
SHORT COMMUNICATION

Experimental investigations of water retention curves of fresh
and decomposed municipal solid wastes under multiple drying
and wetting cycles

Yuekai Xie1 • Jianfeng Xue1

Received: 31 May 2023 / Accepted: 27 February 2024
� The Author(s) 2024

Abstract
Municipal solid wastes (MSWs) disposed in landfills are generally exposed to drying and wetting cycles because of the

variation in environmental conditions, decomposition of organics and leachate recirculation. This paper studies the water

retention curves (WRCs) of fresh and degraded MSWs under various numbers of drying and wetting cycles with water and

leachate exposure. The result indicates that the water retention capacities of MSWs decrease with drying and wetting

cycles. The maximum hysteresis between the drying and wetting cycles is observed in the first cycles for all MSW samples.

The WRCs of medium to highly decomposed MSWs under drying and wetting cycles are similar to those of soils. The

WRCs of fresh MSWs can undergo substantial changes due to the discharge of intra-particle moisture caused by

decomposition and compression. For both fresh and decomposed MSWs, the WRCs stabilize after 3 drying and wetting

cycles. However, only the MSWs of one initial composition with similar void ratios were investigated. Further research

should be conducted to investigate the water retention behavior of MSWs with diverse initial compositions (e.g., food

contents) and void ratios.
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1 Introduction

Municipal solid waste (MSW) disposed in landfills is

generally exposed to drying and wetting loops due to the

changes in the climate, leachate generation induced by

decomposition, and leachate recirculation (bioreactor

landfills). The content and distribution of moisture in

MSWs can potentially affect the engineering properties of

MSWs, such as the compression ratio and shear behavior,

and thereby, the settlement and stability of landfills [38].

The high moisture contents due to inadequate management

of leachate in landfills decrease the strength of MSWs and

potentially cause slope failure [3]. The water retention

curve (WRC) of MSWs is one of the most important fac-

tors affecting the design, operation, and management of

landfills and gas and leachate collection systems

[10, 26, 33].

The MSWs disposed in landfills are typically unsatu-

rated. The unsaturated gas/liquid conductivity can be

associated with the WRCs of MSWs [5]. In addition, the

WRCs of MSWs vary with decomposition, which changes

the pore size and distribution in the MSW matrix [26, 38].

To understand the efficiency of gas and leachate collection

systems in unsaturated MSWs in landfills, a series of

numerical simulations has been conducted [10, 29]. The

results from the simulations are highly associated with the

flow of gas and liquid in landfills. In landfills, MSWs can

be desaturated due to gravity-induced drainage and satu-

rated due to the recirculation and transportation of leachate

[21]. However, in most of the current studies, only the

drying phase of WRCs has been determined based on

laboratory and field scale MSW samples [8, 19]. The

results indicate that the WRCs of MSWs are significantly

associated with the compression and degradation, which

generally increase with the depth and age of MSWs [5].

The saturation (wetting) process of MSWs has not been
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well studied. The knowledge of WRCs of MSWs under

drying and wetting cycles needs to be extended.

One important behavior relevant to WRCs is hysteresis.

Similar to soils exhibited in drying and wetting loops

[2, 23], hysteretic behavior can also be observed in MSWs

[26]. Under a given pressure head, MSWs can have two

different moisture contents, i.e., one in the drying loops and

the other one in the wetting loops. The hydraulic conduc-

tivity of MSWs increases with moisture contents and may

also exhibit hysteretic behavior. The changes in the

hydraulic conductivity influence the transportation of lea-

chate and gas in landfills, and decomposition of MSWs

[32]. The decomposition of MSWs is associated with the

availability of moisture [31]. However, variations in the

WRCs of MSWs during continuous drying and wetting

loops have not been studied. Previous study carried by

Kong et al. [16] suggests that the size and shape of the

WRCs of soils after 2–3 cycles are almost identical because

the major changes in the structure and volume of soils are

likely to occur in first few drying and wetting cycles. In

relatively fresh MSWs, the rapid release of intra-particle

moisture after a slight degree of biodegradation (DOB) can

affect the structures and moisture distribution in the MSWs

[25] and thereby the WRCs. The variations in the WRCs of

MSWs under drying and wetting cycles can therefore be

different from that of the soils, especially after leachate

exposure.

