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Abstract
Many advanced constitutive models which can capture the strain-softening and state-dependent dilatancy response of sand

have been developed. These models can give good prediction of the single soil element behaviour under various loading

conditions. But the solution will be highly mesh-dependent when they are used in real boundary value problems due to the

strain-softening. They can give mesh-dependent strain localization pattern and bearing capacity of foundations on sand.

Nonlocal regularization of an anisotropic critical state sand model is presented. The evolution of void ratio which has a

significant influence on strain-softening is assumed to depend on the volumetric strain increment of both the local and

neighbouring integration points. The regularization method has been implemented using the explicit stress integration

method. The nonlocal model has been used in simulating both drained plane strain compression and the response of a strip

footing on dry sand. In plane strain compression, mesh-independent results for the force–displacement relationship and

shear band thickness can be obtained when the mesh size is smaller than the internal length. The force–displacement

relationship of strip footings predicted by the nonlocal model is much less mesh-sensitive than the local model prediction.

The strain localization under the strip footing predicted by the nonlocal model is mesh independent. The regularization

method is thus proper for application in practical geotechnical engineering problems.

Keywords Critical state � Mesh-dependency � Nonlocal regularization � Sand anisotropy � Strain localization

1 Introduction

Many advanced constitutive models for sand have been

proposed (e.g. [12, 14, 16, 18, 30, 31, 33–35]). These

models can capture the state-dependent dilatancy and

strain-softening of single sand elements under various

loading conditions. But a sand model with strain-softening

can give highly mesh-dependent results when used in finite

element analysis of boundary value problems. For instance,

the model gives non-unique force and displacement rela-

tionship for plane strain compression on dense sand with

strain-softening [7, 21]. The computed thickness and ori-

entation of shear bands is also mesh-dependent. The shear

band thickness decreases as the element size decreases and

the shear band direction may follow the direction of ele-

ment edges [7]. When a sand model with strain-softening is

used in practical boundary value problems, the solution can

become unreliable due to the mesh-dependency. For

instance, the bearing capacity predicted by a strain-soft-

ening sand model can change dramatically when the mesh

size or orientation changes [3, 19]. The mesh-dependency

is caused by the assumption used in standard elastoplastic

models that the stress–strain relationship at an integration

point is dependent on the local stress, strain and state

variables only.

Many methods for regularizing the mesh-dependence of

finite element solutions of strain-softening models have

been developed, including the nonlocal theories

[2, 6, 7, 21], viscous plasticity [23, 26], strain-gradient

plasticity [1, 4, 13] and mico-polar theories [5, 29, 32].

These methods can significantly reduce the mesh sensi-

tivity of the finite element solutions. In particular, the

nonlocal method is found effective and convenient in

regularizing strain-softening models for soils (e.g.

[7, 21, 22, 25, 27, 28]). In a fully nonlocal constitutive
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model, the stress, strain and state variables should all be

considered as nonlocal variables. Since a fully nonlocal

model makes the constitutive equations complex, the par-

tially nonlocal approach has been used in most cases. In a

partially nonlocal model, some of the state variable (e.g.

plastic shear strain, void ratio or yield surface size) are

assumed nonlocal [7]. Indeed, the partially nonlocal

approach is found sufficient for regularizing most soil

models with strain softening. For instance, Galavi and

Schweiger [7] and Summersgill et al. [27] have assumed

that the strain softening is controlled by the nonlocal plastic

shear strain. Lu et al. [20] have proposed to use nonlocal

plastic multiplier which controls the increment of plastic

strain to regularize soil models with strain-softening.

The nonlocal method has mainly been used in soil

models with simple strain-softening rule. For instance, the

variable controlling the strain softening is a function of the

plastic shear strain only in Galavi and Schweiger [7],

Summersgill et al. [28] and Mánica et al. [22]. Therefore,

the model can be easily regularized by assuming that

strain-softening variable is dependent on the nonlocal

plastic shear strain. But the strain-softening of real sand is

dependent on several variables, such as the void ratio,

mean effective stress, fabric anisotropy and plastic strain.

