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Abstract
Slope stability in reservoirs depends on time-dependent triggering factors such as fluctuations of the groundwater level and

precipitation. This paper assesses the stability of reservoir slopes over time, accounting for the uncertainty of the shear

strength and hydraulic parameters. An intelligent surrogate model has been developed to reduce the computational effort.

The capability of two machine learning algorithms, namely Support Vector Regression and Extreme Gradient Boosting, is

considered to obtain the relationship between geomechanical parameters and the factor of safety. The probability of failure

of a hypothetical reservoir slope is estimated employing Monte Carlo simulations for different scenarios of drawdown

velocity. A sensitivity analysis is conducted to investigate the influence of the geomechanical parameters, regarded as

random variables, on the probability of failure. The results revealed that the coefficient of variation in the effective friction

angle and the correlation between effective cohesion and friction angle have the highest impact on the probability of

failure. The intelligent surrogate model can predict the factor of safety of reservoir slopes under rapid drawdown with high

accuracy and enhanced computational efficiency.
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1 Introduction

Rapid drawdown is one of the major causes of failure of

earth slopes subjected to changing river levels. The

decrease in the water level reduces the stabilizing effect of

the hydrostatic pressure on the slope. With rapid draw-

down, the internal pore water pressure (PWP) distribution

of a fine-grained slope reflects the initial water level for

some time. Three approaches have been proposed to

investigate this scenario: undrained analyses, flow methods

and coupled flow deformation analyses. The first group is

suitable for impervious materials and neglects the water

flow since the dissipation of PWP is much slower than the

decrease in the water level. Morgenstern [34] adopted this

approach and provided stability charts to estimate the

factor of safety during rapid drawdown. Lane and Griffiths

[28] developed a chart-based strategy to achieve safe

drawdown with 2D Finite Element (FE) undrained analy-

sis. The second approach, which is appropriate for per-

meable materials, solves the flow problem caused by the

change of hydraulic boundary conditions with time. The

underlying assumption is that the solid skeleton is rigid,

i.e., soil deformations are neglected. A fully coupled flow

deformation analysis was first proposed by Pinyol et al.

[42]. The authors highlighted the discrepancies between the

aforementioned approaches: the undrained analysis leads to

conservative and unrealistic results while pure flow anal-

yses underestimate the PWP. The authors validated the

coupled hydro-mechanical method by comparing the cal-

culated PWP with piezometer measurements from the

Canelles landslide in Spain [43].

These methods address rapid drawdown with a deter-

ministic approach, which uses the definition of the factor of

safety (FOS) to assess slope stability. In the last 20 years,

there has been growing interest in probabilistic methods for

geotechnical engineering, which incorporate the inherent

uncertainties of soil properties in the analysis and design of

geotechnical structures. In broad terms, reliability-based
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design (RBD) approaches describe the performance of a

system as a function of stochastic variables. RBD methods

can be classified based on different levels of sophistication:

semi-probabilistic (Level I), approximate probabilistic

methods (Level II) and fully probabilistic methods (Level

III). The first level is already implemented in Eurocode 0

[5] with the introduction of partial safety factors, which are

calibrated so that the required probability that a limit state

will not be exceeded is satisfied. Levels II and III estimate

the probability of failure (pf ) with analytical and numerical

methods, respectively.

The first attempts to assess slope stability within a

probabilistic framework [1, 7, 31] are based on the first and

second-order reliability method (FORM and SORM, Level

II) combined with limit equilibrium methods (LEM). The

limit state function is defined as G xð Þ ¼ FOS xð Þ � 1,

where x represents the stochastic variables. In FORM, the

limit state function is approximated by the first-order

Taylor series expansion (in SORM the Taylor series is

expanded to the second term) and the reliability is mea-

sured, according to the Hasofer–Lind method, by the

minimum distance between the origin of a standardized

coordinate system (e.g., X0
i ¼

Xi�lXi
rXi

) and the limit state

G xð Þ ¼ 0. The probability of failure can be obtained as

pf ¼ / �bð Þ. The main drawback of these methods lies in

the approximate estimation of pf . Alternatively, fully

probabilistic methods (Level III) can be employed for an

accurate estimation of pf , but at the expense of high

computational effort. For instance, a direct Monte Carlo

simulation requires approximately one million trials to

estimate a value of pf equal to 10�4 (which most closely

corresponds to the target reliability of 3.8 in a 50 years

reference period prescribed in Eurocode 0) with a coeffi-

cient of variation (COV) of 10% [15]. Conducting this

number of numerical simulations is time-prohibitive for

complex geotechnical analyses. A few studies have

attempted to perform reliability analysis to real case studies

of reservoir slopes with Monte Carlo simulations

[30, 53, 56]. The estimation of geomechanical parameters

in terms of statistical moments and distribution certainly

represents one of the greatest challenges in reliability

analysis. The other limitation is the computational cost.

Two strategies are available to increase the performance of

Monte Carlo simulations. The first reduces the sample size

with sampling techniques such as latin hypercube sampling

(LHS) [48], Importance Sampling and adaptive simulation

techniques, e.g., subset simulation [19, 38]. A second way

to achieve higher computational efficiency is to approxi-

mate the limit state function with a surrogate model or

response surface method (RSM). A simple mathematical

model or a more complex soft computing algorithm can be

applied to ascertain the relationship between the stochastic

parameters and the output of the limit state function or the

FOS. The following techniques have been extensively

explored in geotechnical reliability analysis: Hermite

polynomial chaos expansion (HPCE) [20–22], Kriging-

based RSM [55], support vector machines (SVM)

[23, 25, 26], Gaussian processes (GP) [24], extreme gra-

dient boosting (XGBoost) [52], artificial neural networks

(ANN) [49] and multivariate adaptive regression splines

(MARS) [54].

Recently, RBD methods are increasingly applied to

slope stability problems due to the augmented computa-

tional efficiency that can be reached with surrogate models.

