Skip to main content

Advertisement

Log in

A macro-meso nonlinear strength criterion for frozen soil

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

Different from other geotechnical materials, the strength characteristics of saturated frozen soil have nonlinear characteristics that first increase and then reduce with the increasing confining pressure, and are sensitive to varying temperature due to the existence of ice inclusions. Based on analysis on the breakage of frozen soil, it is believed that the proportion of each material component and ice-soil cementation breakage are the internal mechanisms to control the macroscopic strength. On the basis of this analysis, a multiscale strength criterion is proposed to account for this coupling mechanism. Firstly, the linear strength criterion of soil skeleton and ice inclusions in broken/unbroken states are defined, based on which the strength criterion of the bonded elements (unbroken material aggregate) and frictional elements (broken material aggregate) are deduced through the yield design theory and linear comparison composite. Secondly, the failure of ice-soil cementation is reflected by the transformation of the bonded elements to frictional elements, thus the multi-scale nonlinear strength criterion of representative volume element is derived by combining the binary medium model and strength homogenization method. These results have been verified by the test results of different types of saturated frozen soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

\({F}^{bs}\) and \({F}^{fs}\) :

The strength criterion of unbroken soil aggregates and broken soil aggregates, respectively

\({F}^{bi}\) and \({F}^{fi}\) :

The strength criterion of unbroken ice aggregates and broken ice aggregates, respectively

\({c}_{i}\) :

The volume fraction of the ice inclusion for saturated frozen soil

\({p}^{b}\)/\({p}^{bs}\)/\({p}^{bi}\) :

Mean stress of bonded elements/unbroken soil skeleton/unbroken ice inclusion

\({q}^{b}\)/\({q}^{bs}\)/\({q}^{bi}\) :

Deviatoric stress of bonded elements/unbroken soil skeleton/unbroken ice inclusion

\({k}^{bi}\)/\({k}^{bs}\) :

Strength parameters for unbroken ice inclusion/unbroken soil skeleton

\({G}^{bs}\) (\({K}^{bs}\)) and \({G}^{bi}\) (\({K}^{bi}\)):

The shear modulus (bulk modulus) of unbroken soil skeleton and unbroken ice inclusion, respectively

\({\varepsilon }_{br}^{s}\) and \({\varepsilon }_{br}^{i}\) :

The failure strains of unbroken soil skeleton and unbroken ice inclusion, respectively

\({\varepsilon }_{s}^{bs}\) (\({\varepsilon }_{s}^{bi}\)) and \({\varepsilon }_{v}^{bs}\) (\({\varepsilon }_{v}^{bi}\)):

The shear strain and volumetric strain for unbroken soil skeleton (unbroken ice inclusion) at failure point, respectively

\({\sigma }_{1}\) and \({\sigma }_{3}\) :

The axial stress and confining pressure, respectively

\(A\)/\(B\) :

Stress concentration coefficient for bonded elements

\({M}_{C}\)(\({M}_{S}\)) and \({S}_{C}\)(\({S}_{S}\)):

Parameter of D-P criterion of broken ice inclusion (broken soil skeleton)

\({r}_{g}\) :

The ratio of the shear moduli of the broken ice inclusion and broken soil skeleton

\(a\) :

The linear parameter for D-P criterion

\({\varphi }^{b}\) :

The strain energy of bonded elements

\({\pi }^{b}\) :

The dissipated energy of bonded elements

\({K}^{b}\) and \({G}^{b}\) :

The bulk modulus and shear modulus of the bonded elements, respectively

\({G}^{fi}\) and \({G}^{fs}\) :

The ratio of the shear moduli of the broken ice inclusion and broken soil skeleton

\({Y}_{b}\) :

The nonlinear function of bonded elements

\({\pi }^{f}\) :

The dissipated energy of frictional elements

\({\psi }^{f}\) :

The strain energy of frictional elements

\({p}^{f}\) and \({q}^{f}\) :

The mean stress and deviatoric stress of the frictional elements at failure point, respectively

\({\varepsilon }_{v}^{f}\) and \({\varepsilon }_{s}^{f}\) :

The volumetric and shear strains of the frictional elements, respectively

\({K}^{f}\) and \({G}^{f}\) :

The bulk modulus and shear modulus of the frictional elements, respectively

\(\tau \) :

