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Abstract
Pile foundations supporting wind turbines, silos, elevated water tanks or bridge piers are frequently subjected to multi-

component loads, which may lead to significant rotations and settlements compromising the safe operation of the structure.

The prediction of these displacements is of major concern and can be easily carried out using force-resultants plasticity

models, also referred to as ‘macro-elements’, stemming from the idea of describing the foundation behaviour by a single

upscaled constitutive relationship between generalized forces and displacements. When properly formulated, they can

reproduce key aspects of the mechanical response of the foundation at low computational cost as compared to numerical

analysis. To this end, a new macro-element for pile groups formulated in the classical framework of strain-hardening

elasto-plasticity is presented and discussed. The required model parameters can be calibrated by closed-form equations and

additional few data of numerical and/or experimental nature. The proposed mathematical framework is finally validated

against the results of centrifuge tests and 3D finite element analyses.
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1 Introduction

The large demand of tall, slender structures from energy

industry has led to new research in the field of foundations

under extreme loading. In particular, foundation caissons

and mono-piles of unprecedented sizes are being contem-

plated to accommodate large, multi-component loads

including inclined actions and moments. In this framework,

the analysis of the soil–foundation–structure interaction is

rather challenging, pushing designers towards complex

numerical analysis. Actually, numerical methods require

high user expertise, including the selection of appropriate

constitutive models of soil behaviour and the calibration of

the pertinent parameters. Further, due to the considerable

volumes of surrounding and supporting soil involved in

these models, high computational effort is demanded.

Recently, there has been considerable interest in the

development of alternative approaches like force-resultant

plasticity models—or macro-elements (MEs)—in which

the behaviour of the soil–foundation system is described by

a unique constitutive law relating generalized force and

displacement variables. The advantage of this approach

over the so-called direct method is manifold as it can be

easily coupled to any finite element (FE) structural model

to analyse quite complex soil–structure interaction prob-

lems at low computational cost. The idea to adapt the

theory of plasticity to the macroscale of the soil–foundation

system dates back to the pioneers works by Roscoe and

Schofield [33] and Schotman [35] on shallow foundations

under static loading. Since then, a number of ME models

have been proposed for circular footings on sand [18, 28],

spudcan foundations [20, 27], skirted or suction caissons on

clay [4, 5, 14] and deep-seated foundations of historical

towers [26, 30]. Macro-element formulations capable to

account for cyclic/dynamic loading effects are also avail-

able [6, 10, 12, 19, 34].

While many ME models are available for shallow

foundations, the problem of pile groups has received much

less attention and the very few works available on the topic

have mainly concentrated on isolated piles [15, 25, 29].
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Gorini and Callisto [17] have proposed an inertial ME for

pile groups, formulated in the context of hyper-plasticity,

consisting in a multi-surface constitutive law with kine-

matic hardening derived within a rigorous thermodynamic

framework. A different approach is pursued in this work,

which allows for both manageable implementation and

easy model parameters calibration. This novel ME for pile

groups is formulated within the framework of isotropic

strain-hardening elasto-plasticity by adapting the mathe-

matical model by Nova and Montrasio [28] to include the

key features of the behaviour of pile foundations.

The model is aimed at calculating the drained or

undrained response of pile groups in terms of vertical and

horizontal displacement as well as rotation to any arbitrary

combination and temporal sequence of vertical, horizontal

and moment loads. There is no limitation about the pile

group layout and the history of loads acting upon the

foundation, provided that the plane containing the load

resultant does not change over time.

2 Formulation of ME equations

2.1 Proposed model

The principal concept adopted here is that for any load

increment, the corresponding work-conjugated displace-

ment always consists of an elastic recoverable part, ruled

by the elastic stiffness matrix, while the development of the

plastic component occurs only when load vector lies upon

the yield surface and the load increment points outward.

The shape of this surface is assumed constant, while its size

varies homothetically with respect to the axes origin; for

unloading states the yield surface remains fixed, with an

internal state variable keeping memory of the last surface

size, allowing to consider the past loading history. The

yield surface evolves as function of the plastic displace-

ment vector through a specific hardening law, until

reaching the failure surface. To allow a realistic displace-

ment pattern for the pile group, a non-associated flow rule

is adopted. The complete formulation of the ME requires

thus four elements: (1) the elastic stiffness matrix; (2) the

yield and failure loci; (3) the hardening law; (4) the plastic

potential (Fig. 1).

The closed-form equation of the yield and failure loci in

the force space as well as the expression of the plastic

potential are among the novel contributions of this work.

The formers are derived by combining an exact solution in

the axial load-moment plane based on theorems of limit

analysis [8] and an approximate expression for failure

surfaces in planes parallel to the axial load-horizontal load

plane [9, 16, 22].