The objective of this study is to evaluate the effects of

drying and wetting phases on fresh and degraded (up to

1080 days after decomposition) MSWs exposed to water

and leachate. The degraded MSWs were prepared in

bioreactors recirculated with leachate. The hysteresis of

WRCs of MSWs with different DOBs during drying and

wetting cycles was determined. The chemical properties of

the outflow during the pressure plate tests were determined

by inductively coupled plasma-optical emission spectrom-

etry (ICP-OES).

2 Materials and methodology

2.1 Materials

The mature leachate was adopted in this study due to its

relatively stable composition in comparison with the fresh

leachate. The leachate was collected from a leachate pond

located in the Mugga Lane Landfill, Canberra, Australia.

The mature leachate retained in the pond was drained from

landfill cells closed over 10 years [26]. The pH of the

mature leachate (7.9) was similar to that of water. The

chemical oxygen demand (COD) and ammonia concen-

tration were measured by the potassium dichromate and

salicylic acid methods [26, 31]. The mean values of COD

and ammonia were 0.63 and 0.14 g/L, respectively.

The fresh MSWs were prepared from the MSWs in local

bins in Canberra and soil samples from the landfill cover.

The samples were characterized manually based on size

(9.5 mm) and composition. The particles exceeding

9.5 mm were compressed or shredded, as suggested in

previous studies [25, 26]. Fresh MSWs were generally

compressed in landfills under the pressure of new lifts of

MSWs or intermediate soil covers [27]. The relatively

small size of 9.5 mm was selected because of the small

diameter of the ring (50 mm) adopted for pressure plate

experiments. For MSWs with larger particle sizes, modified

apparatus was recommended, e.g., 150 mm diameter

hanging column devices for maximum waste sizes of

25 mm [5]. The prepared MSWs were then remixed in

accordance with the field composition investigated by Xie

et al. [32], as presented in Table 1. The particle size dis-

tribution of prepared MSWs was similar to that of field

MSWs after screening [32], as shown in Fig. 4d.

2.2 Sample preparation

The MSW samples with different decomposition durations

were prepared in box shaped bioreactors with the size of

350 9 270 9 180 mm. The details of the bioreactor can be

found in Xie and Xue [26]. To provide appropriate drai-

nage, a gravel layer with a thickness of 20 mm was

installed at the bottom of each bioreactor.

However, the dry unit weights or void ratios can sig-

nificantly affect the WRCs of MSWs. For example, the

increase in dry unit weights increased the air-entry pres-

sures, residual moisture content of MSWs, and reduction in

the slope of WRCs [5–8, 26]. Therefore, to minimize the

effects of dry unit weights or void ratios and focus on the

effects of biodegradation on the WRCs, the samples were

prepared to different initial dry unit weights so that they

Table 1 Composition of fresh field and synthetic MSWs (wet basis)

Composition Field (%) Synthetic (%)

Soil 32.9 32

Paper and cardboard 19.3 19

Food and vegetation 17.6 17

Wood 8.1 9

Textiles 3.7 3

Glass 2.2 2

Plastics 11.0 11

Metal 0.4 1

Construction waste 4.7 6
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could reach the same dry unit weight after different dura-

tions of biodegradation.

The prepared fresh MSWs were compacted with a

standard proctor hammer until the final height of 120 mm

and dry unit weights of 10.0 (MSW-F), 8.0 (MSW-M), and

6.0 kN/m3 (MSW-H) were achieved. The abbreviations

MSW-F, MSW-M, and MSW-H referred to the fresh,

moderately degraded, and highly degraded MSWs,

respectively. The dry unit weights of the MSWs were close

to 10 kN/m3 (9.61–10.35 kN/m3) after 0 (MSW-F), 180

(MSW-M) and 1080 (MSW-H) days of decomposition,

respectively. The specific gravity of samples ranged from

1.86 (MSW-F) to 1.93 (MSW-H). Therefore, after being

decomposed for 0 (MSW-F), 180 (MSW-M) and 1080

(MSW-H) days, the void ratios of the MSWs prior to

testing were similar. The influences of dry unit weight or

initial void ratio on the WRCs of MSWs could be negli-

gible, which were also out of the scope of this research.