The prestress of frictional elements

\({Y}_{f}\) :

The nonlinear function of the frictional elements

\({\varphi }^{br}\) :

The strain energy of the broken process

\({\pi }^{br}\) :

The dissipated energy of the broken process

\({Y}_{br}\) :

The nonlinear function of the broken process

\({\psi }_{hom}\) :

The strain energy of saturated frozen soil

\({K}^{hom}\) and \({G}^{hom}\) :

The bulk modulus and shear modulus of saturated frozen soil, respectively

\({\widetilde{\Pi }}_{hom}\) :

The dissipated energy of saturated frozen soil

\(P\) and \(Q\) :

The mean stress and deviatoric stress of saturated frozen soil

\(M\) and \(S\) :

The strength parameter of frictional elements

\(\mathcal{g}\) and \(\mathcal{B}\) :

The breakage parameters of the material

\({P}_{0}\) :

The reference value of the mean stress

\({\lambda }_{v}\) :

The breakage ratio for saturated frozen soil

\({\sigma }_{ij}^{b}\)/\({\varepsilon }_{ij}^{b}\) :

The stress/strain tensor of bonded elements for saturated frozen soil

\({\sigma }_{ij}^{br}\) :

The broken stress

\({\varepsilon }_{ij}^{br}\) :

The broken strain

\({\sigma }_{ij}^{f}\) and \({\varepsilon }_{ij}^{f}\) :

The stress and strain of frictional elements

\({\tau }_{ij}\) :

The prestress tensor of frictional elements

\({\delta }_{ij}\) :

The Kronecker delta

\({\tau }_{ij}^{hom}\) :

The prestress tensor of saturated frozen soil

\({C}_{ijkl}^{f}\) :

The elastic stiffness tensor of frictional elements

\({C}_{ijkl}^{b}\) :

The elastic stiffness tensor of bonded elements

\({C}_{ijkl}^{hom}\) :

The elastic stiffness tensor of saturated frozen soil

\({A}_{ijkl}^{c}\) :

The strain concentration tensor of frictional elements

References

  1. Andersland OB, Ladanyi B (2003) Frozen ground engineering, seconded. ASCE/Wiley Inc, Hoboken, pp 106–136

    Google Scholar 

  2. Alkire BD, Andersland OB (1973) The effect of confining pressure on the mechanical properties of sand-ice materials. J Glaciol 12(66):469–481

    Article  Google Scholar 

  3. Kolpakov AG, Rakin SI (2020) Homogenized strength criterion for composite reinforced with orthogonal systems of fibers. Mech Mater 148:103489

    Article  Google Scholar 

  4. Chen D, Ma W, Mu YH, Zhou ZW, Wang DY, Lei LL (2018) A new strength criterion of frozen clay considering temperature effect. In: Proceedings of China-Europe conference on geotechnical engineering, SSGG. 1340–1344.

  5. Chen D, Wang DY, Ma W, Lei LL, Li GY (2019) A strength criterion for frozen clay considering the influence of stress Lode angle. Can Geotech J 56(11):1557–1572

    Article  Google Scholar 

  6. Du HM, Ma W, Zhang SJ, Zhou ZW, Liu EL (2016) Strength properties of ice-rich frozen silty sands under uniaxial compression for a wide range of strain rates and moisture contents. Cold Reg Sci Technol 123:107–113

    Article  Google Scholar 

  7. Earl MB, De GM, Dylan S, Marolo C, Alfaro GD, Lukas UA (2018) Large-scale direct shear testing of compacted frozen soil under freezing and thawing conditions. Cold Reg Sci Technol 151:138–147

    Article  Google Scholar 

  8. Chuvilin EM, Bukhanov BA, Grebenkin SI, Doroshin VV, Iospa AV (2018) Shear strength of frozen sand with dissociating pore methane hydrate: An experimental study. Cold Reg Sci Technol 153:101–105

    Article  Google Scholar 

  9. French HM (1996) The periglacial environment, 2nd edn. Essex, London, p 341

    Google Scholar 

  10. Parameswaran VR, Jones SJ (1981) Triaxial testing of frozen sand. J Glaciol 27(95):147–155

    Article  Google Scholar 

  11. Fish AM (1991) Strength of frozen soil under a combined stress state. In: Balkema, A.A.(Ed.), In: Proceedings of 6th international symposium on ground freezing, vol. 1. Rotterdam, The Netherlands. 135–145.

