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Abstract
Pile foundations supporting tall structures, such as wind turbines, chimneys, silos, elevated water tanks or bridge piers, are

subjected during their life span to remarkably eccentric loads. These may lead to significant rotations which, however,

cannot exceed the limiting values corresponding to the safe operation of the structure. A physically motivated mathe-

matical framework aimed at the prediction of the serviceability performance of such kind of structures is herein presented

and discussed. Piles are idealized as uniaxial nonlinear elements characterized by two yielding loads, one in compression

and one in uplift, while pile-to-pile interaction effects are modeled by means of superposition, through an approximate

solution. The axial load–moment capacity of the pile group is preliminary determined from a recent closed form, exact

solution based on upper and lower bound theorems, allowing the analysis to be performed under load control. The model is

capable of accounting for the dependence of the moment–rotation response from the dead load of the structure and the

‘coupling effect’ between generalized loads and displacements. The prediction performance of the proposed calculation

method is validated against both numerical and experimental benchmarks. Finally, a parametric study allowed to assess the

importance of pile-to-pile interaction on the foundation response under eccentric loads.
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1 Introduction

The problem of the settlement performance of piled foun-

dations has been traditionally investigated under the

assumptions of positive (compression) axial loads on piles.

The early studies on this subject date back to Poulos [14],

Butterfield and Banerjee [2] and Banerjee and Driscoll [1].

Since then, a number of comprehensive works have been

published, including well-documented case histories

[3, 5, 11]. As a result of this research effort, the available

procedure of analysis for settlement prediction of piled

foundations can be considered accurate enough [10].

Despite the remarkable achievements in this field and

the large demand from energy and communication industry

of tall, slender structures, the problem of pile foundations

under combined axial–moment loads involving tension

(negative) axial load on piles still presents a number of

obscure points. One of the plausible reasons for the lack of

established procedures of analysis may be detected in the

dearth of experimental observations on the rotation of pile

foundations under large moment load. As a consequence, a

frequent option for the load–settlement analysis under

remarkably eccentric load is the use of 3D numerical

models. However, care must be taken with this approach,

provided that the prediction of the rotation at foundation

level is strongly affected by the details of the numerical

analysis. For instance, tension axial loads normally imply

an upward movement and, consequently, the separation of

the pile base from the underlying soil. In addition to this,

such an approach usually involves a large volume of sup-

porting and surrounding soil and the adoption of appro-

priate constitutive laws of soil behavior. Even supposing

that the amount and the quality of laboratory and in situ

investigations allow a reliable calibration of model

parameters, such an approach is not computationally cost-

effective for routine design.

The mathematical framework proposed herein is a

lumped, physically motivated model based on rational,

easily determinable parameters describing the axial

response of isolated piles at the macro-scale. It accounts for

& Maria Iovino

maria.iovino@assegnista.uniparthenope.it

1 University of Napoli ‘‘Parthenope’’, Napoli, Italy

2 University of Campania ‘‘Luigi Vanvitelli’’, Aversa, Italy

123

Acta Geotechnica (2021) 16:3963–3973
https://doi.org/10.1007/s11440-021-01340-4(0123456789().,-volV)(0123456789().,- volV)

http://crossmark.crossref.org/dialog/?doi=10.1007/s11440-021-01340-4&amp;domain=pdf
https://doi.org/10.1007/s11440-021-01340-4


nonlinearity and irreversibility of the relationship between

load and displacement and pile-to-pile interaction. Owing

to such ingredients at the pile scale, the model can properly

describe the influence of past-load history and the ‘cou-

pling’ between generalized loads and displacements. The

load–settlement response of isolated piles can be elastic-

perfectly plastic, hyperbolic with truncation, or a user-de-

fined curve so as the behavior from load tests on piles, if

any, may be explicitly taken into account.

In the following, the attention is first placed on the

details of the mathematical framework underlying the

proposed model and then on its prediction capability

through a comparison with some rigorous finite element

results and an experimental benchmark coming from cen-

trifuge tests on annular shaped pile groups. Finally, the

focus is set on the response of this model to load paths in

the (Q, M) plane under either constant axial load or con-

stant eccentricity, so as to shed light on how pile-to-pile

interaction affects the foundation response.