The dry unit weight and void ratio on the WRCs of MSWs

after multiple drying and wetting should be further

investigated.

Those compacted MSWs were then covered with 30 mm

thick soils. In the first 10 weeks, 1.5 L leachate was

recirculated into the bioreactor on a weekly basis. The

frequency was reduced to half after 10 weeks (1.5 L/2

weeks). After 24 weeks, no leachate was recirculated.

Before each recirculation, the leachate was collected from

the drainage pipes. The temperature during the whole test

period was maintained at 23 ± 2 �C. The corresponding

DOBs of those samples were 0%, 26%, and 71% (Eq. (1)),

respectively.

DOB ¼ 1� Xfi

Xfo

� �
1

1� Xfið Þ ð1Þ

where Xfo = the initial fraction of biodegradable

components,

Xfi = the fraction of biodegradable components after

partial decomposition.

2.3 Pressure plate tests

The decomposed samples were excavated from the biore-

actors, followed by the saturation process in flexible-wall

permeameters used by Xie et al. [28]. Fresh MSWs were

permeated at the constant cell (15 kPa) and back pressure

(10 kPa) for at least 72 h, with water or leachate. The

degraded MSWs were saturated only with mature leachate

under the same pressure sets. This was to minimize the

impacts of pore liquids on the WRCs of MSWs.

The WRCs of MSWs were measured with pressure plate

tests. The ring cutters in 50 mm diameter and 31.6 mm

height were used to cut the saturated samples. The samples

were then placed over high air-entry pressure (1500 kPa)

ceramic disks. The samples were subjected to a vertical

stress of 14 kPa. A digital displacement gauge was used to

determine the displacement of MSWs during the drying

and wetting loops, and the corresponding total volume of

samples can be calculated. The suctions applied during the

drying/wetting processes were 1, 2, 5, 10, 20, 50, 100, 200,

and 500 kPa. When the change in each reading tube was

within 1 mm (0.08 mL) in 12 h, the next step of matric

suction was applied. A constant reading in 12 h under

500 kPa suggested the completion of one drying process,

whereas that under 1 kPa indicated the completion of one

wetting process. In one drying and wetting cycle, the

applied suction increased from 1 to 500 kPa and reduced to

1 kPa.

Many models have been developed to describe the

WRCs of soils [4, 22]. The Van Genuchten model (VGM)

[22] has been widely used to describe the WRCs of MSWs

[5, 20, 24, 26] and soils [16, 23]. Therefore, VGM was

selected to compare the results with previous studies. The

relationship between the volumetric moisture content and

matric suction during both drying and wetting loops was

fitted with VGM, as shown in Eq. (2).

he ¼
h� hr
hs � hr

¼ 1þ w
a

� �n� ��m

ð2Þ

where he = Effective saturation of MSWs at actual volu-

metric moisture content,

w = Matric suction of MSWs at actual volumetric

moisture contents,

h = Measured volumetric moisture contents of MSWs,

hs = Saturated volumetric moisture contents of MSWs,

hr = Residual volumetric moisture contents of MSWs,

m, n = Model parameters,

a = Air-entry pressures or wetting-saturation pressures

of MSWs for drying and wetting loops, respectively.

2.4 ICP-OES

The microstructure of the MSW samples during drying and

wetting cycles affected the hysteretic behavior [16]. The

mercury intrusion porosimetry (MIP) tests were generally

used to obtain the pore distribution. However, the high

pressure applied during MIP tests can break soft MSW

particles and open isolated pores, affecting the accuracy of

pore distribution of MSWs [37]. Therefore, MIP may not

be suitable for MSWs. To understand the biochemical

behavior of MSWs during the drying and wetting process,

the chemical properties of outflow from pressure plate tests

after 6 cycles were determined with ICP-OES.
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3 Results and discussion

3.1 WRCs of MSWs

The relationship between the volumetric moisture contents

(VMC) of MSWs and matric suction during drying (D) and

wetting (W) is presented in Fig. 1 (points). When fitting

WRCs with VGM, the variation between the theoretical

saturated volumetric moisture content and the determined

volumetric moisture content is neglected. Although grav-

ity-induced drainage occurs during sample preparation

[4, 20], most of the air voids could be excluded during the

application of the vertical loading [26]. The determined

saturated moisture contents are close to the theoretical

saturated moisture contents calculated based on phase

relationship (within 2% of difference). This suggests that

the samples can be saturated using the saturation method.

