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Abstract
This paper proposes a powerful hybrid Eulerian–Lagrangian (HEL) approach for the analysis of cavity expansion prob-

lems. The new approach is applied to analysing the non-self-similar expansion process of a hollow cylinder of critical state

soils, considering arbitrary saturation states of soils and both drained and undrained conditions. A closed-form solution for

the stresses and displacements in the elastic zone is presented, taking the state-dependent soil moduli and outer boundary

effect of the soil cylinder into account. Adopting large strain theory in the plastic zone, the non-self-similar cavity

expansion process is formulated into a set of partial differential equations in terms of both Eulerian and Lagrangian

descriptions, which is solved by a newly proposed algorithm. The HEL approach is compared with the conventional

Eulerian and Lagrangian approaches for the cavity expansion analyses. It is found that the new approach can reduce to the

Eulerian approach when the self-similar assumption is satisfied and to the Lagrangian approach when stress–total strain

relationships are obtained analytically. Finally, the expansion process is proven to be non-self-similar by showing the stress

and deformation paths, and the finite thickness of soil cylinders may greatly influence the cavity expansion behaviour,

especially with a small thickness ratio. The HEL approach can provide useful tools for validating advanced numerical

techniques for both saturated and unsaturated soils and interpreting pressuremeter tests in small-size calibration chambers.

Keywords Cavity expansion � Critical state � Hybrid Eulerian–Lagrangian � Finite radial extent � Non-self-similar �
Unsaturated soils

1 Introduction

Cavity expansion theory studies the distribution and evo-

lution of stresses and deformation around a cylindri-

cal/spherical cavity during continuous expansions, and it

has been increasingly popular in the field of geotechnical

engineering since its wide applications such as the inter-

pretation of in situ soil tests [22, 41, 45, 71, 74], capacity

prediction of piles, plate anchors and pipelines

[25, 30, 43, 60, 80, 82], and stability and deformation

analyses of tunnels [35, 75, 79].
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The quasi-static analysis of cavity expansion generally

needs to solve the compatibility equations, stress equilib-

rium equations, and stress–strain relationships under given

boundary conditions. Different assumptions might be made

during the analysis [77], for example, small or large strain

definitions, drained or undrained conditions, infinite or

finite soil mass around the cavity, and various constitutive

models of soils. In the past decades, a number of analytical/

semi-analytical cavity expansion solutions have been

developed, and the solution methods for this typical

boundary value problem can be broadly categorised into

the so-called auxiliary variable approach (or Eulerian

approach) and total strain approach (or Lagrangian

approach) [7, 69, 72]. It is worth noting that the Eulerian

and Lagrangian approaches defined here are not exactly the

same as those usually used in finite element method (FEM)

[5]. To make it clear, the so-called Eulerian and Lagran-

gian approaches here are briefly introduced as follows.

The Eulerian approach highly relies on the self-similar

nature of cavity expansion which means that all soil par-

ticles go through the same stress and deformation paths

[24, 68]. As a result, the incremental stresses and strains

related to loading history (i.e. time) and field distribution

(i.e. space) are equivalent to each other under a special

loading pattern. One branch of this approach, also known

as the similarity technique or the incremental velocity

method [7, 19, 24, 72, 77], is to transform the PDEs into

ordinary differential equation (ODEs) in terms of space

(i.e. Eulerian description) by setting the movement of the

elastoplastic boundary as the timescale. Another branch

formulates the self-similar cavity expansion problem into

ODEs in terms of time (i.e. Lagrangian description) by

introducing auxiliary variables [14, 57]. Overall, the

Eulerian approach is quite powerful and has recently been

used to study cavity expansion problems considering ani-

sotropy, structure, viscoplastic, particle crushing, etc.

[8, 11, 12, 15, 32, 33, 36, 44, 52, 53, 63, 78]. However, it is

not rigorously suitable for the analyses of non-self-similar

cavity expansion problems such as the problem investi-

gated in this paper.

The Lagrangian approach can be used in the analyses of

both self-similar and non-self-similar cavity expansion

problems. This approach normally requires analytical

forms of the relationships between stresses and total strains

and then relates the current stresses (and strains) to the

initial and current radial positions of soil particles. For

cavity expansion in perfectly elastoplastic soils under

drained conditions, stress fields can be readily known by

combining stress equilibrium equations and yield func-

tions, which makes strain fields and particle displacements

determined by stress–total strain relationships

[2, 9, 29, 73]. Furthermore, for cavity expansion in satu-

rated critical state soils (e.g. Cam Clays) under undrained

conditions, strain fields (and particle displacements) can be

readily known due to the constant-volume assumption, and

thereby, stress fields can be obtained from the stress–total

strain relationships [6, 20, 50, 51, 61, 64, 65, 79]. However,

this method has rarely been used in some more complicated

conditions since analytical forms of the stress–total strain

relationships are often hard to be obtained, for example,

analyses in critical state soils under drained conditions.

Previous studies mostly focused on self-similar cavity

expansion problems. In fact, solutions for non-self-similar

problems are also of great importance, for example, for

theoretical analyses of pressuremeter tests and cone pene-

tration tests in small-sized chambers [26, 45, 54, 81],

grouting reinforcement problem [28, 31, 66], piezocone

tests in partially drained conditions [21, 34, 49], energy

piles [23, 39, 76], and reservoir excavation by matrix

acidizing [59]. In the analyses of these geotechnical

problems, the finite soil thickness and/or thermo-hydro-

mechanical-chemical coupling effects determine that the

expansion process is no longer self-similar (namely, soil

particles at different radial positions do not follow the same

stress and deformation paths). In the past some solutions

for the expansion analysis of a thick cylinder/sphere of soil

have been proposed. For example, using the Lagrangian

approach, Yu [69] and Yu [70] derived analytical solutions

for the expansion of a hollow thick-wall cylinder and

sphere of Mohr–Coulomb soils, respectively, which was

extended recently by Zhuang et al. [81] to saturated Cam

Clay soils under undrained conditions. For cavity expan-

sion in critical state soils under drained conditions, only a

few approximate solutions have also been presented by

taking the self-similar-based Eulerian approach

[16, 18, 42].

Overall, it is shown that neither the Lagrangian

approach nor the Eulerian approach is suitable for the

analysis of non-self-similar cavity expansion problems

with sophisticated constitutive models and drainage con-

ditions. In order to fill this gap, this paper proposes a new

approach, termed as the hybrid Eulerian–Lagrangian

(HEL) approach, for non-self-similar cavity expansion

problems (e.g. cavity expansion in the bounded soil mass).

With the HEL approach, a unified framework is established

for the quasi-static expansion analysis of a cylindrical

cavity, considering finite/infinite soil mass, drained/

undrained conditions, saturated/unsaturated soil states, and

various critical state soil models. The novelty of this work

lies in two main aspects: (i) an analytical solution for

stresses and deformation in the elastic zone is obtained,

considering stress-dependent soil modulus of Cam Clay

soils and finite cylinder thickness; and (ii) a set of PDEs is

established for cavity expansion in the plastic zone with

large strain definitions, and it is solved by the HEL

approach with high efficiency. The solutions are validated
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and discussed by comparing with some existing solutions

in special cases such as corresponding self-similar cases,

completely dry and fully saturated conditions. Finally, the

non-self-similar cavity expansion behaviour in unsaturated

soils is highlighted.