The proposed model is particularly suited for circum-

stances where the resultant action at foundation level is

almost vertical. This class of problems includes, for

example, elevated water tanks, chimneys, silos and tall

wind turbines. This last structure is particularly emblematic

as the demand of tall turbines from renewable energy

industry is relentlessly increasing overall the world. In this

case, the resultant action at foundation level is usually

slightly inclined, even if remarkably eccentric. For

instance, Iovino et al. [9] have documented a case study of

a wind farm South of Italy, with 95 m high turbines, where

the horizontal load under extreme wind conditions was

only 5% of the axial load due to the self-weight of the

structure. From an engineering point of view, this problem

can be well idealized as a foundation subjected to vertical,

eccentric load. On the other hand, the proposed calculation

method might be not suited under strongly inclined actions,

as in case of quay walls or squatty bridge piers.

2 Mathematical framework

The proposed formulation is based on the interaction factor

method and a stepwise incremental approach to account for

nonlinear behavior of piles. The main assumptions made to

derive the mathematical framework are: (a) piles modeled

as uniaxial, nonlinear elements, with load–settlement

behavior in compression not necessarily equal to that in

uplift; (b) irreversibility of the piles’ behavior; (c) piles’

connecting cap idealized as a rigid body, clear from the

soil; (d) pile-to-pile interaction effects modeled using

superposition through the approximate solution by Dobry

and Gazetas [8], (e) piles’ connections to the raft idealized

as hinges. The assumption of rigid cap (c) is a reasonable

hypothesis in case of ‘small’ piled rafts as originally

defined in Russo and Viggiani [19]. Notably, for ‘large’

piled rafts the load at foundation level is not remarkably

eccentric and the response to combined moment–axial

loads is a problem of minor concern. With regard to

assumption (e), yielding moments at the piles’ heads have

only a small effect on the failure domain in the (Q,

M) plane, as shown in Di Laora et al. [7], so that their

contribution can be safely neglected. The same holds for

rotational stiffness of individual piles, since this favorable

contribution is small compared to the rocking stiffness

associated with the axial capacity of piles.

The basic ingredients of the proposed formulation are

the failure envelope of the pile group in the (Q, M) (Q =

axial load, M = moment) plane and the load–settlement

relationship of the piles. With regard to the former point,

reference is made to the recent exact solution by Di Laora

et al. [7] determined from an application of theorems of

limit analysis under the assumptions of piles behaving like

uniaxial rigid-plastic elements characterized by two

yielding loads, one in compression (Nu) and one in uplift (-

Su). In the most general case of unevenly distributed, dis-

similar piles, the interaction diagram coming from this

approach is an irregular polygon whose coordinates are:
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where p is the number of piles and xj is the abscissa of the

j-th pile in the reference x-axis, which is supposed to be

perpendicular to the direction of the external moment

vector. An example application of the above equations to a

row of 4 identical, equally spaced piles with Su = 3/4Nu is

shown in Fig. 1. In the realm of the upper bound theorem,

the vertices of the polygon correspond to plastic mecha-

nisms where the cap displaces by rotation about a point in

between two adjacent piles. The conjunction lines also

represent subsets of upper bound solutions and correspond

to increments of cap rotations about a pile. As outlined by

Di Laora et al. [7], the failure envelope in Fig. 1 is also a

solution of the lower bound theorem and, thus, an exact

solution. As vertices are singularities, a generic load path

will never end up in practice on one of them. Hence, an

interesting consequence of the foregoing hypotheses is that

a pile group always fails by rotating about the head of a

pile or a piles’ alignment. In this situation, all piles achieve
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their axial capacity (in compression or uplift) with the

exception of those belonging to the rotation axis.

Another fundamental ingredient of the proposed math-

ematical formulation is the assumption on the load–dis-

placement relationship of the isolated pile, which can be of

any arbitrary shape. This option may be particularly useful

when the results of load tests on piles are already available.