The hardening parameter of an advanced sand model which

describes the strain-softening cannot be expressed by these

variables explicitly. Instead, the increment of the hardening

parameter is given in terms of these variables. This makes

the nonlocal regularization of these models challenging.

Mallikarachchi and Soga [21] are among the first to pro-

pose a nonlocal regularization method for an advanced

sand model considering the effect of void ratio and mean

effective stress on the soil behaviour. Specifically, the void

ratio increment is assumed to depend on the void ratio

increment at the local and neighbouring integration points.

It is found that this method can effectively reduce the

mesh-dependency of the model prediction for drained and

undrained plane strain compression tests. But this method

has not be used in a practical geotechnical problem. In

addition, the integration of this regularization method with

the explicit/implicit stress integration methods have not

been discussed.

This paper presents a method for regularizing an ani-

sotropic critical state sand model based on the work by

Mallikarachchi and Soga [21]. The paper is organized as

follows. The original constitutive model and regularization

method are first introduced. Implementation of the nonlocal

model using the explicit stress integration method is then

presented. The nonlocal model is finally used to simulate

strain localization in plan strain compression and the

response of a strip footing on dry sand. The practicality of

this regularization method in real geotechnical engineering

problems is discussed.

2 The original constitutive model

The model used in this study was developed based on the

anisotropic critical state theory which considers fabric

evolution of sand during loading [17]. A detailed discus-

sion of the model can be found in Gao et al. [31] and Gao

et al. [8]. This model accounts for the plastic deformation

of sand under shear only. Therefore, a Mohr–Coulomb type

yield function is used

f ¼ R=g hð Þ � Hd ¼ 0 ð1Þ

where R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3rijrij=2
p

, rij ¼ rij � pdij
� �

=p is the stress

ratio tensor, rij is the stress tensor, p ¼ rii=3 is the mean

effective stress, dij is the Kronecker delta (¼ 1 for i ¼ j,

and ¼ 0 for i 6¼ j), Hd is the hardening parameter and g hð Þ
is an interpolation function which describes the variation of

critical state stress ratio with the Lode angle h of rij
[12, 31] The hardening law for the yield function is

expressed as

dHd ¼ hLirH ¼ Gh1expðh2AÞ
1þ eð Þ2 ffiffiffiffiffiffiffi

ppa
p

R
Mcg hð Þexpð�nfÞ � R½ �

ð2Þ

where L is the loading index, hi are the Macaulay brackets

which make hLi ¼ L for L[ 0 and hLi ¼ 0 for L� 0, h1,

h2 and n are model parameters, G is the elastic shear

modulus, A is the anisotropic variable [17, 31], e is the void

ratio, pa is the atmospheric pressure, Mc is the critical state

stress ration in triaxial compression and f is the dilatancy

state parameter [17]. This hardening law can capture the

strain-softening response of dense sand.

The plastic shear strain increment depij is expressed as

depij ¼ hLimij ¼ hLi
og
orij

� og
ormn

dmn
� �

dij=3

og
orij

� og
ormn

dmn
� �

dij=3
�

�

�

�

�

�

ð3Þ

where g is the plastic potential function in the rij space

g ¼ R=g hð Þ � Hge
�khð1�AÞ2 ¼ 0 ð4Þ

where kh is a model parameter and Hg is determined based

on the current stress state and A. The term involving A in

Eq. (4) enables the model to capture the non-coaxial

response of sand caused by fabric anisotropy [9, 31]. The

total plastic strain increment depij as below

depij ¼ depij þ 1=3de
p
vdij ¼ hLi mij þ

ffiffiffiffiffiffiffiffiffi

2=27

q

Ddij

� 	

ð5Þ

where depv is the plastic volumetric strain increment and D

is the dilatancy function (see [8]). In this model, the fabric

evolution with plastic shear strain is considered
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dFij ¼ hLikf nij � Fij