2 Problem definition and assumptions

The expansion of a hollow thick-wall cylinder of soils upon

loading at the inner cavity wall is considered, as shown in

Fig. 1. The soil cylinder is of an infinite length (out of

plane), and the inner and outer radii of the cylinder are a0

and b0, respectively, at the initial state. A horizontal total

stress rh0 and a vertical total stress rv0 act throughout the

surrounding soil which is assumed to be isotropic and

homogenous. When the inner pressure gradually increases

from rh0 to ra (ra [ rh0), the hollow cylinder will expand

outwards with the current inner and outer radii becoming a

and b, respectively, and the total vertical stress will change

from rv0 to rz.
Under the geometry and stress boundary conditions

defined in Fig. 1, the expansion process can be regarded as

an axial-symmetric plane strain problem with respect to the

vertical direction. For convenience the problem is investi-

gated in the cylindrical coordinate system (r, h, z) with the

origin at the cylinder centre. Taking compression as posi-

tive, the stress boundary conditions can be expressed as

rrjr¼a¼ ra ð1Þ

rrjr¼b¼ rh0 ð2Þ

where rr = total radial stress; r = current radial position of

a soil particle.

Neglecting body forces, the stress equilibrium equation

in the radial direction is

drr
dr

þ rr � rh
r

¼ 0 ð3Þ

where rh = total circumferential stress; the symbol ‘‘d �ð Þ’’
means the spatial differential of �ð Þ at a given time (i.e.

Eulerian description).

The initial saturation state of the surrounding soil is

assumed to be arbitrary (e.g. saturated or unsaturated). For

a smooth transition of soil state between saturated and

unsaturated, the modified Bishop’s definition [3, 4, 46] for

the effective (average skeleton) stresses is used as

r0ij ¼ rij � uadij þ Srsdij ð4Þ

s ¼ ua � uw ð5Þ

where r0ij ¼ effective stress tensor;rij ¼ total stress tensor;

ua ¼ pore air pressure; uw ¼ pore water pressure; dij ¼
Kronecker’s delta; Sr ¼ degree of soil saturation; s ¼
suction stress. ua is assumed to equal the atmospheric

pressure.

3 Critical state model for unsaturated soils

The unsaturated critical state model (UCSM) proposed by

Sun et al. [58] is introduced as an example to model the

hydro-mechanical behaviour of soils.

3.1 Soil water retention curve (SWRC)

SWRC reflects the hydraulic behaviour of unsaturated

soils, and it may be affected by the hydraulic hysteresis,

a b a b

Fig. 1 Expansion of a thick-wall cylinder of soils
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pore size distribution, and stress states [27, 38, 47]. A

general form of SWRC may be expressed as

DSr ¼
oSr

ov
Dvþ oSr

os
Ds ð6Þ

where the symbol ‘‘D �ð Þ’’ means the material time differ-

ential of �ð Þ for a given soil particle (i.e. Lagrangian

description); v = specific volume.

Taking the expression of Sun et al. [58] as an example,

the evolution of Sr with the suction and volume of soils is

defined as

DSr ¼ �kseDv
� ksr=sð ÞDs for the main drying=wetting curveð Þ

ð7Þ
DSr ¼ �kseDv� jsr=sð ÞDs for the scanning curveð Þ ð8Þ

where kse = slope of Sr-v curve at a constant suction; ksr

and jsr are the slopes of the main drying/wetting curve and

the scanning curve, respectively (see Fig. 2). Under

drained conditions (i.e. constant suction) [10], Eq. (6) can

be simplified as

DSr ¼
oSr

ov
Dv ð9Þ

Under undrained conditions (i.e. constant water content)

[10], the amount of water remains unchanged, which gives

DSr ¼ � Sr

v� 1
Dv

Ds ¼ �1

oSr=os

Sr

v� 1
þ oSr

ov

� �
Dv

8>><
>>:

ð10Þ

It can be summarised that the changes in Sr and s can be

determined by the change in v under both drained and

undrained conditions. This conclusion will be important for

the elastoplastic cavity expansion analysis in Sects. 4 and

5. Moreover, water flow in soils is not considered in this

paper in order to develop semi-analytical solutions, and this

important phenomenon might be captured by other fully

coupled hydro-mechanical numerical methods (e.g.

[55, 56]).

3.2 Mechanical behaviour

The stress–strain relationship of saturated/unsaturated soils

consists of the yield function, plastic potential, hardening

law, and elastic behaviour. For typical two-invariant Cam

Clay-type critical state models, the loading collapse (LC)

yield function f and plastic potential g can be expressed,

respectively, as

f ¼ f p0; q; p0c sð Þ
� �

¼ g=Mð Þ2� p0c sð Þ
�
p0 � 1

� �
¼0 ð11Þ

g ¼ g p0; q; p0g sð Þ
h i

¼0 ð12Þ

where f ¼ g for the associated plastic flow rule while f 6¼ g

for the non-associated; p0 ¼ r0ijdij
.

3 denotes the mean

effective stress; q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 r0ij � p0dij
� 	

r0ij � p0dij
� 	.

2

r
rep-

resents the deviatoric stress; g ¼ q=p0 is known as the

stress ratio; M = slope of the critical state line (CSL) in the

p0�q plane; p0g sð Þ = size parameter for the plastic potential;

p0c sð Þ denotes the isotropic yield stress for unsaturated soils

at suction s, which is the function of the isotropic yield

stress for saturated soils (p0c 0ð Þ) and the suction:

p0c sð Þ
p0n


 �k sð Þ�j

¼ p0c 0ð Þ
p0n


 �k 0ð Þ�j

ð13Þ

k sð Þ ¼ k 0ð Þ 1 � að Þ exp �bsð Þ þ a½ � ð14Þ

where p0n = reference stress; k sð Þ and k 0ð Þ are the slopes of

CSLs in the v� ln p0 plane at suction s and 0, respectively;

a and b are material constants for soils in unsaturated

states.

The UCSM defines two additional yield surfaces related

to the hydraulic behaviour of unsaturated soils, namely the

suction-increase yield surface fSI and suction-decrease

yield surface fSD:

fSI ¼ s� sI ¼ 0

fSD ¼ sD � s ¼ 0

(
ð15Þ

where sI and sD are the suctions controlling the suction-

increase and suction-decrease yielding of unsaturated soils,

respectively.

The isotropic volumetric hardening law is used to

describe the evolution of the yield surface, ass

1

2

1 2

Fig. 2 Void-ratio dependent SWRC
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Dep
v ¼

k 0ð Þ � j
v

Dp0c 0ð Þ
p0c 0ð Þ ð16Þ

in which ep
v = plastic volumetric strain; j = slope of the

swelling line in the v� ln p0 plane and is assumed to be

suction-independent [1].

In the elastic loading stage, the volume change can be

expressed as

Dee
v ¼

j
vp0

Dp0

v ¼ v0 � j ln p0
�
p00

� 

8<
: ð17Þ

where ee
v = elastic volumetric strain; v0 = initial specific

volume; p00 = initial mean effective stress.