The use of the proposed ME requires the calibration of a

few parameters, most of which are already necessary in

routine design, such as the axial, horizontal and moment

capacities of the pile group and the stiffness matrix terms.

The calibration of the remaining parameters would require

either experimental or numerical data, and a specific pro-

cedure to select appropriate values is also suggested in the

ensuing. The prediction capability of the proposed model is

successfully checked against data from centrifuge tests in

soft clay under axial-moment loads [7] and rigorous

numerical analyses carried out on small groups of piles

under multi-component loads [32].

2.2 Mathematical formulation

The macro-element formulation for pile groups under

monotonic loading presented herein relies on the classical

theory of isotropic strain-hardening plasticity. In principle,

the problem at the microscale of the volume element is

adapted to the macroscale of the soil–foundation system,

replacing the stress and deformation tensors by the resul-

tant force, V, and the corresponding displacement, v, vec-

tors with respect to which an isotropic-hardening

elastoplastic law in rate form is formulated:

V ¼
Q

H

M

8
><

>:

9
>=

>;

v ¼
w

u

h

8
><

>:

9
>=

>;

dV ¼ Kdv

ð1Þ

where Q, H and M are the vertical, horizontal and the

moment loads acting on the top of the foundation, w, u and

h are the work-conjugated displacements (vertical and

horizontal) and rotations, and K is the tangent stiffness

matrix of the pile group.

The total incremental displacement of the foundation is

decomposed into the elastic, dve, and the plastic, dvp, parts:

dv ¼ dve þ dvp ð2Þ

The elastic displacement increment, dve, occurs for any

change in load on the foundation. Hooke’s law establishes

the relationship between the recoverable displacements and

the load increments:

dV ¼ Kedve ¼ Ke dv� dvpð Þ ð3Þ

where Ke is the elastic stiffness matrix.

The boundary of the elastic domain is the yield surface,

which is mathematically described as follows:
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f V; qcð Þ ¼ 0 ð4Þ

where qc is a state variable, function of the loading history

of the system, which regulates the size of the surface. The

yield surface is characterized by the same shape as the

failure locus, the latter corresponding to qc = 1. The

function qc and the incremental plastic displacements are

linked through the hardening law, so that:

qc ¼ qc vpð Þ ð5Þ

The plastic deformation increment occurs only when the

actual load state, V, lies on the yield surface and dV is

directed outwards. In this case, the new load state, V ? dV,

must still lie on the (new) yielding surface, function of

qc ? dqc. This can be obtained by imposing the so-called

consistency condition:

f V; qcð Þ ¼ 0; df ¼ of

oV

� �T

dV þ of

oqc
dqc ¼ 0 ð6Þ

In order to calculate the plastic deformations, it is pos-

tulated that there is a plastic potential function g(V) such

that:

dvp ¼ K
og

oV
ð7Þ

where K is the plastic multiplier, a non-negative scalar

quantity defining the magnitude of the plastic displacement

increment. Instead, the direction of the latter is only

function of the shape of the plastic potential and is

expressed by its gradient. The consistency condition

[Eq. (6)] together with the flow rule [Eq. (7)] gives:

of

oV

� �T

dV þ K
of

oqc

oqc
ovp

� �T
og

oV
¼ 0 ð8Þ

which allows the calculation of the plastic multiplier as:

K ¼ �
of
oV

� �T

of
oqc

oqc
ovp

� �T
og
oV

dV ð9Þ

The aforementioned constituents have been formulated

to account for the peculiarities of pile group behavior using

appropriate constitutive equations, as thoroughly discussed

in the subsequent sections.

Fig. 1 Problem under investigation
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2.3 Elastic stiffness parameters

The elastic relationship between the load increments and

the corresponding elastic displacements is given by

Eq. (3). The elastic stiffness matrix of a pile group can be

put in the form:

Ke ¼
Kv 0 0

0 Kh Khm

0 Kmh Km

2

4

3

5 ð10Þ

where Kv, Kh, Khm = Kmh and Km are the vertical, swaying,

cross swaying-rotational and rotational stiffnesses of the

pile group, respectively. Such quantities can be evaluated

through the interaction factors method [3, 31] or by

numerical models. In this regard, some suggestions are

provided in Sect. 3.

2.4 Failure and yield loci

The evaluation of the pile group bearing capacity under

vertical, horizontal and moment loads can be conveniently

carried out employing interaction diagrams. With reference

to the (Q, M) plane, the closed-form solution proposed by

Di Laora et al. [8] is plotted in Fig. 2 for a row of four

equally spaced, identical piles. Note that, since the domain

is symmetric with respect to the x-axis, only the portion for

M C 0 is shown. The failure locus for vertical eccentric

loads can be reasonably derived by approximating the

boundary of this domain with a parabola passing through

the points:

(1) (Qc, 0), where Qc is the bearing capacity of the pile

group in compression;

(2) (Qt, 0,), where Qt is the bearing capacity of the pile

group in uplift;

(3) ((Qc ? Qt)/2, Mmax), where Mmax is the moment

capacity of the pile group.