Jiang et al. [20] proposed a non-intrusive stochastic FE

method based on HPCE to perform slope stability analysis

in spatially variable soils. The authors applied this method

to estimate the probability of failure of two illustrative

examples, namely an undrained clay slope and a c� u
slope. SVM was successfully employed together with

Monte Carlo simulations to solve slope reliability analysis

in the following studies [25, 29]. Optimization methods

like particle swarm optimization (PSO) and artificial bee

colony (ABC) have been integrated with SVM to enhance

the accuracy of their predictions [23, 26]. Gao et al. [10]

performed a reliability analysis of a slope under rapid

drawdown with FORM. Based on the numerical results

obtained with the finite difference method (FDM), the

authors applied a polynomial regression model to estimate

FOS from the following input parameters: slope angle,

reservoir water level, hydraulic conductivity and draw-

down rate. The last two parameters were considered as

stochastic and the impact of their uncertainty on the reli-

ability was investigated. A sensitivity analysis proved that

the hydraulic conductivity affects slope reliability with the

highest impact. Wang et al. [51] proposed a surrogate

model based on MARS to evaluate the probability of

failure of an earth dam under transient seepage and com-

pared different scenarios of rising upstream water level

velocity. Jiang et al. [22] conducted a reliability analysis of

an embankment under unsaturated seepage considering the

spatial variability of shear strength and hydraulic proper-

ties. The authors developed a surrogate model based on the

HPCE and conducted a sensitivity analysis to study the

impact of the variability of each random variable on pf .

Wang et al. [52] used the extreme gradient boosting

(XGBoost) algorithm to perform reliability analysis of an

earth dam. Both machine learning approaches for regres-

sion and classification were explored to assess slope sta-

bility and estimate pf .

In this study, an intelligent surrogate model is con-

structed to estimate the probability of failure of a reservoir

slope over time under rapid drawdown with the random

variable method. The uncertainties of the shear strength

and hydraulic parameters, including the curve fitting
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parameters of the soil-water characteristic curve (SWCC),

are modeled with a lognormal distribution. The surrogate

model is trained on an initial sample of data generated with

LHS. The problem is studied in the time frame after rapid

drawdown and the surrogate model is fed with the results

obtained at different time steps of the analysis. The per-

formance of two machine learning models, i.e., SVM and

XGBoost, is evaluated and compared. The surrogate model

with the best performance in terms of prediction accuracy

and computational efficiency is selected to estimate pf with

time. Section 2 presents the methodology used, namely the

deterministic model, the sampling scheme and the surro-

gate models that are tested. Section 3 presents the results

obtained for different scenarios of rapid drawdown. Sec-

tion 4 includes a sensitivity analysis of the stochastic

parameters.

2 Methodology

First, the problem is studied with a deterministic approach,

which consists of an unsaturated transient seepage analysis

and a slope stability limit equilibrium analysis based on the

Morgenstern–Price method. The modules SEEP/W and

SLOPE/W available in the commercial software GeoStudio

[32] are used to conduct the analyses. A homogeneous

slope with a simplified geometry is considered. The slope is

10 m high and has a slope ratio of 2:1 (Fig. 1). The initial

condition is a steady state seepage with the reservoir level

at 9 m above the foundation (19 m of elevation in Fig. 1).

Then, a constant total head of 19 m is applied on the right

side of the slope, while a linear function of the total head

with time is applied on the left side of the slope (including

the horizontal boundary of the foundation). This function

represents the linear decrease in the reservoir level with

time from 19 to 10 m, where the slope of the function is the

drawdown rate indicated for each scenario. A mesh

refinement analysis has been conducted to select a suit-

able mesh size. The results of deterministic simulations

with the mean values of the soil parameters provided in

Table 1 and with increasing mesh size have been com-

pared. It was found that a mesh size of one meter is

appropriate for the problem considered in this study.

Table 1 shows the soil properties of the slope, which are

the same of the foundation.

2.1 Transient seepage analysis

In the seepage analysis, only the soil above the foundation

(above 10 m elevation) is considered partially saturated,

while for the underlying part only a fully saturated analysis

is performed. The governing equation for two-dimensional

seepage through unsaturated soil was derived by Richards

[44], who extended Darcy’s law to unsaturated flow, and

can be expressed as:

o

ox
kx
oh

ox

� �
þ o

oy
ky
oh

oy

� �
þ Q ¼ oh

ot
ð1Þ

where kx and ky are the horizontal and vertical hydraulic

conductivity (i.e., in the x and y direction, respectively), h

is the total head, Q is an external applied boundary flux and

h is the volumetric water content. In unsaturated soils, h
varies depending on the matric suction w ¼ ua � uw, which

is the difference between the air and the water pressure.

This relationship is described by the soil–water character-

istic curve (SWCC). In this study, the model proposed by

Van Van Genuchten [11] has been adopted:

Fig. 1 Geometry of the slope and mesh of the seepage model

Table 1 Input soil parameters of the slope and the foundation

Analysis Parameter l COV Correlation (q)

Stability c0 5 kPa 0.30 qc0 ;u0 ¼ �0:5

u0 30� 0.20

c 20 kN m�3 - –

Seepage ks 1:16 � 10�6ms�1 0.60 –

a 28.44 kPa 0.40 qa;n ¼ �0:25

n 1.72 0.20

hs 0:5 m3 m�3 – –

hr 0:035 m3 m�3 – –
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h ¼ hr þ
hs � hr

1 þ w
a

� �nh im ð2Þ

where hr and hs are the residual and saturated water con-

tent, respectively, and a, n and m (with m ¼ 1 � 1
n) are

curve fitting parameters. The hydraulic conductivity, which

also depends on the volumetric water content, was derived

by van Genuchten based on Mualem’s model [36]:

kr ¼
k

ks

¼ S1=2
e 1 � 1 � S1=m

e

� �mh i2

ð3Þ

where kr is the relative hydraulic conductivity, defined as

the ratio between the unsaturated and the saturated

hydraulic conductivity (k and ks, respectively). Se is the

effective degree of saturation and is equal to:

SeðwÞ ¼
hðwÞ � hr

hs � hr

: ð4Þ

Figure 2 shows the SWCC and the unsaturated

hydraulic conductivity curves obtained with the hydraulic

parameters of Table 1. These equations are solved

numerically with the finite element method implemented in

SEEP/W. The resulting PWP and Se are the inputs for the

slope stability analysis.