For instance, Fig. 2 shows two alternative constitutive

assumptions for piles. The curve labeled ‘EPP’ refers to the

very simple case of elastic-perfectly plastic elements, while

that marked ‘HYP’ to the assumption of a hyperbolic

function with a truncation at 90% of the asymptote. In

many engineering problems, the foundation is first sub-

jected to the dead load of the structure and then, under

constant axial load, to the moment component of the

external load vector. The amount of preload on piles (Np)

due to the self-weight of the structure (point a in Fig. 2)

has usually a paramount effect on the moment–rotation

curve of the piled foundation, as shown in the following.

Under the application of the moment component of the

load vector, some of the piles may undergo a load reversal

until the achievement of the uplift capacity (point c in

Fig. 2). In particular, the axial stiffness along with the

unloading path is taken constant and equal to the initial

stiffness in compression (Kc) until the axial load becomes

zero (path a-b in Fig. 2). Then, the path corresponding

to the load reversal is parallel to the backbone curve (path

b-c in Fig. 2) on the side of tension (negative) loads.

Notably, the proposed formulation does not account for

cyclic or non-monotonic load paths. However, from an

engineering standpoint, predicting the foundation rotation

at the peak value of the external moment time-history may

be appropriate to check serviceability criteria, unless cyclic

degradation phenomena are expected to be important.

Pile-to-pile interaction is modeled using superposition

through the closed-form, approximate expression by Dobry

and Gazetas [8], in which the ratio between the additional

displacement of pile j caused by load Ni on pile i and that

of pile j due to its own load Nj is expressed as (for Ni = Nj):

aij ’
ffiffiffiffiffiffiffi
d

2sij

s

ð3Þ

where d is the pile diameter and sij is the axis-to-axis

distance between the two piles. Interaction factors depend

mainly on the geometry of the problem at hand and, to a

lesser degree, on pile–soil relative stiffness, pile slender-

ness ratio L/d (L is the pile length) and soil Poisson coef-

ficient [16], while they are very slightly affected by soil

stratigraphy [21]. More accurate solutions available in the

literature can be adopted, e.g., Randolph and Wroth [17] or

Mylonakis and Gazetas [12], in which the above factors are

explicitly considered. As outlined by Mylonakis and

Gazetas [12], the accuracy of Eq. (3) gradually deteriorates

in inhomogeneous soils or piles with small stiffness, while

it is fully satisfactory for stiff piles in soft homogeneous

soil. After all, the above expression, despite its simplified

form, can be considered consistent with the level of com-

plexity of the proposed formulation and is thereby used for

the purposes of this work; however, the methodology can

account for any expression of interaction factors.

Nonlinearity is concentrated at pile–soil interface and is

accounted for by updating at each step of the analysis only

the terms of the principal diagonal of the flexibility matrix

(Fii = 1/Ki), while the interaction among the piles is

assumed to be linear (Fij = aij/Kj,in, where Kj,in the initial

stiffness of pile j). As a consequence of this assumption,

only the linear component of the displacement of the single

pile is amplified, while the nonlinear component is added

without amplification. A substantially similar approach has

been suggested by Randolph [18], Poulos [15], Mandolini

and Viggiani [11] and Russo et al. [20].

The ultimate axial load and moment along with any load

path in the (Q, M) plane can be easily determined from the

failure envelope of the foundation, allowing the analysis to

Fig. 1 Failure envelope of a row of four identical, equally

spaced piles (from [7])

Fig. 2 Constitutive laws of piles
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be performed under load control. Each load step is solved

throughout an iterative algorithm (see Appendix A), so as

to identify the sequence of piles that progressively achieve

their axial capacity in compression or uplift during the

loading process. As a final remark, the mathematical model

stands for a vertical eccentric force with an assigned

eccentricity in both directions, but it cannot predict the

response to load paths where the resultant action changes

continuously its eccentricity.