Therefore, the saturated moisture contents determined

during the tests are used, as recommended in a previous

study [26].

3.2 Effects of drying and wetting cycles

The fitting parameters and fitted curves are shown in

Table 2 and Fig. 1 (the solid lines), respectively. Figure 2

shows the correlation between the effective saturation and

matric suction, together with the fitted curves using the

parameters in Table 2. The trend of effective saturation and

volumetric moisture content with matric suction is similar.

The difference between the curves in Figs. 1 and 2 mainly

results from the reduction in the saturated moisture con-

tents due to the decrease in void ratios with drying and

wetting cycles. Figure 3 presents the changes in those

parameters with the number of drying and wetting cycles

adopted. The figure also compares the parameters of a

granite residual soil (GRS) [16], and an artificially mixed

soil from a silicon micro-powder (SMP) [23]. The results

shown in Fig. 3 indicate that saturated and residual mois-

ture contents or moisture retention capacities of MSWs

decrease as the number of drying and wetting cycles

increases. Such reduction is similar to that of soils under

Fig. 1 WRCs of the MSWs after different cycles of drying and wetting with water or leachate (VMC: Volumetric moisture content): (a) MSW-F,

water exposure, (b) MSWF, leachate exposure, (c) MSW-M, leachate exposure, (d) MSW-H, leachate exposure
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continuous drying and wetting cycles, as shown in Fig. 3a,

b. This could be attributed to the breakdown of bonding

structures, decrease in the pore volume, and formation of

cracks during the drying and wetting cycles [18], as well as

the ink-bottle effect, contact angle effect, entrapped air,

and swelling [15]. The bonding effect would be weakened

due to the loss of cementitious components due to con-

tinuous leachate exposure [17]. The cementation is

destroyed due to stress concentration induced by the

absorption and desorption [34]. Xu et al. [34] also indicate

that the structure of soil particles in MSWs can be con-

verted from shelf structures to polymer structures under

drying-wetting cycles. Additionally, cracks can occur

during the drying processes. Continuous drying-wetting

cycles can extend the dimensions of those cracks and

generate new cracks [16]. Those effects mentioned above

decrease the water retention capacity of MSWs.

It is noticeable that the decrease in the saturated and

residual moisture content of MSWs is higher than those of

soils. This can be mainly attributed to the entrapped air.

The macro-pores can retain water when surrounded by

micro-pores but cannot retain water once been dried prior

to wetting. The air is likely to occupy the volume of the

moisture in the macro-pores with the outflow water and

potentially block the micro-pores due to air bubbles,

forming more macro-pores. The generation of landfill gas

due to the decomposition of MSWs during drying and

wetting can enhance the entrapped air effect.

The WRCs of the MSWs reach a nearly stable condition

after 3 drying and wetting cycles. This means the structure

of the MSWs could have been stabilized after 3 cycles. The

effects of leachate recirculation on particle rearrangement

within the MSW matrix could be more significant in the

first few times of recirculation, and further recirculation

may only provide a suitable environment for mechanical

compression and biodegradation. Xie et al. [31] investi-

gated the long-term settlement of MSWs with similar

composition over 2 years. The experiments were per-

formed in laboratory-scale bioreactors with recirculation of

mature leachate. The results suggest that the majority of

settlement and reduction in void ratios occurs during the

first 3 cycles of leachate recirculation and collection

(wetting and drying) due to particle rearrangement and

release of intra-particle water. Further recirculation of

mature leachate enhances the decomposition of MSWs and

increases the compression index due to the increase in pH

[30].