� �

ð6Þ

where dFij is the increment of Fij, kf is a model parameter

and nij is the loading direction defined as

nij ¼
of
orij

� of
ormn

dmn
� �

dij=3

of
orij

� of
ormn

dmn
� �

dij=3
�

�

�

�

�

�

ð7Þ

3 Nonlocal formulation of the constitutive
model

In previous studies, some of the state variables affecting

the strain-softening and flow rule are assumed to evolve

with the nonlocal plastic strain. This is called the partially

nonlocal approach [7, 28]. Though it is less rigorous than

the fully nonlocal method which assume that both stress

strain are nonlocal, it is found effective in regularizing

most soil models with strain-softening. The strain-soften-

ing of this model is mainly affected by e, Fij and Hd. It is

inconvenient to use nonlocal Fij and Hd in the hardening

law. There are several reasons for this. First, the evolution

of Fij and Hd is dependent on the plastic shear strain

increment, but their full form cannot be expressed explic-

itly in terms of the total plastic shear strain. It is therefore

impossible to use the nonlocal plastic shear strain to get the

nonlocal Fij and Hd. Secondly, the plastic shear strain

increment has to be calculated before the averaging cal-

culation is carried out if the increment of Fij and Hd is

assumed nonlocal. Since the original model is complex, it

has to be implemented using some advanced stress inte-

gration methods such as the explicit or implicit methods

[9, 36]. In these stress integration methods, the plastic

strain increment can only be obtained at the end of each

step when the stress and state variables are already upda-

ted. This means that the nonlocal increment of Fij and Hd

has to be calculated at the end of each step. If the nonlocal

increment of Hd is used without changing the previous

stress integration (e.g. the stress increment), the condition

of consistency for the yield function cannot always be

satisfied. The evolution of Fij is dependent on the loading

direction nij which can change during the stress integration.

It is thus inappropriate to simply take the average of dFij at

the end of the step. But the evolution of e is deponent on

the total volumetric strain only, and therefore, it is con-

venient to make it nonlocal. Following Mallikarachchi and

Soga [21], the increment of void ratio de is assumed to be

nonlocal as below

de ¼ 1þ eð Þdevn ð8Þ

where positive de is associated with volume contraction

and devn is the nonlocal volumetric strain increment

devn ¼
PN

k¼1 wividevi
PN

k¼1 wivi
ð9Þ

where N is the number of integration points within the

averaging area, wi, vi and devi represent the weight func-

tion, volume and local volumetric strain increment of

integration point i. The weight function proposed by Galavi

and Schweiger [7] is used

wi ¼
ri
l2
exp � r2i

l2

� 	

ð10Þ

Table 1 Model parameters for Toyoura sand

Parameters G0

m

Mc

c

eC

kc
n

n

h1

d1

m

kf

eA

kh

h2

Value 125

0:1

1:25

0:75

0:934

0:019

0:7

2:0

0:45

1:0

3:5

0:5

0:075

0:03

0:5
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where l is the internal length, ri is the distance between the

current integration point and the i-th integration point used

for calculating the averaged value in Eq. (8). Note that

several other weight functions have also be proposed in the

literature but one in Galavi and Schweiger [7] is found to

give the best regularization results for soils with strain

softening [28].

3.1 Implementation of the nonlocal method

The original model has been implemented in Abaqus using

the explicit stress integration method with automatic sub-

stepping [8]. The total strain increment needs to be divided

into several sub-increments in this method. Strictly

speaking, the nonlocal averaging of void ratio increment

should be done at each sub-increment for all the integration

points. But this would dramatically increase the computa-

tional time. Therefore, a simplified method has been used

in implementing the nonlocal method. At the start of each

increment, the nonlocal volumetric strain increment for

each integration point is calculated using Eqs. (8) and (9).