3 Validation against numerical
and experimental benchmarks

The above procedure is validated against numerical and

experimental results. More specifically, the response under

axial loads is compared to some numerical results from

rigorous Finite Element (FE) analyses, while that under

combined axial–moment loading against centrifuge data

obtained by the authors.

3.1 Comparison against numerical benchmarks

Reference is made to the rigorous solution by de Sanctis

and Mandolini [4] undertaken by FE analyses carried out in

undrained conditions using the total stress approach. The

parametric study carried out by the authors included square

pile groups, ranging between 32 and 72, resting on a clay

soil with the undrained shear strength profile, su, shown in

Fig. 3. Solid cylindrical piles with a diameter of 1 m,

slenderness ratio L/d of 20 or 40, spacing s/d of 4 or 8 and

Young’s modulus Ep = 40 GPa were considered. The soil

was assumed to behave like an elasto-plastic material with

a Tresca yield surface. The undrained Young’s modulus,

Eu, was assumed equal to 400su and the Poisson’s ratio

m equal to 0.49. The raft was assumed to be rigid, allowing

the analyses to be performed under displacement control.

For sake of brevity, the comparison is limited to the subset

of pile layouts with slenderness ratio L/d = 20, piles

spacing s/d = 4 and number of piles equal to 32 or 52. Also,

for the 32 pile group, the solution pertinent to s/d 8 is

considered.

Figure 3 illustrates the load–settlement curve of the

single pile obtained by an axisymmetric analysis until a

vertical displacement equal to 0.25d. The same curve is

adopted as the basis of the analyses carried out by the

simplified approach proposed in this work. The comparison

between the rigorous solution and the simplified method

under the assumption of piles behaving like interacting or

independent uniaxial elements is shown in Fig. 4.

Fig. 3 Soil properties and load–settlement curve of isolated piles in

compression (modified from [4]) Fig. 4 Validation against numerical benchmarks: purely axial loads
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Noticeably, for all the examined pile layouts the rigorous

solution falls in between the load-settlement curves deter-

mined from the simplified procedure. As a general com-

ment, the assumption of interacting elements yields to a

conservative prediction of the foundation settlement over

the entire range of axial loads of interest for serviceability

limit state analysis. For foundation layouts with a few,

closely spaced piles (Fig. 4a), the match between the FE

benchmark and the proposed solution is fully satisfactory.

By doubling the pile spacing, from 4 to 8d (Fig. 4b), the

prediction for interacting piles is significantly softer than

the reference curve, and this is presumably due to the

oversimplification made about pile-to-pile interaction

modeling (Eq. 3). Largely spaced piles behave like inde-

pendent elements, and in this case it is preferable to adopt

the solution with non-interacting piles. Finally, if the

number of piles is increased under the same pile spacing,

the benchmark curve falls in between the two curves

labeled interacting and independent piles (Fig. 4c). Com-

pared to the FE curve, the softer response of the proposed

algorithm is mainly due to the assumption of superposition,

in which the interaction between any pair of piles is eval-

uated without considering the ‘stiffening’ effect due to the

remaining piles [14]. Notably, all methods in the literature

based on superposition have the same conceptual

limitation.

3.2 Comparison against experimental
benchmarks

Two series of centrifuge experiments on pile groups under

eccentric load have been carried out at the Schofield Centre

of the University of Cambridge [6]. The two sets of

experiments were performed at an increased gravity of

50 g on annular shaped pile groups consisting of 8 alu-

minum piles and isolated piles embedded in kaolin clay.

For sake of brevity, reference is only made to the first

series of experiments, referred to as set A, including a pile

group under centered load (A1), a pile group under highly

eccentric load (A2) and two isolated piles, one in com-

pression and one in uplift. The arrangement of the model

foundations is schematically depicted in Fig. 5.

Model piles were 1 mm thick closed-ended hollow

cylinders, with an outer diameter of 10 mm and an overall

length of 280 mm. They were embedded in a kaolin clay

layer for 240 mm, with the exception of the pile tested in

uplift whose embedded length was instead 250 mm. The

piles belonging to the groups were connected by spherical

hinges to a circular raft so that they can carry out only axial

loads. Also, they were coated with Houston sand to

increase the limiting shear stress at pile–soil interface. Pile

group A2 was equipped with a cantilever beam for the

application of the eccentric load.