3.3 Effects of pore liquids

The comparison between the WRCs of MSWs exposed to

water and leachate (Fig. 1a, b) indicates that the leachate

exposure does not have substantial influences on the initial

WRCs of fresh MSWs. The smaller n value during the

wetting process of MSWs indicates that the distribution of

the pore size in the samples exposed to leachate is less

uniform compared to those exposed to water. The ions

contained in the leachate can result from the construction

wastes, metals, sludges, and solidified/stabilized soils

[11, 12]. Those ions, such as Cl-, SO4
2-, and CO3

2- could

Table 2 VGM parameters of MSWs after different cycles of drying and wetting by water or leachate

Test group Cycles Drying Wetting

a (kPa) hs (%) hr (%) n a (kPa) hs (%) hr (%) n

MSW-F (W) 1 13.7 50.3% 7.0% 1.97 12.3 41.8% 7.6% 2.16

2 14.2 42.5% 6.4% 2.15 12.6 39.2% 6.3% 2.18

3 14.3 39.1% 6.2% 2.17 12.9 36.4% 6.2% 2.20

6 15.4 33.4% 4.3% 2.22 13.8 32.5% 4.3% 2.20

MSW-F (L) 1 12.2 49.0% 7.5% 1.93 12.0 41.9% 7.5% 1.92

2 14.0 41.8% 6.7% 2.03 13.2 37.1% 6.7% 1.97

3 16.7 37.0% 6.0% 2.17 14.9 33.5% 5.9% 2.06

6 26.5 30.7% 4.1% 2.29 23.1 29.3% 4.3% 2.24

MSW-M (L) 1 31.1 49.6% 9.3% 1.94 19.2 43.2% 8.6% 1.70

2 27.8 43.2% 8.2% 1.99 19.9 39.7% 8.0% 1.83

3 32.9 39.8% 7.2% 2.01 25.1 36.4% 7.5% 1.92

6 35.4 33.7% 6.0% 2.15 31.3 32.1% 6.1% 2.11

MSW-H (L) 1 17.7 50.5% 10.7% 1.78 14.0 42.8% 10.4% 1.64

2 16.7 42.8% 10.0% 1.85 14.7 39.3% 9.5% 1.73

3 14.6 39.3% 9.6% 1.89 12.3 36.9% 9.3% 1.79

6 13.1 34.9% 9.2% 2.04 10.7 34.1% 9.2% 1.94
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react quickly with the cementitious components within the

MSWs [17]. This could result in looser structures in the

MSWs induced by the separation and dispersion of MSW

solids, i.e., the less uniform pore size distribution with

higher pore sizes. This is consistent with the ICP results

shown in Table 3. The existence of Ca in the matrix con-

tributes to the formation of a strong bond between fine

MSW particles [9]. The reduction in Ca in the matrix

causes a loose and dispersed structure.

In addition, the leachate exposure only has a minimal

effect on the WRC parameters of MSWs under drying and

wetting cycles, except for air-entry pressures. As the

number of drying and wetting cycles increases, the air-

entry pressures of the samples exposed to leachate exhibit a

more significant rise in contrast to those exposed to water.

This can be attributed to the formation of biofilm within the

MSW matrix. The biofilm is associated with soils’ bio-

chemical processes and can be enhanced by leachate

exposure [1]. The biofilm can grow on the surface of both

macro and micro-pores, clogging the voids in the MSWs

matrix. The clogging induced by biofilm formation effec-

tively reduces the maximum sizes of macro-pores and

potentially decreases the mean dimensions of pores in the

MSW matrix [28]. The reduction in pore sizes increases the

air-entry pressures of MSWs. The air-entry pressures of

fresh MSWs increase with the number of drying and wet-

ting cycles, especially under leachate exposure. This is

opposite to the natural or artificially mixed soils reported in

the literature [14, 23].