2.2 Slope stability analysis

The factor of safety is defined as the ratio between the

resistive and the active forces acting on a slip surface. The

most critical slip surface that can develop within the slope

will result in the minimum FOS. In this study, the FOS is

calculated with the method of slices from Morgenstern–

Price. The shear strength of the unsaturated soil is

predicted with the extended Mohr–Coulomb failure crite-

rion derived by Vanapalli et al. [47]:

s ¼ c0 þ r� uað Þ tanu0 þ ua � uwð ÞSe tanu0 ð5Þ

where s is the shear strength, r is the total normal stress,

ðua � uwÞ is the matric suction w and c0 and u0 are the

effective cohesion and the effective friction angle,

respectively. This set of analyses, i.e., transient seepage

and slope stability, is repeated for a number of simulations

equal to the size of the sample for each random variable.

2.3 Estimation of the probability of failure

To reduce the number of simulations, the samples of the

random variables are generated with an extension of the

latin hypercube sampling (LHS) with the multidimensional

uniformity method [8] implemented in Python [35].

Compared to the direct Monte Carlo method, which gen-

erates pseudo-random numbers, LHS divides the range of

each stochastic variable into several intervals with equal

probability. This results in a better distribution of the

samples in the sample space. The correlation between

random variables is introduced using the methodology

proposed by Iman and Conover [17]. Correlation between

independent stochastic variables is induced by varying the

sample ordering in each marginal distribution, while

keeping the representative values untouched.

A batch script written in Python selects each combina-

tion of the generated samples and replaces the values of the

random variables directly in the GeoStudio files. The batch

script starts each deterministic simulation described in

Sects. 2.1 and 2.2 and then reads the factor of safety from

the results of each simulation. This procedure follows the

nonintrusive calculation proposed by Wang et al. [50].

Finally, the probability of failure is calculated as following:

(a) (b)

Fig. 2 Hydraulic parameters: a SWCC; b unsaturated hydraulic conductivity curve
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pf ¼
1

N

XN
i¼1

I FOS\1½ � ð6Þ

where N is the sample size and I½�� ¼ 1 is an indicator

function of slope failure (when failure occurs it is equal to

unity).

2.4 Surrogate models

An intelligent surrogate model is adopted to enhance the

computational efficiency while estimating pf . A limited

number of simulations serve as the training set, from which

the model learns the underlying relationship between input

parameters (e.g., shear strength and hydraulic parameters)

and the output, which is the factor of safety. The problem is

framed as regression, which means that a continuous value

of FOS is predicted. Two predictive models from machine

learning (ML) are considered in this study: support vector

regression (SVR) and extreme gradient boosting

(XGBoost). SVR presents several advantages. First, it has a

simple implementation and a good generalization capabil-

ity. Second, the model complexity of the model does not

increase with the number of input variables [3]. Besides,

XGBoost has high computational speed and can handle

large datasets as well as missing values.

2.4.1 Support vector regression

SVR is an extension of support vector machines (SVMs)

for regression problems [9]. The basic idea of SVM is that

the original data are mapped into a high-dimensional fea-

ture space by a function, which can be a nonlinear trans-

formation. A hyperplane is searched to separate the data for

classification or to find the narrowest tube that contains the

majority of the data for regression. The regression function

can be defined as:

f ðxÞ ¼ wT/ðxÞ þ b ð7Þ

where / is the nonlinear mapping function, w and b are the

weight vector and the offset, respectively. These parame-

ters can be found by minimizing an objective function

subject to some constraints, which aim to limit the dis-

crepancy between the predicted and the measured output to

a threshold value �. A soft margin approach can be adopted

to allow a number of data to be outside of the �-tube by

introducing slack variables. The objective function can be

written as:

Lobj ¼
1

2
wTwþ C

Xn
i¼1

ni þ nHi
� �

ð8Þ

where the first term represents the complexity of the model,

C is a penalty parameter and n and nH are the slack

variables. To estimate these parameters, the objective

function is minimized subject to the following constraints:

yi � wT/ðxiÞ � b 6 �þ ni
wT/ðxiÞ þ b� yi 6 �þ nHi

ni; n
H

i � 0; i ¼ 1; . . .; n

8><
>: ð9Þ

As mentioned, the function f(x) can be also nonlinear and

in this case, data can be mapped into a higher dimension

space, called kernel space, where all the data can be lin-

early separated. All instances xi are replaced with a kernel

function Kðxi; xjÞ, which is, in this study, the radial basis

function (RBF):

Kðxi; xjÞ ¼ exp �c xi � xj
�� ��2

� �
ð10Þ

where c is a hyperparameter that can be manually tuned.

Hyperparameter tuning is then applied to search for the

optimum values of the hyperparameters C and c.

2.4.2 Extreme gradient boosting

The XGBoost algorithm is an ensemble ML algorithm

based on gradient boosted decision trees. It can be used

both for regression and classification problems. This

model, which was developed by Chen and Guestrin [6],

recently became very popular for winning several ML

competitions [4] because of its high execution speed and

model performance. Ensemble decision trees are the base

learners that predict the output (which is in this study FOS)

by means of K additive functions:

ŷi ¼
XK
k¼1

fkðxiÞ; fk 2 F ð11Þ

where fk is the function describing one independent tree, F
is the space of all possible regression trees, xi are the input

features and ŷi are the predicted output. In supervised

learning, the training phase serves to fit a model that relates

the output to the input features with the best fit. The

goodness of fitting can be measured with an objective

function that consists of two terms: the training loss (e.g.,

the mean squared error) and the regularization term, which

controls model complexity (hinders overfitting), as

described in Eq. (12) [6].