  12. He Z, Dormieux L, Lemarchand E, Kondo D (2013) Cohesive mohr-coulomb interface effects on the strength criterion of materials with granular-based microstructure. Eur J Mech 42:430–440

    Article  MathSciNet  Google Scholar 

  13. Liu EL, Yu HS, Zhou C et al (2017) A binary-medium constitutive model for artificially structured soils based on the disturbed state concept and homogenization theory. Int J Geomech 17(7):04016154

    Article  Google Scholar 

  14. Liu EL, Nie Q, Zhang JH (2013) A new strength criterion for structured soils. J Rock Mech Geotech Eng 5(2):156–161

    Article  Google Scholar 

  15. Leoueil S, Vaughan PR (1990) The genegal and congruent effects of structure in naturnal soils and weak rocks. Geotechnique 40(3):467–488

    Article  Google Scholar 

  16. Lai YM, Jin L, Chang XX (2009) Yield criterion and elasto-plastic damage constitutive model for frozen sandy soil. Int J Plast 25(6):1177–1205

    Article  Google Scholar 

  17. Lai YM, Gao ZH, Zhang SJ, Chang XX (2010) Stress-strain relationships and nonlinear Mohr strength criteria of frozen sandy clay. Soils Found 50(1):45–53

    Article  Google Scholar 

  18. Lai YM, Liao MK, Hu K (2016) A constitutive model of frozen saline sandy soil based on energy dissipation theory. Int J Plast 78:84–113

    Article  Google Scholar 

  19. Lai YM, Xu XT, Dong YH, Li SY (2013) Present situation and prospect of mechanical research on frozen soils in China. Cold Reg Sci Technol 87:6–18

    Article  Google Scholar 

  20. Liao MK, Lai YM, Wang C (2016) A strength criterion for frozen sodium sulfate saline soil. Can Geotech J 53(7):1176–1185

    Article  Google Scholar 

  21. Liu XY, Liu EL, Zhang D et al (2019) Study on effect of coarse-grained content on the mechanical properties of frozen mixed soils. Cold Reg Sci Technol 158:237–251

    Article  Google Scholar 

  22. Liu XY, Liu EL (2019) Application of new twin-shear unified strength criterion to frozen soil. Cold Reg Sci Technol 167:102857

    Article  Google Scholar 

  23. Liu XY, Liu EL et al (2019) Study on strength criterion for frozen soil. Cold Reg Sci Technol 161:1–20

    Article  Google Scholar 

  24. Li QL, Xu XT, Hu JJ, Zhou ZW (2018) Investigation of unsaturated frozen soil behavior: Phase transformation state, post-peak strength, and dilatancy. Soils Found 58(4):928–940

    Article  Google Scholar 

  25. Luc D, Djimedo K (2013) Nonlinear homogenization approach of strength of nanoporous materials with interface effects. Int J Eng Sci 71:102–110

    Article  Google Scholar 

  26. Li XZ, Shao ZS, Fan LF (2016) A micro–macro method for predicting the shear strength of brittle rock under compressive loading. Mech Res Commun 75:13–19

    Article  Google Scholar 

  27. Yu L, Sui HN, Liu WB, Chen LR, Liu Y, Duan HL (2020) A yield criterion for porous crystalline materials with inner pressure. Int J Solids Struct 202:511–520

    Article  Google Scholar 

  28. Long C, Saxcé GD, Kondo D (2014) A stress-based variational model for ductile porous materials. Int J Plast 55:133–151

    Article  Google Scholar 

  29. Ma W, W ZW, Zhang LX, et al (1999) Analyses of process on the strength decrease in frozen soils under high confining pressures. Cold Reg Sci Technol 29:1–7

    Article  Google Scholar 

  30. Ma W, Wu ZW, Zhang CQ (1993) Strength and yield criteria of frozen soil. J Glaciol Geocryol 15(3):129–133 ((in Chinese))

    Google Scholar 

  31. Girgis N, Li B, Akhtar S, Courcelles B (2020) Experimental study of rate-dependent uniaxial compressive behaviors of two artificial frozen sandy clay soils. Cold Reg Sci Technol 180:103166

