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Abstract
Soil flow is involved in many earth surface processes such as debris flows and landslides. It is a very challenging task to

model this large deformational phenomenon because of the extreme change in material configurations and properties when

soil flows. Most of the existing models require a two-dimensional (2D) simplification of actual systems, which are however

three-dimensional (3D). To overcome this issue, we develop a novel 3D particle finite element method (PFEM) for direct

simulation of complex soil flows in 3D space. Our PFEM model implemented in a fully implicit solution framework based

on a generalised Hellinger–Reissner variational principle permits the use of a large time step without compromising the

numerical stability. A mixed quadratic-linear element is used to avoid volumetric locking issues and ensure computational

accuracy. The correctness and robustness of our 3D PFEM formulation for modelling large deformational soil flow

problems are demonstrated by a series of benchmarks against analytical or independent numerical solutions. Our model can

serve as an effective tool to support the assessment of catastrophic soil slope failures and subsequent runout behaviours.

Keywords Large deformation � Second-order cone programming � Slope stability � Soil flow � PFEM

1 Introduction

In the framework of the classical Lagrangian finite element

method (FEM), computational meshes move with material

configurations they are attached to, allowing to conve-

niently track material motion and handle history-dependent

materials. Nevertheless, severe mesh distortion may occur

if the material undergoes large deformation, which leads to

a significant reduction in the accuracy of numerical solu-

tions and even non-convergence of numerical simulations.

Thus, over the past decades, extensive efforts have been

devoted to the development of advanced numerical

approaches to simulate large deformation problems in

geotechnical engineering. An example of mesh-based

methods for tackling this issue is the well-known arbitrary

Lagrangian Eulerian (ALE) method [41, 50]. The ALE

method enables mesh points to move according to designed

trajectories that may not coincide with either the material or

spatial configuration. In such a way, it does eliminate mesh

distortion although the design of appropriate trajectories is

non-trivial for problems involving complex geometrical

changes. A pure particle-based method to alleviate mesh

distortion is the so-called smooth particle hydrodynamics

(SPH) method [6, 45, 75], which uses particles to represent

computational domains and construct interpolation func-

tions without mesh discretisation. Thus, it can handle

problems with no limitation on the deformation extent, even

for the extreme scenarios with severe free-surface evolution

such as soil splashing during landslides. A more detailed

review of the recent development and application of SPH in

geomechanics can be found in [7]. Some hybrid methods

using both particles and finite element meshes have also

been developed, an example of which is the material point

method (MPM) [15, 38, 48, 51, 56], originally named
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particle-in-cell method [24]. In this method, the material is

represented as a cloud of Lagrangian particles, called

materials points, where the information of physical prop-

erties and state variables are stored. The governing equa-

tions are resolved on the Eulerian background meshes. At

each incremental time step, state variables and physical

properties are mapped between particles and background

meshes. Another hybrid method attracting an increasing

attention is the particle finite element method (PFEM).

Originally invented for solving fluid mechanics problems

[27, 43], the PFEM has been further developed and applied

to study a wide range of challenging problems across dif-

ferent disciplines. Below, we give a brief summary of its

main concept as well as the current state in its development

and application. For a more thorough review of the PFEM,

the reader can refer to [13].

The fundamental idea underlying the PFEM is its treat-

ment of mesh nodes as particles. The PFEM model solves

governing equations in a time-marching fashion based on

the conventional Lagrangian FEM framework with finite

element meshes. Mesh connectivity, however, is erased at

the end of each time step leaving mesh nodes treated as free

particles. Before moving to the next time step, a new

computational domain is identified according to the location

of particles, followed by the construction of a new mesh of

satisfactory quality. By doing so, the PFEM inherits both

the solid mathematical foundation of the traditional FEM

and the flexibility of particle-based approaches for handling

large deformations. To date, the PFEM and its variants have

been extensively developed and applied to study various

geomechanical and geotechnical problems including (but

not limited to) soil-structure interactions [3, 10, 25, 40, 46,

66], granular flows [9, 14, 28, 35, 64, 73], progressive soil

slope failures [57, 63], debris flows [21], cliff erosion [39],

landslide events [65, 70] and landslide-induced waves

[47, 69]. Despite its substantial development, most of the

existing PFEM models for geomechanical/geotechnical

engineering applications can only deal with two-dimen-

sional (2D) problems, whereas very limited work has been

conducted for three-dimensional (3D) modelling, reviewed

as follows. A 3D PFEM was developed in the framework of

computational fluid dynamics to solve the Navier–Stokes

equations and further applied to simulate debris flows and

landslide problems [17, 21], where soils are modelled as

non-Newtonian fluid. A variant of the 3D PFEM model was

developed for elastoplastic analysis of soils [72], where the

strain field is smoothed so that first-order elements (i.e.

four-node tetrahedron elements) can be used without

encountering volumetric locking issues. Additionally, the

3D PFEM model developed in [72] has been parallelised

with GPUs to improve its computational efficiency given

that the employed explicit FEM formulation requires very

small time steps.