Lobj ¼
Xn
i¼1

lðyi; ŷiÞ þ
XK
k¼1

XðfkÞ ð12Þ

The regularization term is defined as:

Xðf Þ ¼ cT þ 1

2
k
XT
j¼1

w2
j ð13Þ

where w represents the score on a leaf and T is the number
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of leaves in the tree [6]. An additive strategy is applied to

train the model; each new tree learns from the previous one

and the prediction value at the time step t would be:

ŷi
ðtÞ ¼

Xt

k¼1

fkðxiÞ ¼ ŷi
ðt�1Þ þ ftðxiÞ ð14Þ

The objective function at the time step t is defined as:

LðtÞ
obj ¼

Xn
i¼1

lðyi; ŷit�1 þ ftðxiÞÞ þ XðftÞ ð15Þ

The loss function can be approximated to the second-order

Taylor series expansion and the objective function can be

rewritten:

LðtÞ
obj ¼

Xn
i¼1

lðyi; ŷiðt�1ÞÞ þ giftðxiÞ þ
1

2
hif

2
t ðxiÞ

	 

þ XðftÞ

ð16Þ

where gi ¼ oŷðtÞ�1Þ lðyi; ŷiðt�1ÞÞ and hi ¼ o2

ŷðt�1Þ lðyi; ŷiðt�1ÞÞ are

the partial derivatives of the first and second order of the

loss function. The final form of the optimization function

can be obtained by removing all the constant terms:

LðtÞ
obj ¼

Xn
i¼1

½giftðxiÞ þ
1

2
hif

2
t ðxiÞ� þ XðftÞ ð17Þ

2.4.3 Preprocessing

The available dataset is divided into training and test set,

with a ratio of 70–30%, which is a compromise between

the subdivision in two thirds–one third [27] and the Pareto

principle (also known as 80–20 rule). This ratio is a com-

mon choice in machine learning practice, although other

train–test ratios are also available (e.g., 60–40%, 80–20%

and 90–10%) [46]. However, the optimal train–test split

ratio can be generally determined with a trial-and-error

procedure [37]. In this study, the performance of the sur-

rogate model with the selected train–test ratio has been

compared with the following ones: 60–40%, 80–20% and

90–10%. For all tested split ratios, the performance in both

training and test shows negligible discrepancy, meaning

that the split ratio has a little influence on the predictive

performance of the surrogate model. Cross-validation (CV)

is applied to prevent overfitting: the training set is split into

k groups or folds and the model is trained on k � 1 folds

and validated on the remaining one. After cross-validation,

a mean model performance score over all folds is provided.

This process can be combined with the model selection

phase, when the hyperparameters that give the best per-

formance in terms of a prediction score are selected. For

the SVR, the optimization of the hyperparameters is

performed with two techniques, namely the randomized

search and the Bayes search, which are part of the scikit-

learn [39] and the scikit-optimize libraries [14], respec-

tively. In the randomized search, a set of values is ran-

domly sampled from a statistical distribution for each

hyperparameter, i.e., C and c. Since these hyperparameters

take continuous values, a log-uniform distribution is cho-

sen to generate random samples of the parameter space.

Finally, the algorithm searches the best values for the

hyperparameters. Similarly, the Bayes search samples

possible hyperparameters values from a given distribution.

Based on Bayes’ theorem, this algorithm uses the acquired

information to find the values of the hyperparameters that

are likely to increase the model’s performance.

2.5 Stochastic parameters

In this study, the effective cohesion (c0), the effective

friction angle (u0), the saturated hydraulic conductivity (ks)

and the curve fitting parameters of the SWCC (a and n) are

modeled as random variables. The mean values (l), the

coefficients of variation (COV) and correlation (q) are

shown in Table 1. The random variables have a lognormal

distribution to avoid unrealistic negative values. A lower

bound of 1.05 is imposed to the parameter n to fulfill the

condition 0� Se � 1 [22] and an upper bound of 45� is

imposed to the parameter u0 to discard values of the

effective friction angle that deviate from the geotechnical

practice. The samples from a truncated lognormal distri-

bution are generated with the R package EnvStats [33]. A

negative correlation is imposed between the effective

cohesion and the effective friction angle as well as between

the parameters a and n of the SWCC. Phoon et al. [41]

found out that among several classical distributions (e.g.,

normal, gamma, exponential) the lognormal distribution is

the most suitable to describe the variability of the curve

fitting parameters a and n of the SWCC. Typical values of

the COV of the shear strength and hydraulic parameters are

found in [22, 40]. Phoon et al. [41] investigated the cor-

relation between a and n for different types of soil and

found out that these two parameters are negatively corre-

lated with each other, with a range of qa;n from - 0.5 to

- 0.25%.

The sample size of the shear strength and hydraulic

parameters used for training the surrogate model is 2000

samples. Running 2000 simulations with GeoStudio on a

desktop computer with a processor speed of 2.40 GHz and

a RAM memory of 8GB took approximately 18 hours.

Figure 16 in Appendix shows the distribution of the sam-

ples and the correlation between the parameters c0 and u0

and between a and n. An overview of the implementation

procedure is depicted in Fig. 3.
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Fig. 3 Implementation procedure for the estimation of pf with surrogate model
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3 Results

The seepage analysis and the slope stability analysis are

conducted for each sample combination (i.e., 2000 times)

and for each time step of the transient seepage analysis.

The drawdown rate is 1:8 m d�1: the reservoir level

reaches 10 m elevation after 5 days. In Fig. 4, the distri-

bution of the PWP is shown before and after drawdown.