Unlike soil materials, changes in the WRCs of MSWs

also result from the differences in the nature of the waste

constitutions. The decrease in saturated moisture contents

after 6 cycles is slightly higher in the fresh MSWs. This is

attributed to the discharge of intra-particle moisture. The

intra-particle moisture held within the waste constitutions,

such as food, is initially not able to transport freely in the

MSW matrix. However, this intra-particle moisture can be

easily squeezed out when subjected to stress or

Fig. 2 WRCs of the MSWs after different cycles of drying and wetting with water or leachate (Effective saturation): (a) MSW-F, water

exposure, (b) MSW-F, leachate exposure, (c) MSW-M, leachate exposure, (d) MSW-H, leachate exposure
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decomposition [31], but cannot be adsorbed back once

being removed. As MSWs continue to decompose, the

intra-particle water retained in MSWs decreases. The

WRCs of decomposed MSWs subjected to drying and

wetting cycles become closer to those of the soil. The

reduction of saturated and residual moisture contents of

decomposed MSWs is lower compared to those of fresh

MSWs. The air-entry pressures decrease with the number

of drying and wetting cycles, as can be seen in Fig. 3a–d

and Table 2.

3.4 Effects of decomposition

The WRCs of MSWs are influenced by the degrees of

biodegradation (DOB), as shown in Fig. 4. The residual

volumetric moisture contents, air-entry pressures, and

model parameter n of MSWs vary with the DOBs. The

residual moisture content of MSWs is a function of the

balance between organic contents (e.g., paper) and highly

degraded organic fractions [24]. The reductions in organic

fractions of MSWs such as paper reduce the moisture

retention capacity of MSWs while increased percentages of

decomposed fine particles enhance the moisture retention

capacity. As MSWs decompose, the sizes of degradable

particles reduce, and the maximum pore size within the

MSWs could potentially increase or decrease, depending

on DOBs. The reduction in the overall pore dimensions

contributes to higher air-entry pressure and residual mois-

ture content. This can be partially reflected by the reduction

in the particle size shown in Fig. 4d. The percentage of fine

Fig. 3 Variation in the WRC parameters (drying phase) of MSWs with drying and wetting cycles: (a) Saturated moisture content hs, (b) Residual
moisture content hr, (c) Air-entry pressure a, (d) Model parameter n

Table 3 Elemental composition of outflow from the pressure plate

tests

Analyte W L

Raw MSW-F MSW-H Raw MSW-F MSW-H

Na 10.5 16.2 22.5 323.5 369.8 380.4

Mg 3.6 9.3 11.0 77.3 97.3 97.8

K 1.8 5.1 6.1 52.3 68.0 74.9

Ca 3.3 42.9 51.0 33.4 189.2 246.7

Acta Geotechnica

123



contents increases with DOB as the particle size distribu-

tion curve moves to the left.

Although there is no clear relationship between overall

residual moisture content/air-entry pressure and DOB, for

each individual study, the residual moisture content and

air-entry pressure increase with DOB. Those changes are

associated with the reduction in particle sizes due to

decomposition. The increase in the fine content potentially

decreases the pore dimensions [5], increases the number of

micro-pores, and creates a more uniform pore size distri-

bution [26]. Zhang et al. [37] also evaluated the pore size

distribution of MSWs with different DOBs. The MSWs

with higher DOBs exhibit lower volumes of macro-pores

([ 5 lm) compared to those with lower DOBs. This is

consistent with the increase and then decrease in air-entry

pressures and model parameter n as the MSWs decompose

from fresh to moderately (180 days) and then to highly

(1080 days) decomposed as shown in Fig. 3c, d.

3.5 Effects of compression

Another important factor affecting the WRCs of the MSWs

during the drying and wetting cycles is compression, which

increases the dry unit weight of MSWs. The dry unit

weight of MSWs increases during drying and wetting

loops. The influences of dry unit weight on the WRCs of

MSWs have been extensively studied in previous studies

[5, 26, 35]. Figure 5 compares the WRC parameters under

different dry unit weights. The air-entry pressures and

residual moisture contents increase with the dry unit weight

of MSWs (Fig. 5a, b). The model parameter n decreases

with the dry unit weight of MSWs (Fig. 5c). This is

attributed to the decrease in pore sizes and uniform pore

size distribution due to increased dry unit weight [5].