By imposing such conditions, the following equation is

obtained [21]:

M

Mmax

�
�
�
�

�
�
�
� ¼ �4

Q� Qcð Þ Q� Qtð Þ
Qc � Qtð Þ2

ð11Þ

As outlined in Di Laora et al. [9], any section of the

failure locus in planes parallel to (Q, H) can be reasonably

approximated through a trapezium, as shown in Fig. 3 for

M = 0. In this case, the inclined side of the trapezium

connects the points of coordinates (Qc, Hc) and (Qt, Ht),

where Hc and Ht are the horizontal capacity of the pile

group calculated at Qc and Qt, respectively; the equation of

the inclined line is therefore:

H ¼ Ht þ
Hc � Ht

Qc � Qt
Q� Qtð Þ ¼ Ht þ ih Q� Qtð Þ ð12Þ

The need for a smooth function in the proposed math-

ematical formulation led to the choice of the Granville egg

to approximate the shape of the target domain in the (Q,

H) plane. The graphical construction of this function is

explained in the following.

Consider a circle with centre C and radius r = CP, a

point A on the x-axis and a line t parallel to the y-axis

(Fig. 4). For any point P = (xP, yP) lying on the circum-

ference, the segment AP intersects line t in point T = (xT,

yT). Point Q, with coordinates (xP, yT), belongs to the

Granville egg, which can be obtained graphically by re-

peating this operation for any point along the

circumference.

From Fig. 4, it is easy to verify that the equation of the

Granville egg may be expressed as function of the angle x
as:

xQ ¼ xP ¼ bþ r cosx

yQ ¼ yT ¼ a tanx ¼ ar sinx
d þ a� r cosx

(

ð13Þ

where b is the abscissa of point C, a is the distance between

point A and line t, while d is the distance between point C

and line t. Alternatively, the Cartesian form may be

obtained by manipulating Eq. (13) as:

Fig. 2 Failure locus for H = 0: exact and approximate interaction

diagrams

Fig. 3 Fitting of the Granville egg to the target domain in the (Q,
H) plane
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y2 ¼
a2 r2 � x� bð Þ2
h i

d þ að Þ � x� bð Þ½ �2
ð14Þ

Regarding the calibration of parameters a, b, d and

r which provide a good fit to the failure interaction diagram

in the (Q, H) plane for M = 0, the following conditions are

imposed (Fig. 3):

(1) Passage through point (Qc, 0);

(2) Passage through point (Qt, 0);

(3) Passage through a peculiar point E, lying on the

inclined side of the trapezium, with coordinates (QE,

HE) = (Qt ? 2bR, Ht ? 2ihbR), where parameter b
is a dimensionless position indicating the location of

the function’s maximum and r = R = (Qc - Qt)/2.

(4) Horizontal tangent at Q = QE, i.e. HE = Hmax.

Such conditions give rise to the following expressions

for the egg parameters for M = 0:

b ¼ Qc þ Qt

2

r ¼ R ¼ Qc � Qt

2

a ¼ 2
Ht þ 2ihbR
2b� 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b 1� bð Þ

p

d ¼ R

2b� 1
� a

8
>>>>>>>>><

>>>>>>>>>:

ð15Þ

The position of point E controls the shape of the egg. It

is suggested to take:

b ¼ 1þ 2w
2 1þ wð Þ

w ¼ 1� Ht

Hc

8
>><

>>:

ð16Þ

Note that b varies monotonically within the range [0.5,

0.75]. It is equal to 0.5 when the two lateral capacities are

identical and to 0.75 when the collapse domain becomes a

triangle, that is for Ht = 0. Also, the Granville egg is

defined only for Hc strictly larger than Ht; when Ht tends to

Hc, the egg approaches an ellipse.

The equation of the Granville egg approximating the

failure locus in the (Q, H) plane can be therefore cast in the

form:

H

Hmax

� �2

¼
4b 1� bð Þ Q�b

R

� 	2�1
h i

2b� 1ð Þ Q�b
R

� 	
� 1


 �2 ð17Þ

Equations (11) and (17) are derived for H = 0 and

M = 0, respectively. For any value of the external moment,

it is possible to use Eq. (11) to determine the corresponding

Q1 and Q2 on the parabola as:

Q1 ¼
Qc þ Qt

2
� R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� M

Mmax

r

Q2 ¼
Qc þ Qt

2
þ R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� M

Mmax

r ð18Þ

which bound the actual range of variation for Q in Eq. (12)

to calculate the interaction domain in the (Q, H) plane for

M = 0:

H1 ¼ Ht þ ih Q1 � Qtð Þ
H2 ¼ Ht þ ih Q2 � Qtð Þ

ð19Þ

This failure domain can be sill interpolated by the

Granville egg updating Eqs. (15) and (16) as follows:

b ¼ Qc þ Qt

2

r ¼ Q2 � Q1

2
¼ R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� M

Mmax

r

a ¼ 2
Ht þ ih Rþ r 2b� 1ð Þ½ �

2b� 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bð1� bÞ

p

d ¼ r

2b� 1
� a

8
>>>>>>>>><

>>>>>>>>>:

ð20Þ

where

b ¼ 1þ 2w
2 1þ wð Þ

w ¼ 1� H1

H2

¼
Hc � Htð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� M

Mmax

r

Hc þ Ht

2
þ Hc þ Ht

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� M

Mmax

r

8
>>>>>>><

>>>>>>>:

ð21Þ

Equations (20) and (21) clearly simplify to Eqs. (15)

and (16) for M = 0, at which r = R. Substituting Eqs. (19)

into (17) yields to:

Fig. 4 Construction of the Granville egg
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which is the explicit expression of the 3D failure locus

(Fig. 5). Noteworthy, it is completely defined by only 5

parameters, (Qc, Qt, Hc, Ht, Mmax), which can be easily

determined by hand calculation. As a side comment, such

equation may be conveniently used in routine engineering

for ultimate limit state checks of pile foundations when

subjected to the contemporary presence of the three load

components.

The failure domain equation can be also written in a

dimensionless form as:

Fig. 5 3D failure surface

H2 R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� M

Mmax

r

� 2b� 1ð Þ Q� bð Þ
� 2

þ4b b� 1ð Þ�

f ðVÞ ¼
R2 1� M

Mmax

� �
� Q� bð Þ2

h i
Hmax þ ihRð2b� 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� M

Mmax

q
� 1

h in o2

ð2b� 1Þ2
¼ 0

ð22Þ

h2 kQ
ffiffiffiffiffiffiffiffiffiffiffiffi
1� m

p
þ 2b� 1ð Þ 2 1� qð Þ � kQ½ �

n o2

þ4b b� 1ð Þ�

f ðV̂Þ ¼
k2Q 1� mð Þ � 2 1� qð Þ � kQ½ �2
n o

1þ kHð2b� 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffi
1� m

p
� 1

� 	
 �2

4ð2b� 1Þ2
¼ 0

ð23Þ
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where

V̂ ¼
q
h
m

8
<

:

9
=

;
¼

Q

Qc
H

Hmax
M

Mmax

8
>>>>><

>>>>>:

9
>>>>>=

>>>>>;

ð24Þ

and

kQ ¼ 1� Qt

Qc

kH ¼ ihR

Hmax

ð25Þ

For H = 0 and M = 0, Eq. (23) reduces, respectively, to:

f ðV̂Þ ¼ k2Q 1� mð Þ � 2 1� qð Þ � kQ½ �2¼ 0 ð26Þ

f ðV̂Þ ¼ h2 kQ þ 2b� 1ð Þ 2 1� qð Þ � kQ½ �
� �2

þ 4b b� 1ð Þ k2Q � 2 1� qð Þ � kQ½ �2
n o

¼ 0
ð27Þ

The yield surface can be easily derived from Eq. (22),

assuming a homothetic relation with centre at the axes

origin and ratio qc:

The yield surface for qc = 0.5 in either (Q, M) or (Q,

H) plane is shown in Fig. 6 together with the failure locus.

According to standard concepts in strain-hardening plas-

ticity, the homothetic expansion regulated by qc ends when
the current load attains the failure locus. In this situation,

only plastic deformations occur as elastic deformations

cannot develop any longer.

2.5 Hardening law

A suitable hardening law is constructed herein based on the

observed behavior of pile groups under monotonic loading.

Specifically, in the case of pure vertical loading, the plastic

component of the total displacement can be formulated as:

wp ¼ Qc

Kv

ln
Qc

Q
c
� Q

� �

� Q

Kv

ð29Þ

As Q/Qc is equal to qc, Eq. (29) can be put in the form:

wp ¼ �Qc

Kv

ln 1� qcð Þ þ qc½ � ð30Þ

The generalization to the case of three load components

can be obtained by assuming that qc is function of the three

plastic displacements, properly weighted:Fig. 6 Failure loci and yield surfaces at qc = 0.5 in the (Q,M) and (Q,
H) planes