In this paper, a new 3D PFEM model is developed for

simulating large deformation soil flows based on the gen-

eralised Hellinger–Reissner variational principle [69] and

an elastoplastic constitutive law. An implicit time inte-

gration scheme is adopted enabling the use of a relatively

large time step which is of great advantage in solving

geomechanical/geotechnical problems usually of quasi-

static or low-to-medium dynamic nature. A mixed

quadratic/linear tetrahedral element is used with a quad-

ratic interpolation for displacements and inertia forces and

a linear interpolation for stresses. The problem of standard

second-order cone programming (SOCP) is resolved effi-

ciently using the interior-point method [1, 31, 60]. The

developed model inherits the advantages of SOCP-FEM:

(i) handling the singularities of constitutive models (e.g.

Bingham, Mohr–Coulomb and Drucker Prager models)

[4, 34]; (ii) the extension from single-surface plasticity to

multi-surface plasticity [34]; (iii) the efficiency of high-

performance SOCP solvers in large-scale problems [22].

For verification, a series of benchmark tests are designed

and analysed using the proposed 3D PFEM model, with the

simulation results compared against analytical solutions,

experimental data, and independent numerical simulations.

The computational cost of our model is also presented to

show its efficiency.

The rest of the paper is structured as follows. Section 2

summarises the governing equations for elastoplastic

dynamic analysis of soils, the time domain discretisation,

the corresponding variational principle and the spatial

domain discretisation. Section 3 describes the reformula-

tion and computation of the optimisation problem. The

computational procedures of the 3D PFEM are given in

Sect. 4. Numerical examples are shown in Sect. 5 and

conclusions are drawn in Sect. 6.

2 Mathematical formulation and numerical
methods

2.1 Governing equations

We consider a 3D domain V, delimited by a surface S. The

set of equations governing the dynamic elastoplastic

behaviour of the material is given below.

(a) Equilibrium equation:

$Trþ b ¼ q _v, in V ð1Þ

where r = (rxx, ryy, rzz, rxy, rxz, ryz)
T is the stress,

v = (vx, vy, vz)
T is the velocity, b is the body force, q

is the density, _v is the time derivative of v, and $T is

the differential operator defined as
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(b) Displacement–strain relation:

e ¼ $u ð3Þ

where e = (exx, eyy, ezz, 2exy, 2exz, 2eyz)
T is the strain

and u = (ux, uy, uz)
T is the displacement.

(c) Boundary conditions:

Nr ¼ t on St ð4Þ
u ¼ up on Su ð5Þ

where N is the unit normal vector, t is the traction, up

is the prescribed displacement, and St and Su are the

surfaces where traction and displacement are

imposed, respectively.

(d) Constitutive equations:

FðrÞ� 0 ð6Þ
e ¼ ee þ ep; ee ¼ Cr; ep ¼ k$GðrÞ ð7Þ

where F is the yield function, ee and ep are the elastic and

plastic strains, respectively, C is the elastic compliance

matrix, k is the plastic multiplier, and G is the plastic

potential. The associated flow rule assumes G = F, and the

so-called complementary condition for the incremental

form of Eqs. (6) and (7) can be written as follows

FðrÞ� 0

De ¼ CDrþ Dk$FðrÞ
DkFðrÞ ¼ 0; Dk� 0

8<
: ð8Þ

2.2 Time discretisation

In the framework of the h-method [58], the stress and

velocity evolution may be described in a time marching

fashion as

r ¼ h1rnþ1 þ ð1 � h1Þrn ð9Þ

v ¼ _u ¼ unþ1 � un
Dt

¼ Du
Dt

¼ h2vnþ1 þ ð1 � h2Þvn ð10Þ

with Eq. (1) also discretised as

$T½h1rnþ1 þ ð1 � h1Þrn� þ b ¼ q
vnþ1 � vn

Dt
ð11Þ

where the subscripts n and n ? 1 denote the known and

unknown states, Dt is the time step, and 0 B h1, h2 B 1 are

numerical parameters. By introducing a new variable r,

Eq. (11) is rearranged as

$Trnþ1 þ
ð1 � h1Þ

h1

$Trn þ ~b ¼ rnþ1 ð12Þ

with traction boundary conditions

Nrnþ1 ¼ ~t ð13Þ

in which

~b ¼ 1

h1

bþ ~q
vn
Dt

; ~q ¼ q
h1h2

; rnþ1 ¼ ~q
Du
Dt2

;

~t ¼ 1

h1

t� 1 � h1

h1

Nrn

ð14Þ

The update of velocity is based on Eq. (10), such that the

new velocity is given as

vnþ1 ¼ 1

h2

Du
Dt

� ð1 � h2Þvn
� �

ð15Þ

The time integration scheme adopted in our model is

unconditionally stable for h1 C 0.5 and h2 C 0.5. Despite its

simplicity, the h-method fits the mixed variational principle

(to be introduced in Sect. 2.3) very well. Notably, it has also

been successfully adopted to simulate challenging dynamic

problems of saturated soils in a similar framework [55].