Although the air-entry pressure of fresh and moderately

decomposed MSWs increases with the dry unit weight

induced by compression during dry and wetting, the

increase is much more significant compared to MSWs

compacted to different initial dry unit weights. Addition-

ally, different trends in residual moisture contents and

model parameter n can be observed from MSWs with

different dry unit weights induced by drying-wetting

cycles. This suggests that the increase in dry unit weight

due to compression may not be the main cause of changes

in the WRC parameters with drying and wetting loops.

Fig. 4 Variation in the WRC parameters (drying phase) and particle size of MSWs with decomposition: (a) Residual moisture content hr, (b) Air-
entry pressure a, (c) Model parameter n, (d) Particle size distribution
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3.6 Hysteresis of MSWs

Similar hysteresis loop of MSWs and soils can be observed

[16]. This can be attributed to ink-bottle effects, contact

angle effects and entrapped air effects [14]. The hysteresis

of MSWs between drying and wetting loops of MSWs is

quantified using Eq. (3) [15].

Hysteresis ¼
Z 500

0:1

hdryingdw�
Z 500

0:1

hwettingdw ð3Þ

The hysteresis of the MSW samples during the drying

and wetting phases is presented in Fig. 6. For both fresh

and decomposed MSWs, the maximum hysteresis is mea-

sured in the first loop of drying and wetting due to the

relatively large pores in the MSW matrix. Due to the high

suction applied during drying cycles, significant volume

change could occur during the first drying cycle, which

results in smaller voids in the MSWs. A relatively smaller

hysteresis can therefore be observed after the first drying

and wetting cycle. As the number of drying and wetting

cycles increases, MSWs gradually perform like a passive

system, where no further adsorption and desorption of

moisture can be observed, as also shown in existing study

on soils [16]. However, this method only quantifies the

hysteresis behavior of MSWs. The effects such as contact

angles between solids and liquids and ink-bottle have not

been investigated. Although the contact angle is generally

assumed to be constant during the drying and wetting

processes, it can be larger during the wetting process and

may change with the particle roughness and temperature

due to the decomposition of MSWs [13]. The ink-bottle

effect results from the non-homogeneous shapes and sizes

of interconnected pores [39] and can be quantified by the

pore size distribution function and arrangement of dry and

wet pores [36]. The desaturation of pores occurs under the

high snap-off suction value and is dependent on the smaller

section at the bottle neck [2]. By contrast, the pores are

saturated under the low snap-off suction, and this process is

dominant by the large section in the bottle body. The

micro-pores can remain dry with the reduction in suction

during the wetting process due to the block of water flow

by the macro-pores [36]. The shapes and dimension of

pores of MSWs vary with the compression and decompo-

sition [26], affecting the ink-bottle effect and contact angle

of MSWs. Further studies can be conducted to investigate

the applicability of unsaturated soil models for MSWs

[39, 40].

Fig. 5 Effects of dry unit weight on WRC of MSWs: (a) Air-entry pressure a, (b) Residual moisture content hr, (c) Model parameter n

Fig. 6 Hysteresis of MSWs subjected to different numbers of drying

and wetting cycles
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4 Conclusion

This study investigated the effects of drying and wetting

cycles on the water retention curves (WRCs) of municipal

solid wastes (MSWs). The MSW samples with various

degrees of degradation were prepared in the laboratory. Up

to 6 drying and wetting cycles were adopted with the

maximum matric suction of 500 kPa. The liquids used for

the tests were water (fresh MSWs) and leachate (fresh and

degraded MSWs). The results indicate that the water

retention capacity of MSWs decreases as the number of

drying and wetting increases. The maximum hysteresis is

obtained in the first drying and wetting cycle. The WRCs

of the MSWs tend to stabilize after 3 drying and wetting

cycles. As the number of drying and wetting loops

increases, water retention behavior of the decomposed

MSWs is close to those of soils. The air-entry pressures

decrease, but the model parameter n increases with the

number of drying and wetting cycles. The water retention

behavior of MSWs can be affected by the degree of

biodegradation and mechanical compression, which results

in the discharge of intra-particle moisture from the MSWs.

The leachate exposure does not greatly affect the WRC

parameters of the MSWs under drying and wetting loops,

except for air-entry pressures. The air-entry pressure of the

fresh MSWs increases with the number of drying and

wetting cycles, especially under leachate exposure.
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