The clay layer was prepared in a cylindrical container

and consolidated at 1 g by applying a combination of

vertical stress of 70 kPa at the top using a hydraulic press

and a suction of 70 kPa at the base by means of a vacuum

pump. After removing the container from the hydraulic

press, the pile groups and the two isolated piles were driven

into the clay until the desired depth. The clay layer was

then re-consolidated in the centrifuge under an acceleration

of 50 g. At the end of this stage and before the beginning of

the loading process, the soil layer had an overconsolidation

ratio (OCR) in between 1.58 and 1.68. The undrained shear

strength profile obtained from a Cone Penetration Test

(CPT) carried out with a miniaturized device during the

flight is shown in Fig. 5. The theoretical profile of su cal-

culated from kaolin clay properties using critical state

theory is also shown for comparison. Further details can be

found in de Sanctis et al. [6].

The recording devices installed to monitor the founda-

tion response are also shown in Fig. 5. As the raft behaves

like a rigid body, the settlement distribution was calculated

by combining the vertical displacement recorded by the

Linear Variable Differential Transformer (LVDT) and the

rigid rotations recorded by the Micro-Electro-Mechanical-

Systems (MEMS) accelerometers. The external load was

applied under displacement control through a miniaturized

spherical ball so that it could be idealized as a point load.

For each group, the direction of the load path in the (Q,

M) plane is known a priori, allowing an easy identification

of the collapse load. The axial capacity and initial stiffness

in both compression and uplift coming from tests on iso-

lated piles are resumed in Table 1. The two initial stiff-

nesses were both estimated to be 45 MN/m by considering

also loading tests on isolated piles of the second series,

referred to as set B. The parameters in Table 1 will be

adopted for all subsequent simulations. The failure envel-

ope of the pile group based on the above capacities is

illustrated in Fig. 6, where R is the radius of the annular

shaped pile group in Fig. 5. The load paths followed in the

centrifuge for pile groups A1 and A2 are also shown for

comparison. As per the parametric study discussed before,

the starting point of any simulation analysis is that corre-

sponding to the weight, W, of the piles. The amount of

preload on piles, Qp, is due to the weight of the cap. For

pile group A2, this last quantity is slightly eccentric

because of the cantilever beam attached to the cap, so as

the initial preload on piles vary linearly with the distance

along the raft.

The load–settlement relationship of isolated piles was

supposed to be elastic-perfectly plastic (EPP) or hyperbolic

with truncation at 90% of the asymptote (HYP), adopting

for this last option the following equation:
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N ¼ w
1
Kc
þ w

Nu

N ¼ w
1
Kt
þ w

�Su

 !

ð4Þ

where Kc (Kt) is the initial axial stiffness in compression

(uplift).

The axial response determined experimentally from test

on pile group A1 is compared to that obtained by the

proposed approach in Fig. 7. The prediction of the pro-

posed model with the (HYP) option and interacting ele-

ments matches very satisfactorily the observed behavior.

The comparison in terms of rotational response is illus-

trated in Fig. 8a, where h is the rotation of the rigid cap;

since the pile group is tested under constant eccentricity,

the external load on the y-axis is also representative of the

applied moment M. The load–rotation curve predicted by

the approach proposed herein using the hyperbolic for-

mulation compares in a really satisfactory way with that

determined from load test on pile group A2. As outlined

before, pile-to-pile interaction has only a negligible effect

on the foundation rotation. The agreement with the settle-

ments of the foundation center is also satisfactory, as

shown in Fig. 8b. Contrary to the linear elastic paradigm,

Fig. 5 Plan view and cross section of the model foundations tested in the centrifuge (set A) and soil properties; dimensions (mm) are given at

model scale, while dimensions in brackets (m) refer to prototype scale

Fig. 6 Failure envelope of the pile group and load paths followed in

the centrifuge

Table 1 Axial capacity and axial stiffness in compression and uplift

of isolated piles

Test Set Qmax (Qmin) Nu (Su) W Kc (Kt)