4 Solutions in the elastic zone

During the elastoplastic expansion process, there will be an

elastic zone (q� r� b, q denotes the current radius of the

elastoplastic boundary) and a plastic zone (a� r� q)

forming around the cavity. In the elastic zone, the particle

displacement is usually small so that the stress–strain

relationship can be simplified by the small strain theory:

Dee
r

Dee
h

Dee
z

2
4

3
5 ¼ �

d Duð Þ=dr
Du=r

0

2
4

3
5

¼ 1

E v; p0ð Þ

1 �l �l
�l 1 �l
�l �l 1

2
4

3
5 Dr0r

Dr0h
Dr0z

2
4

3
5 ð18Þ

where ee
r , ee

h, and ee
z denote the elastic components of radial,

circumferential, and vertical strains; u ¼ r � r0 is the radial

displacement of a soil particle whose initial radial position

is r0; l denotes Poisson’s ratio; E¼ 3 1 � 2lð Þvp0=j rep-

resents the elastic modulus.

4.1 Stress analysis

Before solving Eq. (18), it is necessary to show a conclu-

sion that

d

dr
Dr0r þ Dr0h
� 


¼ 0

d

dr
D Srsð Þ½ � ¼ 0

8><
>: ð19Þ

The detailed validation of Eq. (19) is shown in Appendix

A. Equation (19) implies that (Dr0r þ Dr0h) does not

change with the radial position for a given time (but it

varies with time). For convenience, r0r þ r0h can be

expressed as

r0r þ r0h¼ 2 r0h � Cq
� 


ð20Þ

where r0h = effective radial stress at the outer boundary; Cq

is a constant determined by the elastoplastic boundary.

Combining Eqs. (3), (18), (19), and (20), the stresses in

the elastic zone can be derived as

r0r ¼ r0h þ Cq b=rð Þ2�1
h i

r0h ¼ r0h � Cq b=rð Þ2þ1
h i

r0z ¼ r0v0 þ 2l r0h � r0h0 � Cq
� 


8>>><
>>>:

ð21Þ

p0 ¼ p00 þ
2

3
1 þ lð Þ r0h � r0h0 � Cq

� 

ð22Þ

where r0h0 = effective vertical stress before loading.

The integral constants r0h and Cq can be determined by

the boundary conditions at r ¼ q and r ¼ b. Since the total

radial stress at r ¼ b remains unchanged (i.e. rh0), com-

bination of Eqs. (2) and (4) gives

Srs� Sr0 � s0 ¼ r0h � r0h0 ð23Þ

where Sr0 = initial degree of saturation and s0 = initial

suction. At the elastoplastic boundary, the stress states

ought to be on the initial yield surface so that the initial

yield stress p0c0 s0ð Þ at r ¼ q could be back-calculated from

Eq. (11), as

p0c0 s0ð Þ ¼ R0f
�1 p00; q0

� 

¼ R0p

0
0 1 þ q0

�
Mp00

� 
2
h i

ð24Þ

where R0 ¼ initial overconsolidation ratio of soils; q0 ¼
initial deviatoric stress.

4.2 Displacement analysis

The incremental form of the radial displacement of a soil

particle can be obtained by combining Eqs. (18), (21), and

(22) as

Du rð Þ
r

¼ 1 þ lð Þ
E v; p0ð Þ

b

r

� �2

D r0h � r0h0

� 


� 3

2E v; p0ð Þ 1 � 2lþ b=rð Þ2
h i

Dp0 ð25Þ

Substituting Eqs. (17) and (23) into Eq. (25) and then

integrating Eq. (25) following the loading history of a soil

particle, the radial displacement becomes

u rð Þ
r

¼
Zp0

p0
0

1 þ lð Þj
3 1 � 2lð Þ

b

r

� �2
o Srsð Þ
op0

Dp0

vp0

þ
Zp0

p0
0

�j 1 � 2lþ b=rð Þ2
h i

2 1 � 2lð Þ
Dp0

vp0

ð26Þ

As the small strain theory is adopted in the elastic zone,

the current radial position of a soil particle can be replaced
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by its initial value (i.e. r ¼ r0) in the calculation of elastic

displacement. (This assumption can be proved in

Sect. 7.1.) Hence, Eq. (26) can be finally integrated as

u rð Þ
r

¼ 1 þ lð Þj
3 1 � 2lð Þ

b

r

� �2

�

Zp0

p0
0

o Srsð Þ
op0

Dp0

vp0
þ 1 � 2lþ b=rð Þ2

2 1 � 2lð Þ ln 1 � j
v0

ln
p0

p00

� �

ð27Þ

The integral of the first term in Eq. (27) mainly depends on

the complexity of SWRCs and drained/undrained condi-

tions. The displacements at the elastoplastic boundary and

the outer cylinder wall can be computed by Eq. (27) with

r ¼ q and r ¼ b, respectively.

4.3 Calculation procedures for the elastic
stresses and displacements

The elastic solution for stresses and displacements is much

more complex than conventional self-similar cavity

expansion problems [10, 14, 19, 37, 67]. The solution also

provides the information (i.e. current radius, stresses, and

specific volume) at the elastoplastic boundary, which

serves as the boundary values for the analysis in the plastic

zone. Elastic stresses and displacements can be calculated

following the procedure below:

(i) Input initial parameters, including: b0=a0, q0; r0h0,

r0v0, Sr0, s0, R0, v0; ksr, kse, jsr, j, M, sI, sD;

(ii) Calculate p00 and q0 with the initial horizontal and

vertical stresses; calculate p0c0 s0ð Þ by Eq. (24);

(iii) For a given q0, set p0 as the basic unknown and

substitute Eqs. (9) (or (10), (17), and (21)–(24)

into Eq. (11); solve Eq. (11) and obtain p0;
(iv) Then, calculate v by Eq. (17); calculate Sr by

Eq. (9) for the drained case (or Sr and s by

Eq. (10) for the undrained case);

(v) Finally, calculate r0h by Eq. (23); calculate Cq by

Eq. (22); calculate r0r, r
0
h, and r0z by Eq. (21).

5 Solutions in the plastic zone

5.1 Governing PDEs in the plastic zone

There are five unknowns (r, r0r, r0h, r0z, and v) for the

analysis in the plastic zone (a� r\q). Five governing

equations are established by combining the compatibility

equations, the equilibrium equations, the SWRC and

stress–strain relationships of soils as follows.

Logarithmic strain definitions are adopted to account for

large deformation in the plastic zone, which are expressed

as

er ¼ � ln dr=dr0ð Þ ð28Þ
eh ¼ � ln r=r0ð Þ ð29Þ
ev ¼ er þ eh ¼ � ln v=v0ð Þ ð30Þ

The compatibility equation in terms of r and v can be

derived by combining Eqs. (28), (29) and (30) as

dr ¼ vr0

v0r
dr0 ð31Þ

Substituting the SWRC into the stress equilibrium Eq. (3)

gives

dr0r �
o Srsð Þ
ov

dv ¼ r0h � r0r
� 
 dr

r
ð32Þ

For a given soil particle, the incremental form of the

stress–strain relationships can be written as

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44 þ 1=v

2
4

3
5

Dr0r
Dr0h
Dr0z
Dv

2
664

3
775¼

�Dr=r
0

0

2
4

3
5 ð33Þ

The derivation of Eq. (33) and related coefficients can

be seen in Appendix B.