2.3 Mixed variational principle

A mixed variational principle has been previously estab-

lished in [69] for dynamic elastoplastic problems which

read

min
Du

max
ðr;rÞnþ1

� 1

2

Z
V

DrTCDrdV þ
Z
V

rT
nþ1$ðDuÞdV

þ ð1 � h1Þ
h1

Z
V

rT
n$ðDuÞdV �

Z
V

~b
T
DudV

�
Z
S

~t
T
DudSþ

Z
V

rT
nþ1$ðDuÞdV

� Dt2

2

Z
V

rT
nþ1 ~q

�1rnþ1dV

subject to Fðrnþ1Þ� 0

ð16Þ

According to [69], the Lagrangian of the above min–

max optimisation problem is

L Du; rnþ1; rnþ1;Dkð Þ ¼
Z
V

rT
nþ1$

TðDuÞdV

þ
Z
V

1 � h1

h1

rT
n$ðDuÞdV �

Z
V

~b
T
DudV �

Z
St

~t
T
DudS

� 1

2

Z
V

DrTCDrdV � 1

2

Z
V

rT
nþ1

Dt2

~q
rnþ1dV

þ
Z
V

rT
nþ1DudV �

Z
V

DkFðrnþ1ÞdV

ð17Þ
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The solution to problem (16) is a saddle point of its

functional satisfying the associated Karush–Kuhn–Tucker

(KKT) conditions which are.

• Stationarity:

oL

oDu
¼

$Trnþ1 þ
1 � h1

h1

$Trn þ ~b� rnþ1 ¼ 0 in V

NTðrnþ1 þ
1 � h1

h1

rnÞ ¼ ~t on St

8><
>:

ð18Þ
oL

ornþ1

¼ $ðDuÞ � Cðrnþ1 � rnÞ � Dk
oF

ornþ1

¼ 0

in V

ð19Þ
oL

ornþ1

¼ Dt2 ~q�1rnþ1 � Du ¼ 0 in V ð20Þ

• Complementary slackness:

DkFðrnþ1Þ ¼ 0 ð21Þ

• Primal feasibility:

Fðrnþ1Þ� 0 ð22Þ

• Dual feasibility:

k� 0 ð23Þ

One can see that the KKT conditions (18)–(23) are

exactly the governing equations (1)–(8) after time dis-

cretisation, which verifies the variational principle (16).

2.4 Spatial domain discretisation

We describe the spatial domain discretisation of the min–

max problem (16) below. A mixed isoparametric tetrahe-

dral element shown in Fig. 1 is adopted. In this element,

quadratic interpolation is used for the fields of displace-

ment u, and inertia force r, whilst linear interpolation is

used for the field of stress r. Owing to the use of non-equal

interpolations for the stress and displacement fields, this

quadratic/linear mixed element overcomes volumetric

locking for incompressible/near-incompressible problems.

Using the standard finite element notation, the fields are

approximated as

r � Nrr̂; u � Nuû; r � Nr r̂ ð24Þ

where r̂, û and r̂ are the stresses, displacements and

dynamic forces at the nodes, while Nr, Nu and Nr are the

matrices of the corresponding shape functions. The strains

are

e ¼ $u � Buû with Bu ¼ $Nu ð25Þ

Substituting (24) into (16), the discretised min–max

problem is written as

min
Dû

max
ðr̂;r̂Þnþ1

� 1

2
DbrTCDbr � 1

2
Dt2r̂T

nþ1Dr̂nþ1

þ brT
nþ1BDû� ~f

T
Dûþ r̂T

nþ1ADû

subject to Fðbrnþ1Þ� 0

ð26Þ

where

B ¼
Z
V

NT
rBudV ð27Þ

C ¼
Z
V

NT
rCNrdV ð28Þ

D ¼
Z
V

NT
r ~q

�1NrdV ð29Þ

A ¼
Z
V

NT
rNudV ð30Þ

~f ¼
Z
V

NT
u
~bdV þ

Z
S

NT
u
~tdS� ð1 � h1Þ

h1

BTr̂n ð31Þ

3 Reformulation and computation
of the optimisation problem

In this section, the min–max problem (26) is reformulated as

a standard second-order cone programming (SOCP) problem

min
x

pTx

subject to Lx¼y

x 2 @
ð32Þ

where x ¼ ðx1; x2; :::; xnÞT
consists of the field variables, L

and y are the known matrix and vector for the linear equality,

p is the vector of coefficients for the objective function, and@
is the tensor product of second-order cones such that

