD-3, where the

sedimentary characteristics of the carbonaceous mudstone

crucially affect the shear response, posing challenges in

estimating particle shape and potentially leading to an

oversight of this parameter, relying instead on the indi-

vidual strength of the particles represented by S. This

underlines that the effect of R is more pronounced within

the considered range of normal stresses.

Finally, it is important to note that the actual sensitivity

values and their implications can be highly site-specific,

contingent on the unique geological conditions. While

these observed trends offer general insights, site-specific

analyses are paramount for precise and accurate rock

mechanics assessments.

4 Conclusions

The following conclusions can be drawn from this study:

1. The percentage error for coarse characteristic size

prediction ranges within ± 6% when evaluated using

UAV. With this quality of results, the determined PSD

using photogrammetry saves the manual working time

and reduces the bias due to segregation for full-scale

waste dumps. Results show that for large-scale waste

dumps when the reliability of the data is questionable

with materials that contain ‘‘oversize’’ particles, UAV

is shown to be a practical solution.

2. Results between field and digital measurements indi-

cate that the average deviations and standard deviations

between the manually measured and digitally deter-

mined particle size vary between 12.3 and 49.9 mm for

field measurements and 16.9 and 52.5 mm for UAV

with an average difference between the mean values of

4 mm. These well-matched results indicate that the

UAV–SfM photogrammetry-based digital analysis can

effectively identify and characterize the PSD for

rockfills and waste dumps. Compared with the field

measurements that are strongly restricted by measure-

ment environments, the developed digital method is

flexible, and the achieved results are reproducible.

3. The digital analysis can effectively identify particle

size that may be neglected by the manual survey

typically due to the limitations of surveying time and

the harsh field environment and can be carried out at

any concerned position with any scale and direction.

The introduction and utilization of virtual waste dumps

3D models make it possible for quantitative PSD and

extended material property analysis over large, unsafe,

and inaccessible areas.

4. This study attempts to introduce the low-cost and

lightweight UAV photogrammetry technique into the

waste dump characterization, the development of

which in future may become an important part in the

next-generation field survey methods, and also provide

a suitable tool for estimating shear strength for waste

dumps and rockfill at large scale in active waste dumps

basis.
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Despite these promising results, the study acknowledges

certain inherent limitations, which also serve as directions

for future research:

1. Limited site access can restrict UAV data collection.

Addressing this involves employing advanced UAV

flight technologies and integrating UAV data with

satellite imagery to cover extensive areas, even in

restricted access sites.

2. The need for improved calibration methods is evident,

especially for oversized particles. Enhancing calibra-

tion protocols and utilizing machine learning algo-

rithms for calibration could lead to more accurate PSD

estimations.

3. The limitation in data resolution can be mitigated by

using higher-resolution cameras and more sensitive

sensors. Combining UAV photogrammetry with other

surveying techniques, like LiDAR, could create a more

comprehensive dataset for PSD analysis.

The study highlights the need for continued research and

technological advancements to fully leverage its capabili-

ties in geotechnical applications. Addressing the identified

limitations through advanced technologies and integrated

methodologies will significantly enhance the effectiveness

and applicability of UAV photogrammetry in environ-

mental management and engineering.
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96. Torró L, Proenza JA, Aiglsperger T et al (2017) Geological,

geochemical and mineralogical characteristics of REE-bearing

Las Mercedes bauxite deposit, Dominican Republic. Ore Geol

Rev 89:114–131. https://doi.org/10.1016/J.OREGEOREV.2017.

06.017

97. Valenzuela L, Bard E, Campana J, Anabalon M (2008) High

waste rock dumps — challenges and developments. In: Pro-

ceedings of the First International Seminar on the Management

of Rock Dumps, Stockpiles and Heap Leach Pads. Australian

Centre for Geomechanics, Perth, pp 65–78

98. Vallerga B, Seed H, Monismith C, Cooper R (1957) Effect of

Shape, Size, and Surface Roughness of Aggregate Particles on

the Strength of Granular Materials. In: Road and Paving Mate-

rials. ASTM International, 100 Barr Harbor Drive, PO

Box C700, West Conshohocken, PA 19428–2959, pp 63–63–14

99. Westoby MJ, Brasington J, Glasser NF et al (2012) ‘Structure-

from-Motion’ photogrammetry: A low-cost, effective tool for

geoscience applications. Geomorphology 179:300–314. https://

doi.org/10.1016/J.GEOMORPH.2012.08.021

100. Wu X, Kemeny JM (1992) A segmentation method for multi-

connected particle delineation. [1992] Proceedings IEEE

Workshop on Applications of Computer Vision. IEEE Comput.