5.2 HEL approach and calculation procedures

Five first-order PDEs are obtained for the analysis in the

plastic zone, where Eqs. (31) and (32) are given in the

Eulerian description (i.e. for a given time) and Eq. (33) is

in the Lagrangian description (i.e. for a given particle). A

novel HEL approach is developed to solve the complicated

system of PDEs as follows.

The hollow cylinder can be discretised into (m-1) con-

centric annuli with m nodes, while the whole loading

process can be discretised into a few load steps. Figure 3

shows the nonlinear distribution of nodes in load step (0)

(i.e. before loading), and the radial position of node (i)

satisfies:

r
0ð Þ
iþ1ð Þ¼xr 0ð Þ

ið Þ ¼ xi�1 a0

x ¼ b0=a0ð Þ1= m�1ð Þ

8<
: ð34Þ

where the subscript ‘‘(i)’’ (i = 1, 2, 3, …, m) denotes the

node number and the superscript ‘‘(0)’’ denotes the load step

number.

During the loading process (i.e. the load step increases

from (0) to (j)), the initial radial position of node (i) is

defined as r
0ð Þ
ið Þ and the current information (r, r0r, r

0
h, r

0
z, and
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v) at node (i) is updated in each step. For convenience, a

vector is introduced to store the node information:

x
jð Þ
ið Þ ¼ r

ðjÞ
ðiÞ; r

0 jð Þ
r ið Þ; r

0 jð Þ
h ið Þ; r

0 jð Þ
z ið Þ; v

ðjÞ
ðiÞ

h iT

ð35Þ

where the superscript ‘‘(j)’’ denotes load step (j).

In order to deal with the PDEs, it is defined that the

elastoplastic boundary expands to node (j) at the end of

load step (j) (i.e. q jð Þ
0 ¼ r

0ð Þ
jð Þ and q jð Þ ¼ r

jð Þ
jð Þ). Consequently,

the distribution (along the radial axis at a given time) and

evolution (along the time scale of each soil particle) of

stresses and displacements can be associated via the

elastoplastic boundary, and the change of x
jð Þ
ið Þ with nodes

and load steps can be seen in Fig. 4. In Fig. 4a, the

information vector x
jð Þ
ið Þ in the elastic zone (i.e. i[ j) can be

calculated by the elastic solution in Sect. 4, while x
jð Þ
ið Þ in

the plastic zone (i.e. i\j) needs to be computed by solving

the governing PDEs. At the elastoplastic boundary, x
jð Þ
jð Þ can

also be derived by the elastic solution with r ¼ q jð Þ
0 , which

serves as the known boundary values for the plastic

analysis.

For self-similar cavity expansion problems, the incre-

ments of x (i.e. Dx and dx in Fig. 4b) can be unified into

either the Eulerian description or the Lagrangian descrip-

tion [14, 19]. Instead, for the present non-self-similar

expansion problem, the increments of x are solved in the

forms of both Eulerian and Lagrangian descriptions in the

advanced HEL approach. When the (i)-th node is loaded

from load step (j� 1) to load step (j), Dx should be

Dx ¼ x
jð Þ
ið Þ � x

j�1ð Þ
ið Þ ð36Þ

On the other hand, in the (j)-th load step, the increment

of x from node (i ? 1) to node (i) is defined as

dx ¼ x
jð Þ
ið Þ � x

jð Þ
iþ1ð Þ = Dxþ x

j�1ð Þ
ið Þ � x

jð Þ
iþ1ð Þ ð37Þ

Combining Eqs. (32), (33), and (37), the PDEs can be

transformed into

K Dr0r;Dr0h;Dr0z;Dv
� �T¼ F1;F2; 0; 0½ �T ð38Þ

where K, F1, and F2 are defined, respectively, as

K ¼

1 0 0 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44 þ 1=v

2
664

3
775 ð39Þ

a14 ¼ � o Srsð Þ
ov

ð40Þ

F1¼ r0h � r0r
� 
 dr

r
þ r0 jð Þ

r iþ1ð Þ � r0 j�1ð Þ
r ið Þ þ a14 v

jð Þ
iþ1ð Þ � v

j�1ð Þ
ið Þ

� 	

ð41Þ
F2¼� Dr=r ð42Þ

The modified Euler’s method with second-order accu-

racy is chosen to solve the PDEs (31) and (38), and the

procedures are detailed as follows:

1 2 1

Fig. 3 Definition of nodes before loading

r r r r r r

x

r r

Fig. 4 x
jð Þ
ið Þ with nodes and load steps: a two-dimensional schematic; b three-dimensional schematic
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(i) Calculate an approximate value of dr by Eq. (31)

with dr0 ¼ ð1 � xÞr 0ð Þ
ið Þ and x¼x

jð Þ
iþ1ð Þ; then calcu-

late approximate r
jð Þ
ið Þ by r

jð Þ
ið Þ ¼ r

jð Þ
iþ1ð Þ þ dr;

(ii) Calculate Dr by Dr ¼ r
jð Þ
ið Þ � r

j�1ð Þ
ið Þ ; calculate

approximate values of Dr0r;Dr0h;Dr0z;Dv
� �T

by

Eq. (38) with x¼x
j�1ð Þ
ið Þ in K and F2, and x¼x

jð Þ
iþ1ð Þ

in F1;

(iii) Update x¼x
jð Þ
ið Þ with Dr0r;Dr0h;Dr0z;Dv

� �T
and

x
jð Þ
ið Þ ¼ x

j�1ð Þ
ið Þ þ Dx;

(iv) Back-calculate more accurate values of x
jð Þ
ið Þ by

Eqs. (31) and (38) with x¼ x
j�1ð Þ
ið Þ þ x

jð Þ
ið Þ

� 	.
2 and

x¼ x
jð Þ
ið Þ þ x

jð Þ
iþ1ð Þ

� 	.
2 for those related to the

Lagrangian and Eulerian descriptions,

respectively;

(v) In load step (j), calculate x
jð Þ
ið Þ node-by-node from

the elastoplastic boundary to the inner cavity wall

(i.e. from x
jð Þ
jð Þ to x

jð Þ
1ð Þ), and the information of all

the nodes in the (j)-th load step can be determined;

(vi) Finally, increase the load step from (j) to (j ? 1)

and let q jþ1ð Þ
0 ¼ r

0ð Þ
jþ1ð Þ; calculate x

jþ1ð Þ
ið Þ node-by-

node following procedures (i)-(v). For the whole

loading process, gradually increase (j) until the

inner cavity radius reaches a final value, aend.

5.3 Analysis in the fully plastic expansion stage

The fully plastic expansion stage, namely the loading-in-

duced plastic zone expands to the outer cylinder wall (i.e.

q0¼b0), may occur once the thickness of the soil cylinder is

finite. In this case, the governing PDEs (31) and (38) still

hold, while their boundary values at r = q should be

changed to those at r ¼ b.

For a given b (b[ r
mð Þ
mð Þ), D r0r � Srs

� 

remains zero at

r ¼ b since the total radial stress is constant at r ¼ b.

Together with Eq. (33), it gives

K Dr0r;Dr0h;Dr0z;Dv
� �T¼ 0;�Db=b; 0; 0½ �T ð43Þ

The boundary values at r ¼ b can be derived from

Eq. (43), and x
jð Þ
ið Þ can be calculated node-by-node from x

jð Þ
mð Þ

to x
jð Þ
1ð Þ following the above procedures.