Fig. 1 Mixed isoparametric tetrahedral element utilised in the

simulation: Linear interpolation nodes including 1 (0,0,0), 2 (1,0,0),

3 (0,1,0), and 4 (0,0,1); Quadratic interpolation nodes consisting of

the four linear interpolation nodes 1–4 and six middle nodes 5

(0.5,0,0), 6 (0,0.5,0), 7 (0,0,0.5), 8 (0.5,0.5,0), 9 (0.5,0,0.5), and 10

(0,0.5,0.5). Here, the values inside the bracket indicate the coordi-

nates of the corresponding node in the normalised coordinate system

(n, g, 1)
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@ ¼ @1 � � � � � @l. The second-order cones can be in the

type of:

• Quadratic cone

@n
q ¼ x 2 <n : x1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

2 þ � � � þ x2
n

q� �
ð33Þ

• Rotated quadratic cone

@n
r ¼ x 2 <n : 2x1x2 �

Xn
j¼3

x2
j ; x1;2 � 0

( )
ð34Þ

To this end, the minimisation part of (26) is first

resolved analytically, leading to

max
ðr̂;brÞnþ1

� 1

2
DbrTCDbr � Dt2

2
brT
nþ1 Dbrnþ1

subject to BTbrnþ1 þ ATbrnþ1 ¼ ef
Fðbrnþ1Þ� 0

ð35Þ

Following [64], the above maximisation problem is

equivalent to the minimisation problem below

min
ðr̂;r̂Þnþ1;s1;s2

s1 þ s2

subject to BTr̂nþ1 þ ATr̂nþ1 ¼ ~f

1

2
DbrTCDbr� s1

Dt2

2
r̂T
nþ1 D r̂nþ1 � s2

Fðr̂nþ1Þ� 0

ð36Þ

where s1 and s2 are unknown positive scalars. By intro-

ducing nr ¼
ffiffiffiffi
C

p
Dr̂ and nr ¼ Dt

ffiffiffiffi
D

p
r̂nþ1, the above prob-

lem is further expressed as

min
ðr̂;r̂Þnþ1;s1;s2;nr;nr

s1 þ s2

subject to BTr̂nþ1 þ ATr̂nþ1 ¼ ~f

nr ¼
ffiffiffiffi
C

p
Dr̂; nT

rnr � 2s1

nr ¼ Dt
ffiffiffiffi
D

p
r̂nþ1; nT

r nr � 2s2

Fðr̂nþ1Þ� 0

ð37Þ

where the underlined terms are rotated quadratic cones (i.e.

(34)).

Additionally, the yield criterion in (37) has to be

reformulated as cones. The Drucker-Prager model is

adopted here with the yield function given as

F ¼ aI1 þ
ffiffiffiffiffi
J2

p
� k� 0 ð38Þ

where I1 ¼ rx þ ry þ rz and

J2 ¼ 1

6
½ðrx � ryÞ2 þ ðry � rzÞ2 þ ðrz � rxÞ2� þ r2

xy þ r2
yz

þ r2
xz

are the first invariant of the total stress and the second

invariant of the deviatoric stress, respectively. We assume

that the Drucker-Prager yield surface middle circumscribes

the Mohr–Coulomb yield surface. The material parameters

a and k can then be calculated by

a ¼ 2 sinuffiffiffi
3

p
ð3 þ sinuÞ

; k ¼ 6c cosuffiffiffi
3

p
ð3 þ sinuÞ

ð39Þ

where u and c are the friction angle and cohesion of the

Mohr–Coulomb yield function, respectively.

To cast the yield criterion as a standard cone, a new set

of variables q ¼ ðq1; q2; q3; q4; q5; q6; q7ÞT
is introduced

q ¼ Hrþ d ð40Þ

where

H ¼

�a �a �a 0 0 0

1=
ffiffiffi
6

p
�1=

ffiffiffi
6

p
0 0 0 0

0 1=
ffiffiffi
6

p
�1=

ffiffiffi
6

p
0 0 0

�1=
ffiffiffi
6

p

0
0

0

0

0
0

0

1=
ffiffiffi
6

p

0
0

0

0 0 0

1 0 0
0

0

1

0

0

1

2
66666664

3
77777775

and d ¼

k
0

0

0

0

0

0

2
666666664

3
777777775

ð41Þ

Then, the yield criterion can be expressed as a quadratic

cone

q1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
X7

j¼2

q2
j

vuut ð42Þ

given that

q1 ¼ �aI1 þ k;

ffiffiffiffiffiffiffiffiffiffiffiffiffi
X7

j¼2

q2
j

vuut ¼
ffiffiffiffiffi
J2

p
ð43Þ

Thus problem (37) can be rewritten as
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min
ðr̂;r̂Þnþ1;s1;s2;nr;nr ;q