H2

q2c
R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� M

qcMmax

s

� 2b� 1ð Þ Q

qc
� b

� �" #2

þ4b b� 1ð Þ:

f ðV; qcÞ ¼
R2 1� M

qcMmax

� �
� Q

qc
� b

� �2
� 

Hmax þ ihRð2b� 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� M

qcMmax

q
� 1

h in o2

ð2b� 1Þ2
¼ 0

ð28Þ
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

aQnð Þ2þ aHgð Þ2þ aMfð Þ2
q

¼ � ln 1� qcð Þ þ qc½ � ð31Þ

where n; g; fð Þ ¼ Kv

Qc
wp; Kh

Hmax
up; Km

MmaxB
hpB

� �
are normalized

plastic displacements, while (aQ, aH, aM) are hardening

parameters weighting the influence of the different com-

ponents of the plastic displacement on the evolution of the

yield surface. If the elastic component is neglected, wp = w

and Eq. (31) reduces to:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

aQnð Þ2þ aHgð Þ2þ aMfð Þ2
q

¼ � ln 1� qcð Þ ð32Þ

which has the same structure of the hardening law pro-

posed by Nova and Montrasio [28] in the formulation of

the rigid-plastic macro-element. The hardening parameters

(aQ, aH, aM) in Eq. (32) should be calibrated so as to match

the evolution of plastic displacements, as recommended in

Nova and Montrasio [28]. As a noteworthy point, they

could be not consistent with the reference initial axial,

lateral and rotational stiffnesses, as those coming from

linear elastic theory or the results of calibration tests. By

contrast, in the framework of the proposed model

[Eq. (31)], the choice of (aQ, aH, aM) does not affect the

initial axial, lateral and rotational stiffnesses of the foun-

dation. Note that this is not a weakness of the model as one

could perceive at a first sight; instead, it provides the model

with a higher adaptability to reproduce the observed

behaviour.

The best option is to calibrate (aQ, aH, aM) against

experiments or numerical benchmarks. An example of how

this can be achieved is shown hereafter along with some

suggestions about their ranges of variation, thus allowing to

obtain first approximation prediction of pile group response

when data for calibration analysis are not available.

For the sake of completeness, the partial derivatives of

Eq. (31), needed to evaluate the plastic multiplier [Eq. (9)]

in the proposed model, are reported:

oqc
owp

¼ � 1� qc
qc ln 1� qcð Þ þ qc½ � �

aQKv

Qc

� �2

wpj j

oqc
oup

¼ � 1� qc
qc ln 1� qcð Þ þ qc½ � �

aHKh

Hmax

� �2

upj j

oqc
ohp

¼ � 1� qc
qc ln 1� qcð Þ þ qc½ � �

aMKm

MmaxB

� �2

hpBj j

ð33Þ

Fig. 7 Flow rule for different loading paths in (Q, M) plane for H = 0 and in (Q, H) plane for M = 0
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Note that the structure of the mathematical formulation

implies that the initial value of memory variable, qc0, i.e.
the size of the initial elastic region, must be finite.

2.6 Flow rule and plastic potential

The simplest choice for the flow rule in Eq. (7) is to let the

plastic potential coincide with the yielding surface (i.e.

f = g), so that the plastic displacement vector is normal to

the yield surface. However, in the case of pile groups this

choice does not always lead to realistic results, as detailed

in the ensuing (Fig. 7).

With reference to the parabola in the (Q, M) plane for

H = 0, the current loading state may cross the parabola on

the right or left side of the vertex depending on the loading

path. In the former case, the direction of the normal to the

yielding surface assures that the plastic component of the

vertical displacement is directed downward, which is the

expected behaviour for pile groups subjected to vertical

eccentric load with most of the piles loaded by compressive

axial loads. In the latter case, a plastic upward displace-

ment is predicted as it is reasonable at low compression or

tensile axial loads owing to the lower stiffness exhibited by

the piles subjected to tension, compared to that of piles

under compressive loads. It follows that, in principle, the

associated flow rule is acceptable in the (Q, M) plane at

H = 0. Consider now the Granville egg in the (Q, H) plane

for M = 0. If the yielding function coincides with the

plastic potential, the normal to the yielding surface is such

that its horizontal component is always directed leftward

unless Q[QE, i.e. for very high axial load level. It follows

that the macro-element would generally predict unrealistic

upward displacements for an inclined downward force.

This issue can be sorted out by using an ad hoc expression

for the plastic potential:

g V; qg
� 	

¼ 4
Q� qgQc

� 	
Q� qgQt

� 	

q2g Qc � Qtð Þ2

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

H

qgHmax

 !2

þ M

qgMmax

 !2

þe2

v
u
u
t ð34Þ

where qg is a scalar parameter allowing the homothetic

expansion of the plastic potential with respect to the axes

origin and e is a small, arbitrary and positive quantity (e.g.