The PWP and the effective degree of saturation are the

inputs of the slope stability analysis and the FOS is cal-

culated with the Morgenstern–Price method. Table 2

illustrates the FOS calculated with the LEM at each time

step. These results are obtained by setting the mean values

of the shear strength and hydraulic parameters of Table 1.

A first estimation of pf can be achieved according to

Eq. (6). Figure 17 in Appendix shows the probability of

failure with increasing number of simulations at each time

step. However, the number of samples provided may not be

sufficient to accurately estimate pf , especially for very low

values of pf . The surrogate model is tested on a larger

sample to overcome this limitation. A direct Monte Carlo

simulation generates 105 combinations of input parameters.

Instead of calculating the FOS with GeoStudio for each

combination, the surrogate model is employed to predict it.

The input parameters (also called ‘‘features’’ in machine

learning) are the shear strength and the hydraulic parame-

ters. FOS is the output parameter, which is calculated at

each time step: this means that the surrogate model is re-

trained at each time step of the simulation. Finally, a more

accurate estimation of pf is obtained from Eq. (6).

Two methods from ML are tested, namely SVR and

XGBoost. For the former algorithm, two different opti-

mization techniques for hyperparameter tuning are applied

and compared: randomized search and Bayes search as

described in Sect. 2.4. A fivefold cross-validation is

applied both to SVR and XGBoost. Table 3 shows the error

metrics for the test set in terms of coefficient of determi-

nation (R2), Root mean squared error (RMSE) and Mean

Absolute Error (MAE). SVR reaches high accuracy with

both optimization techniques. However, the XGBoost

method has superior performance, with a test R2 higher

than 98.7%, and it is also computationally more efficient.

Therefore, the XGBoost algorithm is selected for the esti-

mation of pf and for a sensitivity analysis of the stochastic

parameters. Figure 5 compares the FOS calculated with the

Morgenstern–Price method, and the values obtained with

the XGBoost model for the test set (i.e., 30% of the 2000

samples) of the time step no. 0. The predicted values are in

good agreement with those calculated by the GeoStudio

software, showing that the XGBoost model is capable of

predicting the factor of safety with high accuracy.

The XGBoost model is used to predict FOS in 4 dif-

ferent scenarios of drawdown rate v: 0:5 m d�1, 1 m d�1,

1:8 m d�1 (as set in Sect. 3) and 3 m d�1. The water level

of the reservoir linearly decreases with time, until it

reaches 10 m elevation after 18 days in scenario 1, after

9 days in scenario 2, after 5 days in scenario 3 and after

3 days in scenario 4 (Fig. 6). For each scenario, the

XGBoost model is trained on a different dataset: the input

parameters (c0;u0; ks; a; n) are sampled according to the

statistics in Table 1. The output of the model (i.e., FOS) is

calculated at each time step with GeoStudio. It takes

approximately 30 s to train the XGBoost model for each

scenario. Figure 6 shows FOS obtained with the mean

values of the soil parameters in Table 1 and pf , which is

estimated with the predictions of the XGBoost model

(through Eq. 6).

As shown in Fig. 18 in Appendix, pf converges to a

stable value after approximately 60,000 simulations except

the time steps no. 0, 1 and 2, where pf is less or approxi-

mately equal to 1%. In these last two cases, pf does not

converge after 100,000 simulations, indicating that a higher

number of simulations would be necessary for a more

accurate estimation. The uncertainty related to the esti-

mated pf can be obtained as follows: COVpf
¼

ffiffiffiffiffiffiffiffi
1�pf

n pf

q
[2],

where n ¼ 105. For time step 1 (after 12 h from rapid

drawdown), this value is equal to 31.62%, which is slightly

above the target COVpf
of 30% [19, 40] indicated in the

literature. Therefore, the potential inaccuracy of the results

at time step 1 should be treated with caution. At time step 2

(after 24 h), COVpf
is equal to 2.46%, much lower than the

suggested threshold and, consequently, the estimated value

of pf can be considered acceptable.

4 Discussion

A minimum factor of safety of 1.5 should be satisfied in

steady-state conditions [16], but a lower FOS of 1.1–1.2

can be assumed acceptable under rapid drawdown [28, 45].

As expected, a higher drawdown velocity implicates a

lower critical FOS and the variation of pf with time mirrors

this behavior. Siacara et al. [45] verified that the critical

time in terms of minimum FOS and maximum pf do not

necessarily coincide. In this study, this effect may not be
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Fig. 4 Distribution of the PWP in the slope (the dashed red and blue lines represent the critical slip surface and the water table, respectively)
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visible due to the frequency of the calculation steps in the

seepage and slope stability analysis. However, according to

the mentioned study, the critical FOS arises before the

critical pf , with 24 hours of delay for a drawdown rate of

2 m d�1 and 3 days for 0:5 m d�1. Following this rea-

soning, the peak in pf (Fig. 6) may occur slightly later in

time, which could be verified by increasing the frequency

of the calculations steps. As shown in Fig. 6, the peak of pf

occurs when the reservoir level is stable at 10 m elevation

or at the previous time step. In the first (v ¼ 0:5 m d�1)

and second scenario (v ¼ 1 m d�1), this corresponds to

15 days with pf ¼ 22:81% and to 8 days with

pf ¼ 38:04%, respectively. In the third scenario (whose

results are also shown in Figs. 17 and 18), the peak of pf

takes place exactly when the minimum water level is

reached, that is, after 5 days with pf ¼ 48:72%. The last

scenario has the highest drawdown rate (v ¼ 3 m d�1): the

maximum pf occurs after 2 days with pf ¼ 72:42%, while

the water level is constant at 10 m starting from 3 days

after drawdown.