    Article  Google Scholar 

  32. Vasiliev NK, Ivanov AA, Sokurov VV, Shatalina IN, Vasilyev KN (2012) Strength properties of ice–soil composites created by method of cryotropic gel formation. Cold Reg Sci Technol 70:94–97

    Article  Google Scholar 

  33. Ortega J, Gathier B, F. ULM. (2011) Homogenization of cohesive-frictional strength properties of porous composites: linear comparison composite approach. J Nanomech Micromech 1:11–23

    Article  Google Scholar 

  34. Qi JL, Ma W (2007) A new criterion for strength of frozen sand under quick triaxial compression considering effect of confining pressure. Acta Geotech 2:221–226

    Article  Google Scholar 

  35. Roland T, Roman L (2015) Multi-level homogenization of strength properties of hierarchical-organized matrix–inclusion materials. Mech Mater 89:98–118

    Article  Google Scholar 

  36. Shen ZJ (2006) Progress in binary medium modeling of geological materials. Modern trends in geomechancis, Wu, W., and H. S Yu, eds., Springer, Berlin, 77–99.

  37. Shen WQ, Shao JF (2017) Some micromechanical models of elastoplastic behaviors of porous geomaterials. J Rock Mech Geotech Eng 9(1):1–17

    Article  Google Scholar 

  38. Shen WQ, Shao JF, Oueslati A, G DS, Zhang J, (2018) An approximate strength criterion of porous materials with a pressure sensitive and tension-compression asymmetry matrix. Int J Eng Sci 132:1–15

    Article  MathSciNet  Google Scholar 

  39. Shen WQ, Oueslati A et al (2015) Macroscopic criterion for ductile porous materials based on a statically admissible microscopic stress field. Int J Plast 70:60–76

    Article  Google Scholar 

  40. Shen WQ, Shao JF, Liu ZB et al (2020) Evaluation and improvement of macroscopic yield criteria of porous media having a Drucker-Prager matrix. Int J Plast 126:102609

    Article  Google Scholar 

  41. Sang YK, Hong WT, Lee JS (2018) Silt fraction effects of frozen soils on frozen water content, strength, and stiffness. Constr Build Mater 183:565–577

    Article  Google Scholar 

  42. Maghous S, Dormieux L, Barthélémy JF (2009) Micromechanical approach to the strength properties of frictional geomaterials. Eur J Mech A Solids 28(1):179–188

    Article  MathSciNet  Google Scholar 

  43. Su Y (2020) Study on dynamic mechanical properties and failure mechanism of artificial polycrystalline ice. Sichuan University, Postgraduate of Civil Engineering ((In Chinese))

    Google Scholar 

  44. Toll DG, Malandraki V (1993) Triaxial testing of a weakly bonded soil. Geotechnical Engineering of Hard Soils-Soft Rocks. Rotterdam, Balkema A A. 817~823.

  45. Wang DY, Wei M, Zhi W, Chang XX (2008) Study on strength of artificially frozen soils in deep alluvium. Tunn Undergr Space Technol 23(4):381–388

    Article  Google Scholar 

  46. Wang P, Liu EL, Song BT et al (2019) Binary medium creep constitutive model for frozen soils based on homogenization theory. Cold Reg Sci Technol 162:35–42

    Article  Google Scholar 

  47. Wang P, Liu EL et al (2020) An elastoplastic binary medium constitutive model for saturated frozen soils. Cold Reg Sci Technol 174:103055

    Article  Google Scholar 

  48. Wang P, Liu E, Zhi B (2021) An elastic-plastic model for frozen soil from micro to macro scale. Appl Math Model 91:125–148

    Article  MathSciNet  Google Scholar 

  49. Wang P, Liu EL, Zhi B, Song BT (2020) A macro–micro viscoelastic-plastic constitutive model for saturated frozen soil. Mech Mater 147:103411

    Article  Google Scholar 

  50. Xu XT, Wang BX, Fan CX, Zhang WD (2020) Strength and deformation characteristics of silty clay under frozen and unfrozen states. Cold Reg Sci Technol 172:102982

    Article  Google Scholar 

  51. Yuan SS, Zhu QZ, Zhao LY, Chen L, Shao JF, Zhang J (2020) Micromechanical modelling of short- and long-term behavior of saturated quasi-brittle rocks. Mech Mater 142:103298