[kN] [kN] [kN] [MN/m]

Tension A - 379 - 267 112 45

Compression A 341 455 114 45
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the displacement of the foundation center relies upon both

the axial load and the moment component of the external

load vector (‘coupled’ behavior). As a final noteworthy

point, the elastic-perfectly plastic formulation fails the

prediction of the observed behavior under both centered

and eccentric load, so as the use of a nonlinear relationship

of the behavior of piles is mandatory for a reliable pre-

diction of the foundation performance. Mandolini and

Viggiani [11] came to the same conclusion after the

interpretation of the experimental data from full scale tests

on small pile groups under centered loads carried out for

research purposes.

4 Response to combined axial moment
loading

While the proposed algorithm is applicable to pile groups of

any shape, the response to combined axial–moment loading is

examined herein with reference to the annular shaped foun-

dations of Fig. 9, by taking for simplicity the axial stiffness

and capacity of the isolated pile in compression and uplift

available from the centrifuge testing program discussed

before (i.e., parameters in Table 1). Figure 10 shows the

failure envelope of the examined foundation and the load

paths selected to investigate the response of the mathematical

model. The starting point of any simulation analysis is again

the weight of the piles,Wp. Noticeably, the amount of preload

is zero only for load path 1, while for the remaining paths this

quantity is equal to theweight of the piles’ connecting cap,Qp.

The response of the proposedmodel to axial loads only is first

examined. The attention is then placed to load paths where the

externalmoment is appliedmonotonically until failure. For all

the examined paths, piles are modeled as: (a) independent,

elastic-perfectly plastic elements; (b) independent elements

described by a hyperbolic function with truncation at 90% of

the asymptote; (c) interacting elements described by the same

hyperbola of the preceding case.

4.1 Centered load

Two simulations are shown to investigate the influence of

the axial preload. In the first analysis, the axial load is

increased monotonically until the vertical capacity of the

foundation, Qu (load path 1 in Fig. 10). In the second one,

the load–settlement response is evaluated from the level of

preload, Qp (load path 2 in Fig. 10). The corresponding

load–settlement curves are plotted in Fig. 11. Under the

assumption of elastic-perfectly plastic elements (a), the

Fig. 7 Validation against experimental benchmarks: centered load

Fig. 8 Validation against experimental benchmarks: eccentric load

Fig. 9 Plan view of the reference foundation (B = 6.9 m, R = 3 m,

d = 0.5 m)
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amount of preload does not affect the initial stiffness of the

load–settlement curve (Fig. 11a). On the other hand, when

piles are modeled as hyperbolic elements (b), the initial

stiffness after the application of the preload diminishes by

22% (Fig. 11b). Finally, pile-to-pile interaction effects lead

to a softer response regardless of the constitutive assump-

tion made about the piles’ behavior (Fig. 11c).

4.2 Eccentric load

The response under moment loading is examined along

with paths where the moment component is applied

monotonically until failure. The moment–rotation curves

pertinent to load paths 3–5 in Fig. 10 are illustrated in

Fig. 12. Notably, for each plot the rotation at which a piles’

alignment achieves a yielding state is identified by a

symbol. With regard to model (a), the moment–rotation

Fig. 10 Load paths in the (Q, M) plane

Fig. 11 Influence on the load–settlement response of: a axial preload;

b constitutive assumption on the behavior of piles; c pile-to-pile

interaction
Fig. 12 Influence on the moment-rotation curve of: a axial preload;

b constitutive assumption on the behaviour of piles; c pile-to-pile

interaction
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curve becomes nonlinear only after the outermost pile has

achieved its axial capacity, e.g., at the point corresponding

to the first symbol. In the nonlinear regime, the moment

rotation response relies upon the amount of preload, as it

can be argued from the comparison between the curves

corresponding to load paths 3 and 4. The initial rotational

stiffness is affected by neither the preload nor the slope of

the load path. When the load–settlement curve of the iso-

lated piles is a hyperbolic function, the moment–rotation

curve becomes nonlinear at the early stage of the loading

process, as shown in Fig. 12b.