The feature importance is calculated for the test set

using XGBoost. This parameter is defined as the variation

in a model performance score (in this study R2) after ran-

dom permutation of a single feature. If the model perfor-

mance score drops significantly after the random shuffle of

a particular feature, the model is thus greatly dependent on

this one. Figure 7 shows the feature importance of the

effective friction angle u0, the effective cohesion c0 and the

curve fitting parameters a and n. The shear strength

Fig. 5 Validation of the XGBoost model on the test set of time step

no. 2. The dashed line represents a 45� line

Table 2 FOS for each time step calculated with the mean values of

the parameters

Time step no. Time (days) FOS

0 0 1.81

1 0.5 1.55

2 1 1.38

3 2 1.16

4 3 1.03

5 5 1.02

6 8 1.13

7 11 1.18

8 15 1.23

9 22 1.27

10 30 1.31

Table 3 Error metrics of the surrogate models for the test set

Time step no. SVR SVR XGBoost

(Randomized search) (Bayes search)

R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE

0 0.982 0.040 0.031 0.979 0.044 0.036 0.993 0.024 0.015

1 0.978 0.037 0.029 0.978 0.037 0.030 0.992 0.022 0.015

2 0.975 0.035 0.026 0.976 0.034 0.026 0.991 0.020 0.014

3 0.952 0.040 0.031 0.958 0.037 0.030 0.990 0.018 0.012

4 0.941 0.039 0.031 0.943 0.038 0.031 0.987 0.018 0.012

5 0.960 0.034 0.026 0.962 0.033 0.026 0.992 0.015 0.010

6 0.970 0.035 0.027 0.966 0.037 0.031 0.990 0.020 0.013

7 0.976 0.033 0.026 0.964 0.041 0.034 0.991 0.021 0.014

8 0.980 0.033 0.025 0.979 0.033 0.025 0.989 0.024 0.016

9 0.981 0.033 0.025 0.982 0.033 0.024 0.988 0.026 0.017

10 0.980 0.035 0.026 0.979 0.036 0.030 0.990 0.026 0.017
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parameters exhibit the highest feature importance, with

values that range from 76 to 92% for u0 and from 5 to 23%

for c0. An interesting aspect that emerges from Fig. 7 is the

variation in the feature importance with time. For each time

step, the surrogate model is trained with the same features

(i.e., the samples of the random variables) but with dif-

ferent data for the label (i.e., FOS). Thus, the feature

importance will change with each time step and conse-

quently with the reservoir level. In general, the feature

importance of u0 decreases for the duration of the draw-

down, and then, it increases as the reservoir level is con-

stant. A visible drop occurs earlier in time with increasing

drawdown rate. The reversed trend is observed for c0. As

the water level decreases, the feature importance of c0

Fig. 6 Variation of the reservoir water level, FOS and pf with time for different drawdown rates
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increases until a peak is reached. Similar to the previous

case, the peak is found earlier in time as the drawdown rate

increases. The feature importance of the curve fitting

parameters of the SWCC is much lower, below 2% for a

and below 0.1% for n. A general increase in the feature

importance of a and n can be observed after rapid draw-

down, when the reservoir level is stable at 10 m. The

parameter a increases asymptotically with time, while n

has a peak approximately at the end of the drawdown,

whose magnitude increases with higher drawdown rate.

The feature importance of ks is omitted because lower than

0.5%. The observed results are interpreted as follows. With

reference to Eq. (5), the shear strength can be divided into

three components: cohesive, frictional and suction strength.

As the reservoir level drops, the water load on the slope

surface decreases together with the frictional strength along

the slip surface. When the reservoir level becomes stable at

10 m, the pore water pressure in the slope dissipates and

the frictional strength rises, reflecting the variation in the

feature importance of the u0. Regarding the curve fitting

parameters a and n, the suction strength slowly increases

with time, thus resembling the pattern of their feature

importance. However, it is important to point out that the

correlation between the random variables can influence the

results of the feature importance analysis. When the

instances of a feature are permuted, the relationship

between features and label (or input and output parameters)

can be still obtained from the correlated feature [39]. This

could explain the variation in the feature importance of c0

that mirrors the one of u0, although the cohesive strength is

(a) (b)

(c) (d)

Fig. 7 Feature importance of the input parameters: a u0; b c0, c a; d n

Table 4 Range of the coefficients of variation and correlation for the

sensitivity analysis

Parameter Range

COVc0 0.2–0.5

COVu0 0.05–0.2

COVks
0.3–0.9

COVa 0.2–0.8

COVn 0.1–0.4

qc0 ;u0 � 0.5–0.5

qa;n � 0.5–0.5
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(a) Scenario 1: v = 0.5md−1

(b) Scenario 2: v = 1md−1

(c) Scenario 3: v = 1.8md−1

(d) Scenario 4: v = 3md−1

Fig. 8 Variation of pf with COVu0

Acta Geotechnica (2022) 17:1071–1096 1083

123



Fig. 9 Variation of pf with COVu0 : a scenario 3 (v ¼ 1:8 m d�1) after 5 days; b scenario 4 (v ¼ 3 m d�1) after 2 days
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constant with time. Similar outcomes in terms of relative

importance between features are presented by Wang et al.

[51]. The authors evaluate the feature importance of the

shear strength and hydraulic parameters of a surrogate

model based on MARS. This model is applied in the

probabilistic analysis of an earth dam slope under transient

seepage. Although the absolute values of the feature

importance are not directly comparable with those of this

study, a general trend in terms of relative importance of the

individual features can be identified. The results of Wang

et al. [51] show that the shear strength parameters have the

(a) Scenario 1: v = 0.5md−1 (b) Scenario 2: v = 1md−1

(c) Scenario 3: v = 1.8md−1 (d) Scenario 4: v = 3md−1

Fig. 10 Variation of pf with COVc0

(a) (b)

Fig. 11 Variation of pf with COVc0 : a COVc0 ¼ 0:20 and b COVc0 ¼ 0:50
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(a) Scenario 1: v = 0.5md−1

(b) Scenario 2: v = 1md−1

(c) Scenario 3: v = 1.8md−1

(d) Scenario 3: v = 3md−1

Fig. 12 Variation of pf with qc0 ;u0
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Fig. 13 Variation of pf with qc0 ;u0 : a scenario 2 (v ¼ 1 m d�1) after 8 days; b scenario 4 (v ¼ 3 m d�1) after 2 days
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(a) Scenario 1:v = 0.5md−1

(b) Scenario 2:v = 1md−1

(c) Scenario 3: v = 1.8md−1

(d) Scenario 4: v = 3md−1

Fig. 14 Variation of pf with time and COVa
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highest importance, which is approximately ten times

higher than that of the hydraulic parameters (a, n and ks).