i
s1 þ s2

subject to BTr̂nþ1 þ ATr̂nþ1 ¼ ~f

nr ¼
ffiffiffiffi
C

p
Dr̂; nT

rnr � 2s1

nr ¼ Dt
ffiffiffiffi
D

p
r̂nþ1; nT

r nr � 2s2

qi ¼ Hrinþ1 þ d

qi1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X7

j¼2

ðqijÞ
2

vuut ; i ¼ 1; 2; :::; NG

ð44Þ

which is a standard SOCP problem (32) and solved using

the interior-point method [1] available in the modern

optimization engine MOSEK [2]. An example of its

detailed implementation with the solver MOSEK can be

found in [53]. The non-associated plastic flow can be

considered in the proposed computational framework fol-

lowing [32], where an associated computational plasticity

scheme for non-associated frictional materials was devel-

oped. Specifically, the plastic potential function used in this

study is

G ¼ a0I1 þ
ffiffiffiffiffi
J2

p
� k0 ð45Þ

where a0 and k0 are the same expression as in Eq. (39) with

the friction angle being replaced by the dilation angle w. To

enforce the non-associated plastic flow rule, we approxi-

mate the yield function as

F � F	 ¼ a0I1 þ
ffiffiffiffiffi
J2

p
� ~k ð46Þ

where ~k ¼ k � ða� a0ÞIn�1
1 is updated by the first invariant

of the stress In�1
1 obtained at the last time step. As such, we

have oF	=or ¼ oG=or which guarantees the associated

computational scheme. The matrix H and d should also be

modified as

H ¼

�a0 �a0 �a0 0 0 0

1=
ffiffiffi
6

p
�1=

ffiffiffi
6

p
0 0 0 0

0 1=
ffiffiffi
6

p
�1=

ffiffiffi
6

p
0 0 0

�1=
ffiffiffi
6

p

0
0

0

0

0
0

0

1=
ffiffiffi
6

p

0
0

0

0 0 0

1 0 0
0

0

1

0

0

1

2
66666664

3
77777775

and d ¼

~k
0

0

0

0

0

0

2
666666664

3
777777775

ð47Þ

This scheme for handling non-associated plastic flow

rule has been applied successfully to geotechnical prob-

lems including, but are not limited to, bearing capacity of

foundations [32], slope stability [54], granular flow

[67, 73], landslides [53, 65] and consolidation [68].

4 Particle finite element technique

The particle finite element method (PFEM) combines the

particle approach and the Lagrangian FEM method. In each

time step of the PFEM calculation, the alpha-shape method

[16] is used to identify the boundaries of the computational

domain followed by mesh generation and Lagrangian finite

element analysis. By doing so, the PFEM inherits the solid

mathematical foundation of the FEM and the flexibility of

particle approaches in modelling large deformation prob-

lems. A recent review of the development and application

of the PFEM technique can be found in [13].

Given the potential of the PFEM for investigating many

practical engineering applications, the explicit 3D PFEM

Fig. 2 Boundary recognition using the alpha-shape method: a cloud of points; b Delaunay triangulation; c tetrahedral mesh after deleting

tetrahedrons with the diameter of their circumscribed spheres larger than ahe (a is a factor and he is the characteristic length of the mesh)
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has been developed for solving both fluid [18, 20] and solid

problems [72]. Here, we extend the PFEM formulation

developed in our previous study [64] to 3D modelling. The

proposed 3D PFEM model inherits the advantages of the

SOCP-FEM [4, 22, 33]. Its implicit time integration feature

also enables the use of a relatively large time step which is

required for quasi-static and low-to-medium dynamic

geotechnical problems. The PFEM calculation within each

time step includes: (i) updating the mesh nodes through the

obtained incremental displacement in the last time step; (ii)

identifying the boundaries of the computational domain

using the alpha-shape method; (iii) generating a new mesh

conforming to the identified boundaries; (iv) mapping field

variables from the old mesh to the new mesh using the

(a)

(b) (c)

Fig. 3 Bending of an elastic beam (with the Young’s modulus E = 1 GPa and Poisson’s ratio t = 0.0) under a linear load P: a model

configuration; b displacement in the z direction uz under the maximum load of P = 3000 kPa; c comparison between our numerical simulation

and the analytical solution for capturing the tip deflection ratio uz/L as a function of the loading parameter PL2/EI, where I is the inertial moment

of the beam

Fig. 4 Final deformation of the beam under the maximum load of P = 3000 kPa with four mesh configurations and the calculated tip deflection

ratios for several loading conditions. The contours illustrate the displacement uz distribution
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Unique Element Method [26]: for each new node, the old

mesh containing this node is first determined and the values

at the new node are interpolated based on the shape func-

tions and the node values of the old mesh; (v) solving the

equations over the new mesh by the Lagrangian FEM.