A scaling variable rv defined as the ratio of the nonlocal

and local volumetric strain increment is then obtained

rv ¼
devn
devl

ð11Þ

where devl is the total local volumetric strain increment for

that step. The stress integration is then carried out fol-

lowing that for a local model, but the void ratio is updated

as below at the end of each sub-increment

de ¼ 1þ eð Þdeselrv ð12Þ

where desel is the local volumetric strain increment for the

sub-increment.

Two user subroutines, USDFLD (user-defined field

variables) and UMAT (user-defined materials), are needed

for implementing the nonlocal method in Abaqus. The

subroutine USDFLD is used to get the volume of each

integration point (IVOL) using the utility routine

GETVRM. This variable IVOL is then returned as a

common block array VOLINT (NEL, NIP, 1), where NEL

is the total number of elements in a problem and NIP is the

number of integration points in each element. Specifically,

Vertical displacement s

p0=200kPa

α

p0=200kPa

Fig. 1 The boundary conditions and bedding plan orientation for the

plane strain test simulations

Fig. 2 The location of the ‘weak’ area with a ¼ 45�: a mesh size 6

mm and 200 elements, b mesh size 3 mm and 800 elements

Fig. 3 Effect of internal length on the force–displacement relation-

ship in plane strain compression

430 Acta Geotechnica (2022) 17:427–439

123



Fig. 4 Force–displacement relationship predicted by the a original model and b nonlocal model for the tests with horizontal bedding plane

Fig. 5 Shear band predicted by the nonlocal model in plane strain compression at s=H = 0.09 (SDV11 is the total shear strain) a 800 elements,

b 200 elements and c 50 elements

Fig. 6 Shear band predicted by the local model in plane strain compression at s=H = 0.09 (SDV11 is the total shear strain) a 800 elements, b 200

elements and c 50 elements
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the volume of each integration point (NPT in Abaqus) of

the associated element (NOEL in Abaqus) is obtained and

then stored as a component VOLINT (NOEL, NPT, 1) in

the USDFLD. Since VOLINT is defined as a common

block, it can be used in the other subroutines of Abaqus

like UMAT. The nonlocal averaging is carried out at the

beginning of each increment in the UMAT. First, the local

volumetric strain increment devl for each integration point

is calculated. The nonlocal strain increment devn and

scaling variable rv are then calculated using Eqs. (8)–(10).

The integration points within the radius of 4l are consid-

ered for Eq. (9) to reduce the computational time because

wi becomes negligible when ri [ 4l. A common block

array ENCD (NEL, NIP, 4) is used in UMAT to return the

coordination [ENCD (NEL, NIP, 1–3)] and devl
[ENCD(NEL, NIP, 4)] of each integration point (Mal-

likarachchi and Soga, 2020). Similar to the VOLINT, the

components of ENCD are obtained in the UMAT for each

integration point, which can then be used for the UMAT of

the other integration points. The remaining part of the

UMAT is the same as that for a local model, except that the

void ratio is updated using Eq. (12) at the end of each sub-

increment. Since the shear strain in the shear band can be

very large and the geometrical nonlinearity should also be

considered (e.g. [8, 9, 11]). But previous studies on non-

local regularization have mainly used the small strain

formulation (e.g. [7, 21]). We have thus neglected the

geometrical nonlinearity here for easy comparison with

these studies.

4 Strain localization under plane strain
compression

The strain localization under plane strain compression will

be simulated in this section. The model parameters

(Table 1) are the same as those in Gao et al. [8]. The

sample size (60 mm 9 120 mm) and boundary conditions

are shown in Fig. 1. A confining pressure of p0 ¼ 200 kPa

is applied on the two vertical sides. Vertical displacement

Fig. 7 The effect of a mesh size and b internal length on the shear band thickness. The internal length l is 12 mm for the nonlocal model in a

Fig. 8 Evolution of the a void ratio and b anisotropic variable in the ‘weak’ area (800 elements)
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is applied on the top side with the horizontal displacement

unconstrained. The bottom side is pinned at the left and

free to move to the right. The strain localization is triggered

by assigning a ‘weak’ area (12 mm 9 12 mm) with

inclined bedding plane orientation (a ¼ 45�). Horizontal
bedding plane orientation (a ¼ 0�) is specified for the

remaining area (Fig. 2). The 8-noded plan strain elements

with reduced integration are used in the simulations. The

initial void ratio of the sample is e0 ¼ 0:65 (relative density

Dr ¼ 88%) and the initial degree of anisotropy is F0 ¼ 0:4.