4.1 Sensitivity analysis

A sensitivity analysis is conducted to study the effect of the

uncertainty of each soil parameter regarded in this study as

stochastic (i.d. c0, u0, ks, a and n) and their correlation

(qc0;u0 and qa;n) on pf . The considered ranges of COV

(Table 4) are similar to that reported by Jiang et al. [22]. As

the COV of one parameter or the coefficient of correlation

is modified, the other parameters are untouched and take

the same values as shown in Table 1. A new dataset is

generated with a direct Monte Carlo simulation (105 sam-

ples) according to the variation in the COV or of the

coefficient of correlation that is of interest. For each sce-

nario and each time step of the simulation, an XGBoost

model previously trained (Sect. 3) is saved and tested on

the new sample. This operation takes approximately 65 s,

with a total time of 1 h required to estimate pf for all the

cases included in the sensitivity analysis.

4.2 Effect of COV of the shear strength
parameters on the probability of failure

The effect of the uncertainty of c0 and u0 is investigated for

all scenarios. Figure 8 shows the variation of pf with time

(left side) and with increasing COVu0 (right side) for the

different scenarios presented above. The general trend is of

increasing pf with increasing COVu0 , which was also found

by Jiang et al. [22], Wang et al. [51]. The maximum gain in

pf is found in the scenarios 3 and 4 (Fig. 8c, d) at the time

steps 8 and 5 days, respectively, with an increase of

23.72% and 24.14% due to COVu0 varying from 0.05 to

0.20. In scenario 2, the highest increment of pf (Fig. 8b) is

slightly above 22% at time steps 5 and 8 days.

An interesting aspect to look at is that, when the abso-

lute value of pf is at its peak (time steps 15, 8, 5 and 2 days

in scenarios 1, 2, 3 and 4), the increase of pf reduces

between scenarios with increasing drawdown rate. The

extreme case is observed in scenario 4 (Fig. 8d), where pf

reduces with increasing COVu0 at time steps 2 and 3 days.

The reason for this is explained in Fig. 9, where the safety

and failure regions are shown for scenario 3 after 5 days

(a) Scenario 1: v = 0.5md−1 (b) Scenario 2: v = 1md−1

(c) Scenario 3: v = 1.8md−1 (d) Scenario 4: v = 3md−1

Fig. 15 Variation of pf with COVn
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(on the left side) and scenario 4 after 2 days (on the right

side). These conditions represent the peaks of pf in these

two scenarios. The red and the green points represent slope

failure and safety, respectively. In scenario 3, pf is lower

than 50% and the mean value of FOS, which is the center

of gravity of the data, is in the safety region (left side of

Fig. 9). When COVu0 increases, the datapoints spread in

the direction of u0 and more datapoints belong to the

failure region. In scenario 4 (right side of Fig. 9), the mean

of FOS is lower than 1 and the center of gravity of the data

lies in the failure region. In this case, the reversed behavior

is observed: as COVu0 increases more datapoints will

belong to the safety region. This aspect was also observed

by Griffiths and Fenton [12], Javankhoshdel and Bathurst

[18] showing that for slopes with FOS lower than 1, pf

decreases with increasing COV. Generally speaking, a low

COV or a low standard deviation imply that the data are

more closely distributed to their mean values. When COV

increases, the likelihood that a realization belongs to the

opposite region of that of the mean value is higher.

The effect of COVc0 on pf is less significant than of the

effective friction angle. This is probably due to the type of

soil that has been considered in this study (e.g., clayey

sand), where the contribution of the cohesion to the shear

strength is limited. The variation of pf with COVc0 is very

small for all scenarios, always lower than 4%. In Fig. 10,

an increasing trend can be identified predominantly at the

time steps that correspond to a reduction in the water level.

In scenario 1, this corresponds to the time steps from 0 to

11, in scenario 2 from 0 to 5 days, in scenario 3 from 0 to

3 days and in scenario 4 from 0 to 1 day. A positive cor-

relation between pf and COVc0 was also found by Jiang

et al. [22]. However, when the water level is constant at

10 m, pf slightly decreases. As already mentioned, the

effect of COVc0 on pf is very limited if compared with that

of COVu0 . Figure 11 shows that the increase of COVc0

produces an expansion of both safety and failure regions in

the direction of the effective cohesion. For a

COVc0 ¼ 0:50, the limit between the safety and failure

region becomes a horizontal line after 10 kPa. This means

that for an effective cohesion higher than 10 kPa the

influence of c0 on pf is very small or negligible.

4.3 Effect of the correlation of the shear
parameters

The influence of qc0;u0 on pf is also investigated. In all

scenarios, pf clearly increases with increasing correlation

(from negative to positive) (Fig. 12). The maximum

increase of pf with increasing qc0;u0 is of approximately

10% in scenarios 1, 2 and 3. The trend previously observed

is not generally valid for scenario 4 (Fig. 12d): when pf is

higher than 50% pf decreases with increasing qc0;u0 . The

reduction in pf at time steps 2 and 3 days is equal to 6.33%

and 3.69%, respectively.