Pile-to-pile interaction has only a negligible effect on the

moment rotation response (Fig. 12c). This is not surprising,

provided that the interactionmechanismundermoment loading

differs substantially from that under centered load. In the for-

mer case, in fact, tension (negative) axial loads ’compensate’

the additional settlement of any pile due to compressive (pos-

itive) loads acting on neighboring piles and vice versa, so as the

overall effect in terms of foundation rotation becomes

negligible. However, such a result relies upon the pile layout.

For instance, Fig. 13 illustrates the moment rotation curve

obtained by doubling the number of piles within the same

foundation. In this case, the compensationbetweenpositive and

negative axial loads is smaller than before, so that pile-to-pile

interaction effects lead to an increase of the foundation rotation.

The indication coming from the two pile layouts with 8 and 16

piles may be generalized. The ratio of the axial stiffness,Kv, of

the pile group evaluated in linear regime by considering piles’

interaction over that calculated under the assumption of inde-

pendent elements, is plotted in Fig. 14a against the quantity R/

d for different values of p. Group effects are always relevant,

with the only exception of the ideal layout with 4 piles, for

which the ratio of the above quantities does not exceed 2. If the

attention is shifted to the rotational stiffness, Kh, the picture is

completely different (Fig. 14b), group effects are much smal-

ler. Also, at low values of p, they lead to an increase of the

rotational stiffness. Only at larger values of p and small pile

spacing ratios the reduction in rotational stiffness due to pile-to-

Fig. 13 Effect of number of piles on the moment–rotation response

Fig. 14 Influence of the pile layout on group effects
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pile interaction effects may be significant. It follows that,

contrary to the established knowledge on pile groups under

centered vertical load, interaction effects under the application

of highly eccentric loads may increase or decrease foundation

stiffness and are, from a general standpoint, less significant.

5 Discussion and conclusions

A simple physically motivated framework has been presented

to analyze the problem of pile groups under combined axial–

moment loading.The startingpoint of theproposedmodel is the

failure envelope of the piled foundation in the (Q,M) plane. To

this aim, reference is made to the exact solution by Di Laora

et al. [7] based on theorems of limit analysis. Pile-to-pile

interaction factors are considered using the simple expression

byDobryandGazetas [8],while thebehavior of isolatedpiles in

both compression and upliftmaybe represented through a user-

defined curve. Based on the above assumptions, the proposed

model is capable of describing the response of a piled foun-

dation of any shape in terms of settlements and rotations along

with a load path under constant axial load or constant

eccentricity.

The predicted response of the proposed model matches

really satisfactorily that determined form centrifuge tests

on annular shaped pile groups under both centered and

eccentric load and numerical benchmarks obtained for

square groups subjected to purely axial loads.

A parametric study allowed concluding that: (1) an

asymmetric backbone curve and a suited unloading–

reloading rule are crucial ingredients for a reliable pre-

diction of settlement and rotations of a pile group under

monotonic external moment; (2) the moment–rotation

response is affected to some extent from the axial preload

on piles and the slope of the load path; (3) pile-to-pile

interaction effects under moment loading are much less

pronounced than those under purely vertical load.

However, it is fair to mention that the mathematical

framework developed herein is limited to foundation

problems where the resultant action is almost vertical.

Appendix

Appendix A: Flowchart summarizing
the main operations of the algorithm
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Lett 11(3):1–7. https://doi.org/10.1680/jgele.21.00059

10. Mandolini A, Russo G, Viggiani C (2005) Pile foundations:

experimental investigations, analysis and design. State of the Art

Report. Proceedings of 16th international conference on soil

mechanics and geotechnical engineering, Vol 1. Osaka, Japan,

Balkema, Rotterdam, The Netherlands, pp 177–213

11. Mandolini A, Viggiani C (1997) Settlement of piled foundations.
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