10–2) allowing to overcome numerical issues in the cal-

culation of the plastic multiplier when both H and M are

equal to 0. Owing to such expansion, for any loading state

(Q, H, M) inside the failure locus there always exists a

value of qc within ]0; 1[ satisfying Eq. (31), i.e. there is

always a unique yielding surface passing through the cur-

rent loading state. This is easily understandable thinking of

connecting the origin with the current load state through a

straight line of length l1. If this line is extended until

reaching the failure surface, a straight line of length l2 is

obtained. The ratio l1/l2, which is obviously unique, is the

actual value of qc. Following the same rationale, there also

exists qg = qc which guarantees that the plastic potential

passes through the same point (Q, H, M), satisfying

Eq. (34).

Note that the plastic potential coincides with the yield-

ing surface only in the (Q, M) plane for H = 0 and that its

derivatives do not depend on qg.

3 Calibration of ME parameters

The model is characterized by 13 constitutive parameters

(Qc, Qt, Mmax, Hc, Ht, Kv, Kh, Khm, Km, qc0, aQ, aH, aM), the
majority of which is rather simple to assess and anyhow

required in routine design. Concerning the five parameters

defining the failure locus, Qc and Qt can be easily derived

from the axial capacities in compression (Nu) and uplift

(Su) of the isolated pile [e.g., 13, 24], which can be also

employed in the approach proposed by Di Laora et al. [8]

for the evaluation of Mmax; Hc and Ht can be calculated

from the horizontal capacities of the isolated pile subjected

to an axial load equal to Nu and Su, respectively, as shown

in Iovino et al. [22] and Di Laora et al. [9]. The four terms

of the elastic stiffness matrix can be determined through

simplified expressions in literature or numerical analyses.

The value of qc0 in most common situations may be

assumed to be very small (of the order of 10-3, adopted in

all subsequent graphs). The most difficult issue is the

assessment of the 3 hardening parameters. In principle, the

determination of these coefficients would require the

availability of benchmarks solutions. In this work, possible

ranges for aQ, aH and aM are proposed using data from

centrifuge tests in soft clay [7], and from a set of advanced

numerical analysis in undrained conditions carried out on

small groups of piles under constant axial load [32]. The

data from centrifuge tests and numerical analyses served

also to assess the performance of the proposed ME in terms

of force–displacement curves under inclined and eccentric

loads.

3.1 Centrifuge experiments on pile
groups under vertical eccentric loads

Reference is made to the centrifuge tests performed at an

increased gravity of 50 g on pile groups under eccentric

load published by de Sanctis et al. [7], consisting of two

series of experiments on annular shaped groups of eight

aluminium piles and isolated piles embedded in Speswhite

kaolin clay. For the sake of brevity, only the first series of

experiments is analysed (set A), including a pile group
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under centred load (A1), a pile group under highly eccen-

tric load (A2) and two isolated piles, one in compression

and one in uplift. The arrangement of the model founda-

tions is schematically depicted in Fig. 8 along with the

layout of the recording devices installed to monitor set-

tlements, rotations, axial loads on piles and pore water

pressures within the soil mass. Model piles were 1-mm-

thick closed-ended hollow cylinders with an outer diameter

of 10 mm and an embedded length of 240 mm, coated with

a film of Hostun sand. The piles’ connection to a circular

raft was guaranteed using spherical hinges to allow the

piles to carry out only axial loads. The eccentric load on

pile group A2 was applied by means of a cantilever beam

mounted on the raft. For each group, the direction of the

load path in the (Q, M) plane is known a priori, allowing an

easy identification of the collapse load. As each raft

behaves like a rigid body, the settlement of any point

belonging to it was evaluated by combining the vertical

displacement recorded by the linear variable differential

transformer (LVDT) and the rotations derived from the

recordings of the micro-electro-mechanical system

Fig. 8 Plan view and cross-section of the model foundations tested in the centrifuge and soil properties; dimensions (m) are given at prototype

scale

Table 1 Failure and elastic parameters of the ME (de Sanctis et al., 2021)

Centrifuge test Qc [kN] Qt [kN] Mmax [kNm] Kv [MN/m] Kh [MNm]

A1 (A2) 2430 (2449) - 2857 (- 2838) 5648 129 1668
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(MEMS) accelerometers. Further details can be found in de

Sanctis et al. [7]. All data are presented at prototype scale.