    Article  Google Scholar 

  52. Yang YG, Lai YM, Chang XX (2010) Laboratory and theoretical investigations on the deformation and strength behaviors of artificial frozen soil. Cold Reg Sci Technol 64(1):39–45

    Article  Google Scholar 

  53. Yang YG, Lai YM, Dong YH, Li SY (2010) The strength criterion and elastoplastic constitutive model of frozen soil under high confining pressures. Cold Reg Sci Technol 60(2):154–160

    Article  Google Scholar 

  54. Yang YG, Gao F, Lai YM (2013) Modified Hoek-Brown criterion for nonlinear strength of frozen soil. Cold Reg Sci Technol 86:98–103

    Article  Google Scholar 

  55. Yang YG, Gao F, Cheng HM, Hou P (2016) Energy dissipation and failure criterion of artificial frozen soil. Cold Reg Sci Technol 129:137–144

    Article  Google Scholar 

  56. Zhao YH, Lai YM, Zhang J, Liao MK (2020) A dynamic strength criterion for frozen sulfate saline silty clay under cyclic loading. Cold Reg Sci Technol 173:103026

    Article  Google Scholar 

  57. Zhou ZW, Ma W, Zhang SJ, Mu YH, Li GY (2020) Experimental investigation of the path-dependent strength and deformation behaviours of frozen loess. Eng Geol 265:105449

    Article  Google Scholar 

  58. He Z, Dormieux L, Kondo D (2013) Strength properties of a Drucker-Prager porous medium reinforced by rigid particles. Int J Plast 51:218–240

    Article  Google Scholar 

  59. Zhou MM, Meschke G (2017) A multiscale homogenization model for strength predictions of fully and partially frozen soils. Acta Geotech 13(66):1–19

    Google Scholar 

  60. Zhou MM, Günther M (2014) Strength homogenization of matrix-inclusion composites using the linear comparison composite approach. Int J Solids Struct 51(1):259–273

    Article  Google Scholar 

  61. Zhou XP, Huang XC, Berto F (2018) A three-dimensional long-term strength criterion of rocks based on micromechanical method. Theoret Appl Fract Mech 97:409–418

    Article  Google Scholar 

  62. Zhang SJ, Lai YM, Sun ZZ, Gao ZH (2007) Volumetric strain and strength behavior of frozen soils under confinement. Cold Reg Sci Technol 47(3):263–270

    Article  Google Scholar 

  63. Zhao JL, Zhang P, Yang X, Qi JL (2020) On the uniaxial compression strength of frozen gravelly soils. Cold Reg Sci Technol 171:102965

    Article  Google Scholar 

  64. Zhang D, Liu EL, Liu XY, Zhang G, Song BT (2017) A new strength criterion for frozen soils considering the influence of temperature and coarse-grained contents. Cold Reg Sci Technol 143:1–12

    Article  Google Scholar 

  65. Wan Z, Yao YP, Xie LY, Song CC (2021) Transverse Isotropic Criterion Based on Generalized Nonlinear Strength. Int J Geomech 21(8):04021149

    Article  Google Scholar 

  66. Zhou AN, Yao YP (2018) Revising the unified hardening model by using a smoothed Hvorslev envelope. J Rock Mech Geotech Eng 10(4):778–790

    Article  Google Scholar 

  67. Gao ZW, Zhao JD, Yao YP (2010) A generalized anisotropic failure criterion for geomaterials. Int J Solids Struct 47(22–23):3166–3185

    Article  Google Scholar 

  68. Yao YP, Sun DA, Matsuoka H (2008) A unified constitutive model for both clay and sand with hardening parameter independent on stress path. Comput Geotech 35(2):210–222

    Article  Google Scholar 

Download references

Acknowledgements

The authors appreciate the funding of the National Natural Science Foundation of China (Grant No. U22A20596), Independent research project of state key laboratory of frozen soil engineering (NO. SKLFSE-ZQ-54), the financial support from China Scholarship Council (NO.202004910812), and the Key Laboratory of Geotechnical and Underground Engineering in Xi'an, Shaanxi Province (2060521002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enlong Liu.

Ethics declarations

Conflict of interest

The authors declared that they have no conflicts of interest in this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, P., Liu, E., Zhi, B. et al. A macro-meso nonlinear strength criterion for frozen soil. Acta Geotech. (2024). https://doi.org/10.1007/s11440-023-02197-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11440-023-02197-5

Keywords

Navigation