The alpha-shape method is implemented as follows. For

a cloud of particles shown in Fig. 2a, 3D Delaunay trian-

gulation is first used to construct a convex domain as

illustrated in Fig. 2b. The diameter of each circumscribed

sphere is calculated and compared to ahe, where a is a

factor (1.2–1.6) [19, 64] and he is the characteristic length

of the tetrahedral mesh which could be the average

diameter of all circumscribed spheres. Elements with

diameters great than ahe are deleted; otherwise, they are

retained. After this procedure, the boundaries are recog-

nised. As in the 2D PFEM [64], finite element meshes of

the 3D PFEM are also available when the boundary is

identified (Fig. 2c). However, the quality of the meshes

generated from this procedure can be low. Particularly,

sliver elements may appear when the four nodes of a

tetrahedral element are located nearly on a plane [12, 29].

These elements are likely to be distorted severely within a

single time step when soil flows, which would conse-

quently affect the simulation results producing unphysical

(a)

(b)

Fig. 5 Bending of an elastic beam under a moment applied at the right end (with the Young’s modulus E = 5 GPa and Poisson’s ratio t = 0.0):

a model configuration; b modelled beam geometry at four instants

Fig. 6 Modelled beam geometry at four instants with three more mesh configurations
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solutions. To eliminate this issue, a smoothing technique is

developed such that integration is carried out on cell-

s/patches rather than finite element meshes [39, 62, 72, 74,

76]. To ensure mesh quality, in this study, the mesh

topology and mesh nodes inside the domain are erased, and

a remeshing operation of the identified domain is con-

ducted using the robust mesh generator TetGen [23].

It should be stressed that the present PFEM technique is

based on the infinitesimal strain assumption with an

updated geometry, which is an approximation for large

deformation analysis. Despite somewhat errors may be

induced particularly for rotations, this modelling strategy

has proven to be efficient in handling large deformation

problems. The so-called sequential limit analysis is a typ-

ical example that was initially used for frame structure

analysis with large displacements [61]. It was later exten-

ded to plane-strain problems of the von Mises model with

non-linear isotropic hardening, and its convergence and

validation were demonstrated [36]. In geomechanics, this

method was used to analyse pipe-soil interactions during

large amplitude cyclic lateral displacements where satis-

factory agreements were achieved between the simulation

results and laboratory testing data [30]. Additionally, the

incremental small-deformation theory for large deforma-

tion analysis is also the core of the RITSS (Remeshing and

Interpolation Technique with Small Strain) method which

has been widely examined and used to analyse large-de-

formation geotechnical problems [26, 49, 52, 59]. It is also

notable that this technique has been implemented in 2D

PFEM to reproduce challenging large deformation prob-

lems such as water dam break, collapse of frictional

materials and submarine-landslide-generated waves, for

which satisfactory agreements between numerical simula-

tions and laboratory results are achieved [69].

5 Numerical examples

5.1 Bending of an elastic cantilever beam

To verify our model for solving large deformation prob-

lems in 3D, we first simulate the classical solid mechanics

problem of the bending of a thin elastic cantilever beam

subjected to (i) a linear load and (ii) a moment. The first

case is a problem of large deflection and moderate rotation

while the second is of large rotation. The analytical solu-

tions for both cases are available.

(a) (c)

(d)

(b)

Fig. 7 Collapse of a soil column: a model configuration; b final deposit profiles; c four instants showing the progressive failure of cohesive soils

with the velocity distribution illustrated; d four instants showing the progressive failure of cohesive soils with the equivalent plastic strain

distribution illustrated

Sliver elements

Fig. 8 Sliver elements (marked in red) generated during the

simulation without the remeshing procedure
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5.1.1 Bending under a linear load

In this example, a beam is subjected to a downward uni-

form linear load P as shown in Fig. 3a, which is a classical

benchmark for large deformation analyses [37, 77]. The

beam has a length of 10 m (in the x direction), a thickness

of 0.2 m (in the y direction) and a height of 1 m (in the

z direction). The Young’s modulus and Poisson’s ratio are

E = 1 GPa and t = 0.0, respectively, which are in line with

those from [77]. The uniform load of P = 3000 kPa is

applied along the top line of the right end of the beam in a

slowly ramped manner to mimic a quasi-static condition.

The beam is discretised using 693 elements (Fig. 3a). At

the end of each time step, the geometry of the beam is

updated based on the solved incremental displacement. The

contour of the displacement in z-direction for

P = 3000 kPa is plotted in Fig. 3b, which agrees well with

the one in [77]. In Fig. 3c, we also show the tip deflection

ratio uz/L as a function of the loading parameter PL2/EI,

where I is the inertial moment of the beam. Numerical

solutions are calculated with P = 100, 500, 1000, 1500,

2000, 2500 and 3000 kPa. Our simulation results show a

good agreement with the analytical solution (Fig. 3c).