4.1 The effect of internal length

The internal length l is an important parameter for nonlocal

soil models, as it is used for the weight function of

Eq. (10). Bigger l means that the stress–strain relationship

of the current integration point is affected by that of inte-

gration points further away. Wider shear band and a slower

rate of strain-softening will be predicted as l increases.

Experimental evidence shows that the shear band thickness

ts is about 10� 20d50 for most sand, where d50 is the mean

particle size [7]. For the Toyoura sand used here, d50 � 0:2

mm and ts � 2� 4 mm. The predicted ts is very close to l

when the Galavi and Schweiger [7] weight function is used,

which will be shown in the subsequent sections. Therefore,

l � 2� 4 mm has to be used if realistic prediction of ts is

required. But the maximum mesh size must always be

smaller than l. While it is feasible to use very small l to

simulate the response of small soil samples, it is imprac-

tical to use l � 2� 4 mm in most real boundary value

problems. There are two major reasons. First, small mesh

size causes numerical convenience issues for advanced soil

models which give a highly nonlinear stress–strain

relationship. Secondly, the computational time will be

significantly increased when a small mesh size is used for a

nonlocal model. Therefore, l is typically chosen based on

the size of the boundary value problem rather than d50.

Figure 3 shows the effect of l on the s� Rv relationship

predicted by the nonlocal model, where s is the vertical

displacement and Rv is the total vertical reaction force

measure on the top surface of the sample. The mesh size is

4 mm � 4 mm (450 elements). The nonlocal model always

gives higher peak Rv and slower rate of strain-softening

than the local model. This is due to that the nonlocal model

makes the stress and strain distribution more uniform in the

soil. For the nonlocal model, the peak Rv shows little

variation with l but the rate of strain-softening is slower at

bigger l.

4.2 Simulation of the strain localization

Figure 4 shows the s� Rv relationship predicted by the

local and nonlocal models with different mesh sizes. The

same internal length of l ¼ 12 mm is used. The s� Rv

relationship predicted by the nonlocal model is insensitive

to the mesh size. Visible difference can only be observed at

s[ 0:1H, where H is the initial height of the sample

(Fig. 4a). The local model gives mesh-dependent s� Rv

relationship with higher peak Rv and slower rate of strain-

softening at a bigger mesh size (Fig. 4b).

Figures 5 and 6 show the shear strain localization pre-

dicted by the local and nonlocal models, where SDV11

represents the total shear strain. The shear band thickness ts
measured at s ¼ 0:09H is shown in Fig. 7. When the mesh

size h\l, the location and thickness of shear bands pre-

dicted by the nonlocal model are independent of the mesh

Fig. 9 The boundary conditions and used in the simulations
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size (Fig. 7a). When h ¼ l, the shear band predicted by the

nonlocal model locates at a lower position (Fig. 5c). The

shear band thickness is also close to that predicted by the

local model (Fig. 7a). This means that the regularization

method works when h\l. When the mesh size is the same,

the shear band thickness predicted by the nonlocal model

increases with l (Fig. 7b). But there is not a linear

relationship between h and l, which has been reported in

previous research [7]. The shear band thickness predicted

by the local model increases with the mesh size, which is in

agreement with existing studies (Fig. 7b). The shear band

orientation predicted by the nonlocal model varies between

47 � (50 elements) and 51 � (800 elements), and that pre-

dicted by the local model varies between 47 � (50 ele-

ments) and 53 � (800 elements) (Figs. 5 and 6). This

indicates that shear band orientation predicted by the

nonlocal model is not sensitive to the mesh size.