5.4 Comparison of Eulerian, Lagrangian,
and HEL approaches

The differences and connections between the proposed

HEL approach and other commonly used methods for large

strain cavity expansion analysis are compared and dis-

cussed as follows.

In the Eulerian approach for self-similar expansion

problems (e.g. assume b = ! in Fig. 1), the loading history

of a particle at r = a is equivalent to the field distribution

from r = ! to r = a due to the self-similarity of stresses

and deformation (e.g. Fig. 5a). Therefore, the cavity

expansion analysis can be performed by tracing the loading

history of a soil particle with auxiliary variables (i.e. path

AC) [14, 57], or by focusing on field distributions for a

given time with proper timescales (i.e. path BC)

[7, 19, 24, 72, 77]. Overall, the information of j nodes in

the plastic zone at the end of (j)-th load step can be

determined via path AC (or BC) due to the self-similarity.

In the Lagrangian approach (see Fig. 5b), the relation-

ship between the effective stress and total strain for node

(i) should be given analytically to account for path PQ. For

drained cavity expansion in Mohr–Coulomb materials, the

stress distribution following path MN can be directly cal-

culated by combining the yield function and stress equi-

librium equation, and then, the deformation distribution

can be obtained with the known stress field and the ana-

lytical stress–total strain relationships [9, 69, 70, 73].

Similarly, for cavity expansion in undrained saturated Cam

Clay soils, the deformation (or strain) distribution follow-

ing path MN can be readily determined relying on the

constant-volume assumption. Then, the stress distribution

can be back-solved from the strain field and the stress–total

strain relationships [20, 81].

The HEL approach, in which the PDEs are expressed in

the forms of both Eulerian and Lagrangian descriptions and

are solved simultaneously (Fig. 4a), is powerful for cavity

expansion analysis under various conditions, including

drained/undrained conditions, soil cylinder of finite/infinite

thickness, saturated/unsaturated state of soils, and various

constitutive models. The HEL approach tends to have

higher computation efficiency than common numerical

methods. For example, when studying drained cavity

expansion in critical state soils, Osinov and Cudmani [40]

searched the stress fields that satisfy stress boundary con-

ditions and equilibrium equations by multiple iterations

and then calculated strain fields node-by-node. This

method is relatively time-consuming as it needs to calcu-

late the information of a total of m� j� iteration times

nodes. Comparing to the finite element/difference methods

that need to calculate the deformation energies in the whole

region (i.e. m� j nodes), the HEL approach is also more
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efficient (calculate the information of j j� 1ð Þ=2 nodes)

because of the analytical solutions in the elastic zone.

6 Special cases

6.1 Case 1: self-similar cavity expansion
problems

While the thickness of the soil cylinder becomes infinite

(i.e. b0=a0 ¼ 1), the present problem reduces to the

common self-similar cavity expansion problems, and then,

the solution can be greatly simplified as follows.

As the internal loading effect vanishes for a particle at

r¼1, Eq. (44) can be obtained as Dr0r þ Dr0h ¼ 0 and

D Srsð Þ ¼ 0.

r0h � Cq ¼ r0h0 ð44Þ

Then elastic solutions for stresses and deformation can be

obtained by substituting Eq. (44) and b ! 1 into Eqs. (9),

(10), (17), (21), (22), and (25), and this exactly reduces to

the solution of Chen et al. [10].

In the self-similar case, the evolution of stresses and

strains along the loading history of a soil particle and along

the radial direction can be related by Dx ¼ dx (but Dr 6¼ dr

since Dr[ 0[ dr) [7, 14, 19, 24, 57]. As strains can be

fully determined by stresses (Eq. (33)), Dx ¼ dx indicates

Deh = deh, which gives

Dr

r
¼ dr

r
� dr0

r0

ð45Þ

Combining Eqs. (31) and (45), a relationship between dr

and Dr is obtained as

dr

r
¼ 1

1 � r=r0ð Þ2 v0=vð Þ
Dr

r
ð46Þ

Substituting Eq. (46) and Dx ¼ dx into Eq. (38), we can

derive that

K

Dr0r
Dr0h
Dr0

Dv

2
664

3
775¼Dr

r

r0h � r0r
� 


1 � r=r0ð Þ2 v0=vð Þ
�1

0

0

2
66664

3
77775 ð47Þ

The governing PDEs (38) are totally transformed into

ODEs (47) in terms of Dr=r (i.e. �Deh) with the Lagran-

gian descriptions, from which Dr0r;Dr0h;Dr0z;Dv
� �T

can be

readily obtained. Actually, the commonly used auxiliary

variables such as r � r0ð Þ=r, and r0=r [14, 57] are all the

derivations of eh and are mainly used to eliminate dr=r in

F1 (see Eq. (41)). From this point of view, the Eulerian

approach is a special case of the HEL approach when

ln r=r0ð Þ is chosen as the auxiliary variable and b0=a0

becomes infinite.

6.2 Case 2: cavity expansions in dry soils (Sr = 0)

While a cavity expands in ideally dry soils (i.e. Sr = 0), the

proposed solution can be further simplified as r0h0 ¼ r0h and

Srs = 0. Solutions for analysis in the elastic zone can be

obtained by substituting r0h0 ¼ r0h into Eqs. (21), (22), and

(27). K and F1 in Eq. (38) for the plastic analysis can be

simplified with Srs ¼ 0 as

K ¼

1 0 0 0

a21 a22 a23 0

a31 a32 a33 0

a41 a42 a43 1=v

2
664

3
775 ð48Þ

F1¼ r0h � r0r
� 
 dr

r
þ r0 jð Þ

r iþ1ð Þ � r0 j�1ð Þ
r ið Þ ð49Þ

Fig. 5 Schematic of Eulerian and Lagrangian approaches. a Eulerian approach; b Lagrangian approach
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Combining Eqs. (31), (38), (48), and (49), the node infor-

mation can be calculated following the same procedures of

Sect. 5.2.

6.3 Case 3: undrained analysis in fully saturated
soils (Sr = 1)

For cavity expansion in fully saturated soils (Sr = 1) under

undrained conditions, the specific volume of soils keeps

constant (i.e. v ¼ v0) and the suction stress equals the

opposite of pore water pressure (i.e. s ¼ �uw). In the

elastic zone, the mean effective stress remains unchanged

(i.e. p0 ¼ p00), and the stress components, pore water pres-

sure, and displacements can be obtained by substituting

Eq. (44) and Srs ¼ �uw into Eqs. (21), (23), and (25).

Meanwhile, the PDEs of Eqs. (31)-(33) for the plastic

analysis can be simplified with the conditions of Dv¼0 and

duw¼ ouw=ovð Þ � dv, as

dr ¼ r0

r
dr0 ð50Þ

dr0r þ duw ¼ r0h � r0r
� 
 dr

r
ð51Þ

a21 a22 a23

a31 a32 a33

a41 a42 a43

2
4

3
5 Dr0r

Dr0h
Dr0z

2
4

3
5 ¼

�Dr=r
0

0

2
4

3
5 ð52Þ

The new system of PDEs in Eqs. (50)–(52) can be cal-

culated following similar procedures in Sect. 5.2. It is

interesting to find that the changes in effective stresses are

only related to Dr=r (see Eq. (52)) and the effective

stresses evolve in a self-similar manner even if the cylinder

thickness is finite in this special case [81]. It is found that

the Lagrangian, Eulerian, and HEL approaches are all

suitable for the analysis in this special case, and the

advantages and limitations of these approaches will be

further discussed in Sect. 7.2.