Table 1 summarizes the constitutive parameters adopted

in the ME analysis for the definition of the failure and yield

surfaces and the elastic stiffness matrix, which are derived

as detailed in the following. The axial capacity in com-

pression of the pile group, Qc, is taken directly from test A1

subtracting the weight of the piles,Wpiles, to the failure load

coming from the test. The axial capacity in tension, Qt, is

calculated from the test in uplift on the single pile con-

sidering an efficiency factor equal to unity and then adding,

in absolute terms, the weight of the piles. Note that, since

Wpiles in test A1 (834 kN) is slightly larger than in A2

(815 kN), two different set of values of Qc and Qt are

considered in the two ME simulations. The maximum

value of the moment capacity, Mmax, is calculated as the

vertex of the parabola passing through the points (Qc, 0),

(Qt, 0), (QA2, MA2), where QA2 and MA2 are the coordinates

of the endpoint of the load path followed in test A2. The

vertical and rotational stiffnesses of the pile group, Kv and

Kh, are calculated from the initial axial stiffness of the

isolated pile, Ks, which was estimated to be 45 MN/m,

using superposition and modelling pile-to-pile interaction

effect with the approximate solution by Dobry and Gazetas

[11] as in Iovino et al. [23].

The failure loci of the model foundations A1 and A2,

along with the loading paths followed in the centrifuge, are

plotted in Fig. 9a and b, respectively. Note that, because of

symmetry, only half of the collapse domain is plotted.

Moreover, the load paths only refer to the external load on

the pile group and do not include the weight of the piles,

Wpiles, which was not considered in the analysis. The first

point of each path is the preload on the foundation due to

the weight of the cap, Wcap. For pile group A2, this point

has a positive ordinate, M0, corresponding to the moment

due to the weight of the cantilever beam used to apply the

external eccentric load. Notably, experimental data do not

include the displacement due to Wcap.

The axial response determined experimentally from test

A1 is compared to that evaluated through the ME in Fig. 9c

under the assumption aQ = 1.

The prediction of the proposed model satisfactorily

matches the observed behaviour, so that aQ = 1 is also

taken for the simulation of test A2. The axial load–settle-

ment, Q–w, and moment–rotation, M–h, curves predicted

using (aQ, aM) = (1, 1) are compared to those gathered

Fig. 9 Failure loci and load paths followed in the centrifuge in tests A1 (a) and A2 (b). Axial load–settlement curves (c) and moment–rotation

response (d)
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Table 2 Failure and elastic parameters of the ME

Pile group Qc [MN] Qt [MN] Mmax [MNm] Hc [MN] Ht [MN] Kv [MN/m] Kh [MN/m] Khm [MN] Km [MNm]

2 9 1 8.48 - 7.07 11.66 4.15 0.15 2.34 0.76 1.51 8.44

3 9 1 12.72 - 10.60 23.33 6.23 0.23 3.16 0.98 28.61 3.07

4 9 1 16.96 - 14.14 46.65 8.31 0.31 3.98 1.18 63.26 4.92

Fig. 10 (2 9 1) pile group under FSv = 10: load path and failure loci in the (Q, M) and (H, M) planes (a, b); moment–rotation curves (c); lateral
load–deflection curves (d)

Fig. 11 (2 9 1) pile group under FSv = 3: load path and failure loci in the (Q, M) and (H, M) planes (a, b); moment–rotation curves (c)
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from test A2 in Fig. 9c and d, respectively, in which B is

the diameter of the circle passing through the centres of the

piles. Also for test A2 the obtained results are in very good

agreement with the experimental data in terms of both

rotational and translational response.

3.2 Numerical analyses of pile groups
under inclined eccentric loads

In this section, the ME is calibrated and validated against

the results of FE analyses on small groups of piles in clay

subjected to inclined and eccentric loads performed by

Psychari and Anastasopoulos [32]. Three groups of

(2 9 1), (3 9 1) and (4 9 1) piles are first loaded verti-

cally and then subjected to a horizontal load applied under

constant eccentricity represented by the pier height, hpier-
= 6 m or 20 m. Different load paths are followed by

varying the amount of the axial load and the eccentricity of

the lateral action. An idealized, homogeneous clay deposit

with uniform undrained shear strength su = 100 kPa is

considered. The soil behaviour is modelled with a

kinematic hardening model with von Mises failure criterion

and associated flow rule, while reinforced concrete (RC)

piles are idealized by a combination of nonlinear contin-

uum elements for the concrete and surface elements for the

longitudinal reinforcement so as to simulate the depen-

dence of the plastic yielding moment of the pile cross-

section, My, from the axial load, N.

To investigate in detail the mechanism of interaction

under combined loads, Psychari and Anastasopoulos [32]

distinguish between the moment component due to the

axial resistance of the piles and that associated with the

flexural strength of the concrete cross-section, referred to in

the original work as Max and Mb, respectively. In order to

make the ME outcome comparable to the FE simulations,

the focus is set only on the first contribution.