Based on these results, it can be concluded that the

nonlocal model can give mesh-independent force–dis-

placement relationship for different mesh sizes. But mesh-

independent strain localization pattern can only be

observed when the mesh size is smaller than the internal

length. To improve the regularization method for larger

mesh sizes, more state variables which control the strain-

softening (e.g. Fij and Hd) should be assumed nonlocal. But

this would significantly increase the model complexity and

computational time, which has been discussed before.

Figure 8 shows the evolution of void ratio and aniso-

tropic variable A of an element in the ‘weak’ area. Both

Fig. 10 The mesh size used in the simulations: a minimum element size w = 0.35 m and 1156 elements, b minimum element size w = 0.15 m

and 2881 elements

Fig. 11 The effect of internal length on the predicted force–

displacement relationship of the strip footing
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elements are within the shear band. The prediction of the

local and nonlocal models is the same before strain-soft-

ening (s\0:028H). Volume expansion is predicted by both

the local and nonlocal models as the soil is dense. But the

nonlocal model gives less volume expansion due to the

assumption made in Eqs. (8)–(10). It is well known that

there is much smaller plastic deformation and less volume

expansion outside the shear band. Since the void ratio

evolution is assumed to depend on the volumetric strain

increment of local and neighbouring integration points in

the nonlocal model, the increase in void ratio becomes

smaller than that predicted by the local model. There is also

difference in the evolution of A during strain softening.

This is due to that the nonlocal treatment of void ratio

evolution has effect on the plastic hardening and plastic

shear strain increment, which affect the evolution of fabric

anisotropy (Eq. 6). Both the local and nonlocal models

predict higher void ratio and anisotropic variable A within

the shear band due to the shear strain concentration. This

has been discussed in more details in Gao and Zhao [9] and

will not be repeated here.

5 Simulation of the response of a strip
footing on sand

The loading condition (e.g. the stress path) in a plane strain

compression is relatively simple. But the soil elements can

be subjected to much more complex loading conditions in a

practical geotechnical engineering problem. It is thus

important to further investigate the effectiveness of the

nonlocal regularization method in larger-scale boundary

value problems. The response of a strip footing on sand

with different densities and bedding plane orientation

(horizontal and vertical) will be simulated in this study.

This simulation is based on the centrifuge tests reported

in Kimura et al. [15]. The size of the problem is shown in

Fig. 9. Uniform vertical pressure of 1 kPa is applied on the

top surface and uniform vertical deformation is applied on

the footing (width B = 0.9 m). The effective weight of

Toyoura sand is c0 ¼ 16kN=m3 and the initial lateral earth

pressure coefficient K0 ¼ 0:4 [24]. More details of the

simulation can be found in Gao et al. [8]. The mesh size in

the rectangle area beneath the footing is w (Fig. 9). The

Fig. 12 The local and nonlocal model prediction for the strip footing response on sand with horizontal bedding plane: a and b dense sand, c and
d medium dense sand
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maximum mesh size is 0.5 m (at the two vertical sides and

the bottom). Four different values of w (0.15 m, 0.2 m, 0.25

m and 0.35 m) have been used in the simulation. The mesh

distribution with w ¼ 0:35 m and w ¼ 0:15 m is shown in

Fig. 10.

Figure 11 shows the effect of internal length on the

force–displacement relationship of the strip footing

(w ¼ 0:25 m and 1648 elements). Higher peak vertical load

is predicted with bigger l, because the stress and strain

distribution in the soil becomes more uniform at bigger l.

The change of strain-softening rate with l is not obvious,

but Summersgill et al. [27] have shown that l has a dra-

matic influence on the strain-softening rate. This is due to

the difference in the original constitutive models. The

settlement at peak vertical load is insensitive to the internal

length. It should be mentioned that this observation is

based on the internal length chosen in Fig. 11. The nonlocal

model prediction could change significantly if a smaller l is

used. But that would require smaller mesh sizes which will

cause convergence issues. The simulations below show that

reasonable prediction of the centrifuge test data can be

obtained with l ¼ 0:6 m (Figs. 12 and 13). Therefore, it is

acceptable to use the internal length shown in Fig. 11 when

the peak vertical load and the corresponding settlement is

of concern, though the exact thickness of shear band will

not be captured.