7 Results and discussion

7.1 Validation of the HEL approach

The proposed HEL approach is validated at first by com-

paring with some existing solutions in special cases of

saturated and unsaturated soil with an infinite radial extent

as follows.

Chen and Abousleiman [13] and Chen and Abousleiman

[14] proposed exact solutions for expansion analysis of a

cylindrical cavity in an infinite soil mass under ideally

undrained and drained conditions, respectively, adopting

the modified Cam Clay (MCC) model. As discussed in

Sect. 6, these solutions can be regarded as two special

cases of the proposed solution with Sr ¼ 1 and

Sr sþ uw0ð Þ ¼ 0 (uw0 denotes the initial water pressure),

respectively, and b0=a0 ! 1. Cavity expansion curves

predicted by their solutions and the present solution are

compared in Fig. 6, taking the same parameters for Boston

Blue clay (i.e. Table 1). In the calculations with the pro-

posed solution, b0=a0 is set as 2000 to eliminate the outer

boundary effect, and the ideally drained conditions are

simulated with Sr ¼ 0 for simplicity. Figure 6 shows that

the results calculated by the proposed solution are identical

to those published by Chen and Abousleiman [13, 14] in

these two typical cases, which proves the accuracy of the

proposed HEL approach and the assumption of replacing r

with r0 in Eq. (27).

Using the Eulerian approach, Chen et al. [10] proposed a

solution for cylindrical cavity expansion analysis in infinite

unsaturated soils under both drained and undrained con-

ditions. To reproduce the results of Chen et al. [10], the

same soil parameters (i.e. Table 2) are used and b0=a0 is set

as 2000 in the proposed solution. Predicted cavity expan-

sion curves and stress distribution curves at the instant of

a=a0 = 2 for drained and undrained conditions are com-

pared in Figs. 7, 8 and 9. It is shown that the results cal-

culated by the proposed solution agree well with those of

Chen et al. [10] while b0=a0 ! 1, which further validates

the accuracy of the HEL approach. It is also found that the

drainage conditions (i.e. constant suction or constant water

content) marginally affect the cavity expansion curves.

This can be explained by that the coefficients related to

drainages conditions (i.e. a14, a24, a34, and a44 in Eqs. (38)

and (39)) apply minimal influence on Dr0k (k = r, h, z) for

small changes in v.

The HEL approach is further validated by comparison

with FEM via Abaqus 2020 for cavity expansion in a finite

soil mass (e.g. b0=a0¼20). The soils are modelled by the

MCC model because it has been well implemented in

Abaqus and can be easily recovered from the UCSM by

neglecting the suction effect. The numerical simulation

model can refer to Zhou et al. [77] with the MCC soil

parameters in Table 1, and both the cases of cavity

expansion in fully saturated and completely dry soils are

compared (i.e. Sr = 0 and 1). Figure 10 shows the cavity

expansion curves calculated by the HEL approach and

FEM, and identical results can verify the present solution

again. These curves in undrained saturated soils are more

sensitive to the boundary effect than those in drained dry

soils, especially for a higher R0. This indicates that the

existence of excess water pressure can weaken the

boundary effect during the cavity expansion process.
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7.2 Revisiting undrained cavity expansion
in finite, fully saturated soils

Zhuang et al. [81] proposed a semi-analytical solution for

undrained analysis of a thick-wall soil cylinder with Cam-

Clay soil models, adopting approximate definitions of

stress invariants from Collins and Yu [20] (i.e. p0 ¼
r0r þ r0h
� 
�

2 and q ¼ r0r � r0h). In order to evaluate the

influences of the stress definitions, their solution is com-

pared with the proposed solution that adopts rigorous stress

definitions, taking the same soil model (i.e. MCC) and

input parameters for London Clay: C = 2.759,

k(0) = 0.161, j = 0.062, M = 0.773, v0 = 2.0, l = 0.3,

aend=a0 ¼ 4, and uw0 ¼ 0 [20, 81].

The total cavity pressure ra and water pressure uw at the

inner cavity wall predicted by these two solutions are

compared in Figs. 11 and 12 with R0 = 1 and 16, respec-

tively. ra and uw calculated by the two solutions vary in the

same trend with a=a0, while the values predicted by the

present solution are mostly larger than those by Zhuang

et al. [81]. For example, setting aend=a0 = 4 and

b0=a0 = 1000, the approximate definition of stress invari-

ants leads to 8% and 11% underestimation of the total

pressure with R0 = 1 and 16, respectively. Similar trends

were also found by Wang and Chen [65] for cavity

expansion in undrained, fully saturated MCC soils of an

infinite radial extent. Differences of ra between these two

solutions become smaller in cases of a smaller b0=a0 and a

larger a=a0. After the peak, ra and uw predicted by the

rigorous solution may decrease faster than those by the

approximate one for a small b0=a0. This is due mainly to:

(i) when b0=a0 is small, the entire soil mass may reach the

critical state and rr ! rh0 (i.e. confining pressure at r = b)

[81]; (ii) in the critical state, the effective radial stress in

the rigorous solution (r0r ¼ p0 þ q
� ffiffiffi

3
p

) is larger than that

in the approximate solution (r0r ¼ p0 þ q=2), so uw

decreases relatively faster in the rigorous solution.

Figures 13 and 14 plot the effective and total stress

paths at the inner cavity wall predicted by the present

solution and the solution of Zhuang et al. [81]. b0=a0 was

set as 2 or 1000, and aend=a0 = 4. Figure 13 shows that the

effective stress paths coincide in all conditions. This is

because the deviatoric stress totally depends on the mean

effective stress under constant-volume conditions [20, 81],

as indicated by Eq. (53).

q p0ð Þ ¼ Mp0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R0 p0

�
p00

� 
�1=X�1

q
ð53Þ

where X ¼ 1 � j=kð0Þ. On the contrary, the total stress

paths obtained by these two solutions are significantly

Fig. 6 Comparison of cavity expansion curves: a undrained conditions; b drained conditions

Table 1 MCC Parameters for Boston Blue clay [13]

R0 r0h0/kPa r0v0/kPa p00/kPa q0/kPa r0h0

�
r0v0

v0

1 100 160 120 60 0.625 2.09

3 120 120 120 0 1 1.97

10 144 72 120 72 2 1.80

M = 1.2, k(0) = 0.15, j = 0.03, l = 0.278, and C = 2.74 (the specific

volume at p0 = 1 kPa). The initial ambient pore water pressure is

100 kPa for the undrained case

Table 2 UCSM Parameters for unsaturated soils (after Chen et al.