The axial capacities in compression, Qc, and tension, Qt,

of each pile group are evaluated from the axial capacities

of the isolated pile, Nu and Su, determined by the authors

employing analytical solutions. An efficiency factor of

unity is adopted. The moment capacity of the group, Mmax,

is calculated from Nu and Su, using the solution by Di Laora

Fig. 12 (3 9 1) pile group under FSv = 10: load path and failure loci in the (Q, M) and (H, M) planes (a, b); moment–rotation curves (c)

Fig. 13 (4 9 1) pile group under FSv = 10: load path and failure loci in the (Q, M) and (H, M) planes (a, b); moment–rotation curves (c)
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et al. [8]. Considering the layout of the longitudinal rein-

forcement and the material properties of the RC piles, the

horizontal capacities of the single pile are first estimated

applying the Broms [2] theory for fixed head piles in clay

under Nu or Su; then, the horizontal capacities of the group,

Hc, and Ht, are obtained postulating an efficiency factor

under horizontal load equal to unity.

The complete stiffness matrix is established from the

code Dynapile (Ensoft) based on the consistency boundary

matrix method [1] by setting the excitation frequency at

zero. The parameters of the ME are resumed in Table 2 for

each foundation, except those pertinent to the hardening

law which were determined with the following approach.

Since in the reference numerical analyses data on vertical

displacements were not available, the hardening parameter

aQ is assumed to be unity, in line with what was accom-

plished after the calibration analysis performed for test A1.

The remaining hardening parameters (aH, aM) are back-

figured from the numerical test carried out on the (2 9 1)

pile group with a vertical safety factor FSv = 10 and the

6 m high pier. The load path and the corresponding

moment-rotation and horizontal load–deflection curves are

shown in Fig. 10 for (aH, aM) = (0.5, 0.5). It is evident that

this choice allows for a very satisfactory prediction of the

pile group response. All subsequent analyses must thus be

intended for validation.

The ME outcome for the (2 9 1) pile group under lat-

eral load with larger eccentricity, i.e. hpier = 20 m

(Fig. 10), also matches in a satisfactory way the data

gathered from the FE analysis.

Figure 11 illustrates the comparison between the ME

and the FE analysis by Psychari and Anastasopoulos [32]

for hpier = 6 m and FSv = 3, that is at an axial load far

larger than before. Data about lateral deflection were not

available in this case, so that the comparison is limited to

the moment–rotation curve. Even though the ME is unable

to grasp the hardening response predicted by the FE model

at very large rotations, the response predicted matches

quite satisfactorily the reference solution.

Finally, the performance of the ME is investigated for

the (3 9 1) and (4 9 1) layouts in Figs. 12 and 13,

respectively. Data are available for these two foundations

only in terms of cap rotations and the model pier 6 m high.

The agreement is quite reasonable for the (3 9 1) pile

group, while there is a significant difference between the

two plots for the layout with four piles. However, this is

due to the increase of shaft capacity of the piles in the

group owing to action of the lateral load, a 3D effect that

cannot be simulated using the ME approach.

The successful comparison with the numerical analysis

carried out employing an advanced constitutive model

indicates the potential of the proposed ME over time-

consuming FE analyses.

4 Conclusions

A new macro-element model for pile groups subjected to

monotonic loads, developed in the framework of strain

hardening elasto-plasticity, has been presented and dis-

cussed. The basic assumption, realistic for small pile

groups, is that the piles’ connecting cap behaves like a rigid

body, that is to assume only three kinematic variables (u,

w, h) as representative of the foundation response. The

closed-form equation of the failure locus of the foundation

is among the novel contributions of this work and can also

be conveniently employed for ultimate limit state analysis

of a pile group when subjected to multi-component loads.

A generalized hardening law is formulated as an extension

of the equation originally suggested by Nova and Mon-

trasio [28] for shallow foundations, while a new expression

for the plastic potential is introduced to allow the use of

non-associative plastic flow rule. In addition to this, the

proposed model considers also the recoverable part of

displacements.

The ME requires a few parameters, most of which are

already needed in routine design. The main difficulty is the

calibration of the hardening coefficients for which possible

ranges are provided for piles in either soft or heavily

overconsolidated clays. The ability of the ME in predicting

the behaviour of pile groups subjected to monotonic loads

has been checked against data from centrifuge tests and

rigorous numerical analyses, providing good performance.

While the model is very successful in capturing the general

patterns of the behaviour in combined loading, it is unable

to predict the hardening of the moment–rotation response

under eccentric lateral load at very large displacements,

that is, however, a problem of minor engineering concern

and anyhow out of the main scope of the model.
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Géotechnique 52(2):117–129

21. Iodice C, Iovino M, Di Laora R, de Sanctis L, Mandolini A

(2023) A macro-element for pile groups subjected to vertical

eccentric load. In: National conference of the researchers of

geotechnical engineering. Springer Nature Switzerland, Cham,

210–217

22. Iovino M, de Sanctis L, Maiorano RMS, Aversa S (2021) Failure

envelopes of pile groups under inclined eccentric load. Géotech
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