To investigate the convergence of the numerical solu-

tion, we also simulate this problem with three additional

mesh configurations (386, 5232 and 12,279 elements). We

show the final deformation of the beam under the maxi-

mum load of P = 3000 kPa and present the calculated tip
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Fig. 9 Computational time for one-step PFEM analysis using different meshes

(b)

(a)

Fig. 10 3D modelling of a soil slope failure: a model geometry; b identified slip surfaces through a static analysis and the PFEM dynamic

simulation with reduction factor RF = 3

5648 Acta Geotechnica (2022) 17:5639–5653

123



deflection ratios obtained from the considered four mesh

configurations under loads in Fig. 4. As can be seen, the

deformations are nearly the same and the differences

between tip deflection ratios are minor, which demonstrates

the mesh convergence of the developed model.

5.1.2 Bending under a moment

In this example, a beam is subjected to a moment at the

right end, as shown in Fig. 5a. We model a longer beam

with the length L being 20 m and the Young’s modulus E is

5 GPa. Other parameters are the same as those in the

previous example. The beam is discretised using 1308

elements. According to [44, 77], the beam can be bent into

a circle when the moment is M = 2pEI/L. In our simula-

tion, the moment at the right end of the beam increases

gradually from zero to 2pEI/L. The numerical results at

four instants are displayed in Fig. 5b, where the beam is

progressively bent into a nearly perfect circle with a small

error of 3.75% compared to the analytical solution.

Moreover, numerical results of three mesh configura-

tions, i.e. two denser mesh configurations (4222 and 2586

elements) and a coarse mesh (716 elements) with thickness

(along the y direction) being 1 m, are also shown in Fig. 6.

Notably, no significant differences can be observed.

The above two examples (bending under a linear load

and a moment) verify our model for simulating solid

mechanics problems of large deflection and rotation.

5.2 Solid collapse

The collapse of cohesive and non-cohesive soils driven by

gravity is studied in this section. The soil column has a

length of 4 m and a height of 2 m (Fig. 7a). Such problems

have been simulated in the literature using the two-dimen-

sional SPH method with the Drucker-Prager model under a

plane strain condition (see [5, 11]). Here, we test our 3D

PFEM model using the following examples. The material

parameters are defined as follows [11]: the Young’s mod-

ulus E = 1.8 MPa, the Poisson’s ratio t = 0.3, the density

q = 1850 kg/m3, the friction angle u = 25�, the dilation

angle w = 0�, and the cohesion is c = 5 kPa for the cohesive

case and zero for the non-cohesive case. The thickness of

the soil column is set as 0.5 m in our 3D model. The domain

is discretised using 4973 tetrahedral elements. The left and

bottom surfaces are fixed while the front and back surfaces

(normal to the y axis) are fixed in the y direction. A constant

time step Dt = 0.02 s is used in our simulation which is in

contrast to a smaller time step Dt = 1.5 9 10–5 s used in

[11] where an explicit time integration scheme is adopted.

The final deposit profiles of the two cases calculated

from our 3D PFEM modelling are shown in Fig. 7b, which

are also compared to the 2D SPH simulation results from

[11]. In general, a good agreement is obtained, which

verifies the correctness of the 3D PFEM developed in our

work. We also show the snapshots of the progressive

failure of the cohesive soil at four instants with the con-

tours of the velocity and equivalent plastic strain fields

plotted in Fig. 7c and d, which also agree with those pre-

sented in [11].

To illustrate the necessity of remeshing after identifying

the computational domain, we also analyse the problem

using the meshes that are the by-product of the alpha-shape

procedure of boundary identification. It is shown that sliver

elements appear after several time steps of calculation (see

Fig. 8).

The computational efficiency of our 3D PFEM model is

also examined. We show the computational time for one

time step of incremental analysis of the above example

using different mesh configurations (with the number of

elements: 1097, 2671, 9448, 22,097, and 43,499). The

simulations are performed on a Dell desktop (i7-9700 CPU,

16 GB RAM). As seen in Fig. 8, the computation time for

the one-step simulation increases from 10 to 465 s when

the number of elements increases from 1097 to 43,499. The

computational time for re-identifying and remeshing the

(a) (b)

Fig. 11 PFEM simulation results for the slope failure with the reduction factor RF = 5: a velocity distribution at two instants; b final failure

pattern characterised by the distribution of equivalent plastic strain
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computational domain (PFEM technique) only occupies

around 5% of the total computational time (Fig. 9).

5.3 Soil slope failure

In practical geotechnical engineering applications, very

few soil slope failure problems can be simplified as 2D

systems. Actually, the geometry of a soil slope is usually

very complex such that a full 3D direct simulation is

needed. In this section, a 3D soil slope with a turning

corner following the one used in [8, 42] is simulated using

our 3D PFEM model.