Soc. Press, USA, pp 240–247

101. Wu ZY, Li YL, Chen JK et al (2013) A reliability-based

approach to evaluating the stability of high rockfill dams using a

nonlinear shear strength criterion. Comput Geotech 51:42–49.

https://doi.org/10.1016/J.COMPGEO.2013.01.005

102. Xu Y (2018) Fractal dimension of demolition waste fragmen-

tation and its implication of compactness. Powder Technol

339:922–929. https://doi.org/10.1016/J.POWTEC.2018.08.071

103. Xu Y, Feng X, Zhu H, Chu F (2015) Fractal model for rockfill

shear strength based on particle fragmentation. Granul Matter

17:753–761. https://doi.org/10.1007/s10035-015-0591-z

104. Yaghoobi H, Mansouri H, Ebrahimi Farsangi MA, Nezamabadi-

Pour H (2019) Determining the fragmented rock size distribu-

tion using textural feature extraction of images. Powder Technol

342:630–641. https://doi.org/10.1016/J.POWTEC.2018.10.006

105. Yan WM, Dong J (2011) Effect of particle grading on the

response of an idealized granular assemblage. Int J Geomech

11:276–285. https://doi.org/10.1061/(ASCE)GM.1943-5622.

0000085

106. Yang G, Jiang Y, Nimbalkar S et al (2019) Influence of particle

size distribution on the critical state of rockfill. Adv Civil Eng

2019:1–7. https://doi.org/10.1155/2019/8963971

107. Yen YK, Lin CL, Miller JD (1998) Particle overlap and segre-

gation problems in on-line coarse particle size measurement.

Powder Technol 98:1–12. https://doi.org/10.1016/S0032-

5910(97)03405-0

108. Zekkos D, Professor A, Greenwood W, et al Lessons Learned

from the Application of UAV-Enabled Structure-From-Motion

Photogrammetry in Geotechnical Engineering. International

Journal of Geoengineering Case Histories � 4:254. https://doi.

org/10.4417/IJGCH-04-04-03

109. Zerui L, Behrooz GN, Mahdi MD (2017) An Innovative

Approach to Determine Particle Size Distribution for Rockfill

Material.In: International Journal Of Rock Mechanics And

Mining Sciences 26–35

110. Zhang Z, Yang J, Ding L, Zhao Y (2012) Estimation of coal

particle size distribution by image segmentation. Int J Min Sci

Technol 22:739–744. https://doi.org/10.1016/J.IJMST.2012.08.

026

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Acta Geotechnica

123

https://doi.org/10.1016/J.OREGEOREV.2017.06.017
https://doi.org/10.1016/J.OREGEOREV.2017.06.017
https://doi.org/10.1016/J.GEOMORPH.2012.08.021
https://doi.org/10.1016/J.GEOMORPH.2012.08.021
https://doi.org/10.1016/J.COMPGEO.2013.01.005
https://doi.org/10.1016/J.POWTEC.2018.08.071
https://doi.org/10.1007/s10035-015-0591-z
https://doi.org/10.1016/J.POWTEC.2018.10.006
https://doi.org/10.1061/(ASCE)GM.1943-5622.0000085
https://doi.org/10.1061/(ASCE)GM.1943-5622.0000085
https://doi.org/10.1155/2019/8963971
https://doi.org/10.1016/S0032-5910(97)03405-0
https://doi.org/10.1016/S0032-5910(97)03405-0
https://doi.org/10.4417/IJGCH-04-04-03
https://doi.org/10.4417/IJGCH-04-04-03
https://doi.org/10.1016/J.IJMST.2012.08.026
https://doi.org/10.1016/J.IJMST.2012.08.026

	Particle size distribution (PSD) estimation using unmanned aerial vehicle (UAV) photogrammetry for rockfill shear strength characterization
	Abstract
	Introduction
	Material and methods
	Previous shear strengths for granular materials---rockfills and waste dumps.
	Shear Strength model for rockfill, stockpiles, and mine waste dumps---Barton--Kjaernsli criterion.
	UAV photogrammetry in particle size distribution analysis

	Results and discussion
	Geography and climate overview of the site.
	Geological and geomorphological setting of the site.
	Characteristics of waste dump materials.
	Techniques for 3D model reconstruction using UAV imagery.
	Particle size validation: Comparing digital analysis with field measurements.
	Defining shear strength model parameters.
	PSD using UAV.

	Equivalent strength (S/ {{{\varvec \sigma}}}_{\mathbf{c}}).
	Basic friction angle ( varphi b).
	Dump porosity (n) and equivalent roughness of waste particles (R).
	Shear strength results using Barton--Kjaernsli criterion.
	Sensitivity analysis of R and S in shear response using B--K criterion.

	Conclusions
	Open Access
	References