[10])

R0 r0h0/kPa r0v0/kPa pnet0/kPa q0/kPa r0h0

�
r0v0

1 160 220 120 60 0.73

3 180 180 120 0 1

5 190 160 120 30 1.19

M = 1.2, k(0) = 0.15, j = 0.03, l = 0.3, a = 0.65, b = 0.125, kse-

= 0.21, ksr = 0.13, jsr = 0.13, sI = 120 kPa, sD = 40 kPa,

p0n = 10 kPa, s0 = 100 kPa, Sr0 = 0.6, v0 = 2.1. pnet0 ¼ p00 � Sr0s0,

which denotes the initial net mean stress
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different in the normalised p�q plane (p denotes the total

mean stress) as shown in Fig. 14, and it is explained as

follows.

Under the constant-volume conditions (Deh ¼ �Der),
Eq. (52) is equivalent to that obtained by Wang and Chen

[65] with rigorous stress definitions, which is

Deh ¼
j
v0

ffiffiffi
3

p
g

M2 � g2
�

ffiffiffi
3

p
1 þ lð Þ

9 1 � 2lð Þ
oq

op0


 �
Dp0

p0
ð54Þ

With approximate stress invariants, the incremental

circumferential strain D~eh becomes

D~eh ¼
2ffiffiffi
3

p j
v0

2g
M2 � 4=3ð Þg2

� 1

4 1 � 2lð Þ
oq

op0


 �
Dp0

p0
ð55Þ

Fig. 7 Comparison of cavity expansion curves with Chen et al. [10] : a drained conditions; b undrained conditions

Fig. 8 Comparison of stress distributions with Chen et al. [10] under drained conditions: a R0 = 1; b R0 = 5

Fig. 9 Comparison of stress distributions with Chen et al. [10] under undrained conditions: a R0 = 1; b R0 = 5
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The difference between Eqs. (54) and (55) results in the

different total stress paths with different stress definitions.

It also needs to be noted that the stresses (e.g. ra) in Collins

and Yu [20] are normalised by the undrained shear strength

~su, which is different to the standard one

su (~su ¼
ffiffiffi
3

p �
2su � 0:866su). As a result, the difference

between the rigorous and the approximate solutions in the

normalised expansion curves was found minimal [48].

Apart from the HEL approach, the applicability of the

Eulerian and Lagrangian approaches in this special case is

further discussed. Equations (52) and (53) indicate the

effective stress paths are self-similar, but the Eulerian

approach may still not be applicable because the total stress

paths are not self-similar and the outer boundary conditions

are difficult to be determined during the fully plastic

expansion stage [62]. In addition, is it possible to use the

Fig. 10 Comparison of cavity expansion curves: a undrained conditions; b drained conditions

Fig. 11 Cavity expansion response at the inner cavity wall with R0 = 1: a total cavity pressures; b excess water pressures

Fig. 12 Cavity expansion response at the inner cavity wall with R0 = 16: a total cavity pressures; b excess water pressures
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Lagrangian approach with rigorous definitions of p0; qð Þ?
Based on Wang and Chen [65] that solved Eq. (54) by

numerical method, this paper goes a step further by inte-

grating Eq. (54) analytically, as

Z
Deh ¼

ffiffiffi
3

p
j

v0

X
M

tan�1 g
M

� tanh�1 g
M

� 	


� 1 þ lð Þ
9 1 � 2lð Þ g� 2Xgþ 2MX tan�1 g

M

� 	� ð56Þ

Once the analytical stress–total strain relationship is

generated, the Lagrangian approach can be readily applied

to the analysis of this problem following the same proce-

dures of Zhuang et al. [81].

7.3 Cavity expansion behaviour in finite
unsaturated soils

The expansion behaviour of a cylindrical cavity in unsat-

urated soils of a finite radial extent is investigated in this

subsection with a particular focus on the finite outer

boundary effect and the non-self-similar characteristics.

The soil parameters in Table 2 are adopted here, and the

analysis is performed only under drained conditions (con-

stant suction) for brevity as similar cavity expansion curves

can be expected for undrained analysis (e.g. Figures 7, 8

and 9). The cavity expansion level is up to aend=a0 = 5, and

the stresses are normalised by pnet0 = 120 kPa.

The pressure–expansion curves and effective stress

paths at the inner wall are shown in Figs. 15 and 16 for

R0 = 1 and 5, respectively, with various b0/a0 ratios. For

the curves with a smaller b0/a0, the inner cavity pressure

first increases to reach a peak value and then decreases

upon further loading. It proves that the finite cylinder

thickness may play an important role in the cavity expan-

sion behaviour, which is consistent with other studies

[17, 62, 69, 81]. Different from the expansion behaviour in

saturated soils under undrained conditions (see Sect. 7.2),

the boundary effect can also influence the effective stress

path for unsaturated soils. In Figs. 15b and 16b, the

effective stress paths in the p0-q plot for b0/a0 = 10 and 30

turn around after reaching the peak values, which drop

along the CSL with p0 and q reducing, rather than getting

steady as that may happen during counterpart cavity

expansion analysis with b0=a0 ¼ 1.

To further highlight the non-self-similar properties, the

deformation paths of soil particles at various radial posi-

tions are depicted in Fig. 17, taking b0=a0 = 30 as an

example. It can be seen that soil particles at different radial

positions within the soil cylinder take various paths from

the initial states to the critical states, which verifies the

non-self-similarity nature in the expansion process of

thick-wall soil cylinders.

It was mentioned that the self-similar-based Eulerian

approach has also been used in the expansion analysis of a

cavity in finite critical state soils under drained conditions

[16, 18, 42], which are actually approximate solutions as

Fig. 13 Effective stress paths at the inner cavity wall

Fig. 14 Total stress paths at the inner cavity wall: a R0 = 1;

b R0 = 16
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the expansion proves to be non-self-similar. To highlight

the significance of the HEL approach in non-self-similar

cavity expansion problems, cavity expansion curves and

stress paths at the inner cavity wall are calculated by the

HEL approach and the suggested Eulerian approach. The

same soil model (i.e. UCSM) and soil parameters (i.e.

Table 2) are adopted in the two approaches, and the

comparison results are shown in Fig. 18. Two thickness

ratios of the cylinder (i.e. b0=a0 = 10 and 1000) are

selected and q0=b0 is set as 0.6 in the suggested Eulerian

approach in the case of b0=a0 = 10. Not surprisingly, the

cavity expansion curves predicted by the two approaches

are identical, while b0=a0 is large enough (e.g.

b0=a0 = 1000 in Fig. 18a). However, the predicted pres-

sure–expansion curves vary with each other, while b0=a0 is

small (e.g. b0=a0 = 10) as the expansion process is no

longer self-similar. In addition, q0=b0 is assumed as a

constant in the suggested Eulerian approach. Consequently,

the inner pressure predicted by the Eulerian approach keeps

increasing with a=a0, which in fact ought to drop after a

peak values as predicted by the present solution. Significant

differences are also shown in the stress paths (Fig. 18b),

especially in the purely elastic loading process. Hence,

considerable errors may be involved by the common

Eulerian approach for the expansion analysis of a thick-

wall cylinder of soils.