The geometry of the slope is shown in Fig. 10a. The

slope has a height of 10 m and a slope ratio of 1:2. The

material parameters include: the density q = 2000 kg/m3,

the Young’s modulus E = 100 MPa, the Poisson’s ratio

t = 0.3, the cohesion c = 40 kPa, the friction angle

u = 20�, and the dilation angle w = 0�. We first perform a

static stability analysis of the slope using the classical shear

strength reduction method with a non-associated Drucker-

Prager yield criterion:

c
0 ¼ c=RF; tanu

0 ¼ tanu=RF ð48Þ

where the superscripts of prime denote the reduced

parameters in searching for the factor of safety (FOS)

during iterations, and RF is the reduction factor (the ratio

of the original parameters to the reduced parameters). We

use the bisection method to approach the critical situation

(RF = FOS), which is defined as the minimum strength

parameters required to stabilise the slope [53]. In our

simulation, the computational domain is discretised using

26,395 tetrahedral elements, and the model boundaries are

set as (i) fixed for the bottom, (ii) roller for the lateral, and

(iii) free for the top. The FOS calculated from our simu-

lation is 3.0 which is between the calculated FOSs of 2.86

in [42] and 3.12 in [8]. The slip surface captured in the

static analysis is shown in Fig. 10b, which is illustrated by

the field of equivalent plastic strain showing a good

agreement with the simulation results in [8, 42]. To further

present the capability of our 3D PFEM model in describing

the entire pre- and post-failure processes of the slope, we

re-analyse this problem using different reduced strength

parameters (c0 and u0). We first consider the critical con-

dition (RF = FOS) to study the dynamic deformation of the

slope using the strength parameters reduced by the FOS

calculated from the static analysis. The field of equivalent

plastic strain of the final slope profile is plotted in Fig. 10b.

It is shown that the slip surface (concentration of equiva-

lent plastic strain) is consistent with the one from the static

analysis. Comparing the final profile to the original slope

geometry, it is observed that the slope geometry is nearly

the same. This simulation indicates that the failure of

homogeneous slope moves along the slip surface (which is

the same as the one obtained from the static analysis) and

further stabilises after a very limited deformation under

critical condition, which is in line with our previous study

on a two-dimensional homogeneous slope [53].

To further present its capability in capturing rapid

movement of soil flow, we then analyse the scenario of a

larger reduction factor RF = 5 based on the PFEM model.

To investigate its performance, we calculate the statistics

of the mesh generated during the remeshing procedure

using a built-in function of TetGen [23]. The data show

that the largest and smallest dihedral angles are around

170� and 4�, respectively (sliver elements have dihedral

angles close to 0� or 180� [23]). The number of elements

with small dihedral angles (\ 5�) is quite small (e.g.

around 5), and the computational time for searching

numerical solutions at each time step is almost the same,

which implies the mesh quality is maintained good by

TetGen [23]. The post-failure process in this case lasts for

5 s. The velocity distribution and the equivalent plastic

strain are shown in Fig. 11, illustrating the slope failure

process. As shown in Fig. 11a, the maximum velocity

occurs at the top surface of the slope (see t = 0.25 s) and

the failure rapidly propagates, producing a fan-shaped body

at the end (see t = 2.5 s). Comparing the final failure pat-

tern (Fig. 11b) to the slip surface in Fig. 10b, it is shown

that the failed mass moves along the slip surface, while

higher mobility (lower reduced parameters c0 and u0)
causes a diffuse failure pattern. The simulation results

suggest that the weakening effect of material is a key to

unravelling the complexities of the dynamic process of

slope and more realistic constitutive relationships are

required (instead of the unphysical reduction factor used

here).

6 Conclusions

In this paper, a 3D PFEM model integrating elastoplasticity

is developed for modelling soil flow problems of large

deformation. In our PFEM model, the implicit finite ele-

ment formulation with a mixed quadratic-linear tetrahedral

element is developed based on a generalised Hellinger–

Reissner variational principle. The final formulation is cast

into a standard SOCP problem which can be resolved

efficiently using the interior-point method. It is shown that

the implicit feature enables the PFEM to use a relatively

large time step, which is of great importance for solving

geotechnical problems usually of either quasi-static or low-

to-medium dynamic nature. The computational domain is

constantly remeshed to avoid the generation of sliver ele-

ments. The proposed 3D PFEM for modelling large

deformation solid mechanics problems is verified based on

the classical beam deflection benchmark tests that
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demonstrated the accuracy of our model in capturing both

large displacement and large rotation. Additionally, the

capability and robustness of our model for simulating soil

flows are demonstrated by modelling the collapse of a soil

column using both cohesive and non-cohesive scenarios as

well as an application to simulating the failure of a 3D soil

slope with both the pre- and post-failure processes realis-

tically captured. The proposed 3D PFEM model can serve

as a basis for developing more advanced geoscientific

models for identifying potential slope failure and predict-

ing its sequential post-failure processes.
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