Figure 13 shows this trend in terms of failure and safety

regions, which are represented by 105 data points generated

with a direct Monte Carlo simulation. The left side illus-

trates the results of scenario 2 at the time step 8 days, while

scenario 4, at the time step 2 days (when pf is higher than

50 %), is shown on the right. A correlation between the

shear parameters determines a deformation of the shape of

the c0 � u0 region that includes all the realizations (green

and red data points). Low and Tang [31] performed a

probabilistic slope stability analysis with FORM and

showed that two correlated normal variables in the original

space form a tilted ellipsoid centered at the mean. A neg-

ative correlation implies more frequent combinations of

low values of effective cohesion coupled with high values

of effective friction angle and vice versa. When a positive

correlation is considered, the region is tilted in the opposite

direction, corresponding to more frequent combinations of

high values of both effective cohesion and effective friction

angle (or low values of both parameters). In scenarios 1, 2

and 3, when pf is always lower than 50%, an increase in

qc0;u0 (from negative to positive) produces an increase in pf .

Conversely, in scenario 4 (time step 2 and 3 days), an

increase in qc0;u0 contributes to a reduction in the failure

region. These results generally agree with those obtained

by Griffiths et al. [13], where the authors state that when

pf\50% a positive correlation is conservative and when

pf [ 50% the opposite is true.

4.4 Effect of COV of the hydraulic parameters
on pf

The influence of the uncertainty of the hydraulic parame-

ters ks, a and n on pf is examined. The hydraulic conduc-

tivity has a negligible influence on pf , with a variation of pf

below 0.5% in all scenarios. Therefore, a positive or neg-

ative correlation between pf and COVks
is not appreciable.

The parameter a influences pf with an interesting ten-

dency. The probability of failure increases with increasing

COVa (Fig. 14), but this variation becomes more signifi-

cant when the minimum water level of 10 m is reached.

The right side of Fig. 14 shows the variation of pf with

COVa. The maximum variation of pf observed in the 4

scenarios (ordered with increasing drawdown rate) is equal

to 2.11%, 2.04%, 2.85% and 2.03%, respectively.

The influence of the curve fitting parameter n on pf is

very limited (Fig. 15). A slight increase of pf with

increasing COVn is found before the minimum level of the

reservoir is reached. This moment corresponds to the time

steps 11, 5, 3 and 2 days in scenarios 1, 2, 3 and 4,
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respectively. Afterwards, this tendency changes into a very

small decrease of pf with COVn, below 0.6%.

4.5 Effect of the correlation of the curve fitting
parameters a and n

The influence of the correlation between a and n is not

significantly affecting pf . For each scenario there is a slight

tendency of pf to decrease with increasing qa;n (from

negative to positive), but the variation is lower than 1%.

Evidence of this trend is provided by Wang et al. [51] and

Jiang et al. [22].

5 Conclusions

This study proposes an intelligent surrogate model to

estimate the probability of failure of reservoir slopes under

rapid drawdown. This approach enables to perform relia-

bility analysis of complex geotechnical problems with little

computational effort. The LHS method is used to produce a

sample of the soil parameters that constitutes the input

features of the surrogate model. A deterministic approach

that includes a transient unsaturated seepage and a slope

stability analysis is applied for each sample combination to

calculate FOS, which is the output predicted by the sur-

rogate model. This dataset represents the training set of the

surrogate model, which is then tested on a much larger

sample, generated with a direct Monte Carlo simulation to

accurately estimate the probability of failure. Two algo-

rithms are tested and compared: SVR and XGBoost.

XGBoost proves to be superior both in terms of compu-

tational efficiency and accuracy, with a testing perfor-

mance in terms of R2 above 98% against 94% of SVR. This

model is employed to estimate the probability of failure of

a slope in four different scenarios with increasing draw-

down rates.

A sensitivity analysis has provided insights into the

influence of each soil parameter considered as stochastic

(i.e., c0;u0; ks; a and n) on the probability of failure. The

effective friction angle has, in terms of COVu0 , the highest

impact on pf , followed by COVc0 , COVa, COVn and

COVks
. The variation of pf due to the COV of the random

variables depends on the drawdown rate as well as the

reservoir level. For a COVu0 growing from 0.05 to 0.20, pf

achieves an increase between 21% and 24% depending on

the drawdown rate. It is also found that an increase in the

COV generally causes a rise of pf when this is lower than

50% (i.e., FOS[ 1), but this effect is reversed when pf is

higher than 50%. This is caused by the position of the mean

value of the shear strength parameters relative to the failure

and safety regions. Furthermore, a positive correlation

between the shear strength parameters c0 and u0 is con-

servative when pf is lower than 50%. A rise in pf between 8

and 10% is observed in all scenarios when qc0;u0 increases

from - 0.5 to 0.5. A feature importance analysis has

highlighted on which input parameters the surrogate model

mostly depends, namely u0 and c0, with a maximum rela-

tive importance of 92% and 23%, respectively, depending

on the drawdown rate and time step of the analysis. These

results are consistent with those of the sensitivity analysis

suggesting that reducing the variability of the effective

friction angle with extensive site investigations would also

aid in reducing pf .

This work presents some limitations. The limit equilib-

rium method is applied to solve the slope stability analysis,

and thus, the stress–strain behavior of the soil is not con-

sidered. Another issue is the spatial variability of soils,

whose effect on pf has not been investigated. However, this

work represents a benchmark study of a time-dependent

reliability analysis with intelligent surrogate models and a
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basis of future research on the effect of the spatial vari-

ability of soils. Finally, this study has shown that intelligent

surrogate models can be successfully used to perform

probabilistic slope stability analysis and are capable of

identifying the soil parameters with the major impact on

the probability of failure.

Appendix

See Figs. 16, 17 and 18.

Fig. 16 Sample distribution and correlation between parameters
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Fig. 17 Probability of failure estimated with GeoStudio (zres is the reservoir level at the corresponding time step)
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