8 Conclusions

This paper proposes a novel hybrid Eulerian–Lagrangian

(HEL) approach for the expansion analysis of a thick

cylinder of soils with arbitrary saturate states under drained

or undrained conditions. A closed-form solution for elastic

stresses and displacements is developed, considering the

finite thickness of the soil cylinder and stress-dependent

soil moduli. In the plastic zone, the non-self-similar cavity

expansion problem is expressed into five first-order PDEs

in terms of both Eulerian and Lagrangian descriptions, and

Fig. 15 Cavity expansion curves and stress paths at the inner cavity wall for R0 = 1: a cavity expansion curves; b stress paths

Fig. 16 Cavity expansion curves and stress paths at the inner cavity wall for R0 = 5: a cavity expansion curves; b stress paths
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they are solved by a novel algorithm of high efficiency.

The following conclusions are drawn:

(i) It proves that the Eulerian approach is a special case

of the HEL approach if the cylinder thickness becomes

infinite and the Lagrangian approach can be recovered

from the HEL approach when the analytical stress–total

strain relationship is obtained.

(ii) The commonly used approximate definitions of the

stress invariant (i.e. p0 ¼ r0r þ r0h
� 
�

2 and q ¼ r0r � r0h)
may lead to moderate underestimation of the required

expansion pressure in some extreme cases.

(iii) The finite thickness of the soil cylinder may greatly

influence the cavity expansion behaviour, which leads to

the non-self-similar behaviour during the cavity expansion

process. As a result, the self-similar-based Eulerian

approach can only provide approximate solutions for this

problem, especially for cylinders with small thickness

ratios. The new solutions may provide useful tools for

interpreting pressuremeter tests in small-size calibration

chambers and also serve as the benchmark for advanced

numerical methods for saturated and unsaturated critical

state soils. The HEL approach can also provide a general

framework for other non-self-similar cavity expan-

sion/contraction problems such as those considering load-

ing/unloading history and thermo-hydro-mechanical-

chemical coupling effects.

Appendix A Validation of Eq. (19)

The validation of Eq. (19) for the stress solution in the

elastic zone is shown as follows.

Fig. 17 Deformation paths of various soil particles: a R0 = 1; b R0 = 5

Fig. 18 Cavity expansion curves and stress paths at the inner cavity wall for R0 = 5:a cavity expansion curves; b stress paths
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The compatibility equations related to stresses can be

derived from Eq. (18) as

d

dr
�lDr0r þ 1 � lð ÞDr0h
� �

þ Dr0h � Dr0r
r

¼ 0 ð57Þ

With the effective stress definition, we can transform the

equilibrium equation into

d Dr0r
� 


dr
� d D Srsð Þ½ �

dr
þ Dr0r � Dr0h

r
¼ 0 ð58Þ

Combining Eqs. (57) and (58) gives

d

dr
1 � lð Þ Dr0r þ Dr0h

� 

� D Srsð Þ

� �
¼ 0 ð59Þ

It will be proven that Eq. (59) holds only if when

d

dr
Dr0r þ Dr0h
� 


¼ 0

d

dr
D Srsð Þ½ � ¼ 0

8><
>: ð60Þ

As Dr0z ¼ l Dr0r þ Dr0h
� 


in plane strain conditions, the

mean effective stress satisfies

Dp0 ¼
1 þ lð Þ Dr0r þ Dr0h

� 

3

ð61Þ

From Eq. (17) the specific volume can be expressed as a

function of Dp0 as

v ¼ v0 � j ln 1 þ Dp0
�
p00

� 

ð62Þ

Equations (61) and (62) indicate that Dv is determined by

Dr0r þ Dr0h
� 


, and then, D Srsð Þ can also be fully linked by

Dr0r þ Dr0h
� 


with the aid of Eqs. (9) and (10). As a result,

there will be one basic unknown (i.e. Dr0r þ Dr0h) in

Eq. (59). If Eq. (59) always holds during the loading pro-

cess, we can get that:

d

dr
Dr0r þ Dr0h
� 


¼ 0 ð63Þ

Finally, Eq. (19) can be proved by combining Eqs. (59) and

(63).

Appendix B Derivation of Eq. (33)

In the plastic zone, the stress–strain relationship can be

written in the incremental form as

Dep
k ¼ K

og

or0k
¼ KBk ð64Þ

Dep
v ¼ K

og

op0
¼ KBp ð65Þ

where ep
k represents the plastic component of ek (k = r, h,

z); for the UCSM, Bk and Bp are specifically expressed as

Bk ¼
M2 � g2

3M2p0
þ

3 r0k � p0
� 

M2 p0ð Þ2

; k ¼ r; h; zð Þ ð66Þ

Bp ¼
M2 � g2

M2p0
ð67Þ

K is a scalar multiplier that can be generally shown as [10]

K¼ 1

Kp

ArDr0r þ AhDr0h þ AzDr0z þ AsDs
� 


ð68Þ

where Ak, As, and Kp for the UCSM are:

Ak¼
of

or0k
¼M2 � g2

3M2p0
þ

3 r0k � p0
� 

M2 p0ð Þ2

; k ¼ r; h; zð Þ ð69Þ

As¼
of

os
¼ � p0c sð Þ

p0
k 0ð Þb 1 � að Þe�bs k 0ð Þ � j

k sð Þ � j½ �2
ln

p0c 0ð Þ
p0n


 �

ð70Þ

Kp ¼ � of

op0c sð Þ
op0c sð Þ
op0c 0ð Þ

vp0c 0ð Þ
k 0ð Þ � j

Bp

¼ Bp

p0
vp0c 0ð Þ
k sð Þ � j

p0c 0ð Þ
p0n


 �k 0ð Þ�k sð Þ
k sð Þ�j

ð71Þ

Substituting Eq. (68) into Eqs. (64) and (65), the plastic

strains can be shown as

Dep
h

Dep
z

Dep
v

2
4

3
5 ¼ 1

Kp

ArBh AhBh AzBh AvBh

ArBz AhBz AzBz AvBz

ArBp AhBp AzBp AvBp

2
4

3
5

Dr0r
Dr0h
Dr0z
Dv

2
664

3
775

ð72Þ

where

Av ¼
of

ov
¼ As

os

ov
ð73Þ

The total strains are the sum of elastic and plastic strain

components, which can be obtained by combining

Eqs. (17), (18), and (72):

Deh
Dez
Dev

2
4

3
5 ¼

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

2
4

3
5

Dr0r
Dr0h
Dr0z
Dv

2
664

3
775 ð74Þ

where
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a21 ¼ �l
E

þ ArBh

Kp

;

a22 ¼ 1

E
þ AhBh

Kp

;

a23 ¼ �l
E

þ AzBh

Kp

;

a24 ¼ AvBh

Kp

;

a31 ¼ �l
E

þ ArBz

Kp

;

a32 ¼ �l
E

þ AhBz

Kp

;

a33 ¼ 1

E
þ AzBz

Kp

;

a34 ¼ AvBz

Kp

;

a41 ¼ 1 � 2l
E

þ ArBp

Kp

;

a42 ¼ 1 � 2l
E

þ AhBp

Kp

;

a43 ¼ 1 � 2l
E

þ AzBp

Kp

;

a44 ¼ AvBp

Kp

ð75Þ

Finally, by substituting Eqs. (29), (30), and Dez ¼ 0 into

Eq. (74), we can obtain Eq. (33):

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44 þ 1=v

2
4

3
5

Dr0r
Dr0h
Dr0z
Dv

2
664

3
775¼

�Dr=r
0

0

2
4

3
5 ð76Þ
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