Figures 12 and 13 show the local and nonlocal model

predictions for the strip footing response on Toyoura sand.

The internal length l ¼ 0:6 m is used for the nonlocal

model. The force–displacement relationship predicted by

the nonlocal is not completely mesh-independent. But the

result shows much less mesh sensitive than that predicted

by the local model. For instance, the difference in the

maximum and minimum bearing capacity (peak Q) pre-

dicted by the anisotropic model in Fig. 12a is about 8%.

But the local model gives a difference of 18%. The non-

local model also gives more mesh-insensitive results when

the bedding plane is vertical, where the strain-softening is

less significant (Fig. 13). Both the local and nonlocal

models have convergency issues as the mesh size becomes

smaller. Some of the simulations are aborted before s ¼
0:25B because the force equilibrium cannot be reached. But

it is worth noticing that the nonlocal regularization can

help improve the convergency of the model, especially

Fig. 13 The local and nonlocal model prediction for the strip footing response on sand with vertical bedding plane: a and b dense sand, c and

d medium dense sand
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when the bedding plane is vertical. This is due to that the

nonlocal treatment makes the stress distribution more

uniform in the soil.

The test data is also shown in Figs. 12 and 13 for

comparison. In general, the nonlocal model gives reason-

able prediction of the test results at different mesh sizes.

But the local model prediction is only acceptable at w ¼
0:35 m. There is underprediction of the bearing capacity at

other mesh sizes. Indeed, the mesh size has to be chosen by

best fitting the test data when the local models are used

[3, 8]. The nonlocal method can reduce the mesh sensitivity

of the numerical results but does not always improve the

model prediction of the force–displacement relationship.

For instance, both the local and nonlocal model are not

capable of capturing the force–displacement relationship

before failure when Dr ¼ 85:6% and the bedding plane is

horizontal. There two main reasons for this. First, the void

ratio of sand may not be uniform at the initial state. There

may be some areas with lower void ratio which makes the

slope of the force–displacement relationship higher. Sec-

ondly, the model needs to be improved to capture the sand

response with initially anisotropic stress state. It is found

that the constitutive model used in this study can give

reasonable prediction of sand behaviour with an initially

isotropic stress state but tends to underestimate the stiffness

when the initial stress state is anisotropic [10]. It is well

known that the initial stress state of sand in the centrifuge

tests is anisotropic.

The shear strain localization predicted by the nonlocal

model for the strip footing on dense sand (Dr ¼ 85:6%)

with horizontal bedding plane is shown in Fig. 14. The

location of the slip surfaces indicated by the solid red lines

are independent of the mesh size. Note that the slip sur-

faces are those which can fully develop if the simulations

can continue to a larger strain level [11]. Similar slip sur-

faces have been reported in Kimura et al. [15]. Therefore, it

can be concluded that the regularization method proposed

here is proper for practical geotechnical engineering

problems.

6 Conclusion

Nonlocal regularization of an anisotropic critical state sand

model is presented. The evolution of void ratio is assumed

to depend on the volumetric strain increment at the local

and neighbouring integration points [21]. The nonlocal

model has been implemented for finite element analysis

using the explicit stress integration method. The nonlocal

model has been used to simulate the strain localization in

drained plane strain compression and the response of a strip

footing on sand. The main conclusions are:

a. The nonlocal model gives mesh-independent force–

displacement relationship in plane strain compression

with strain localization. The location and thickness of

the shear band are mesh-independent when the mesh

size is smaller than the internal length. Better regular-

ization results for the strain localization can be

obtained if the two variables Fij and Hd which affect

the strain-softening are made nonlocal. But this would

significantly increase the model complexity and the

computational time.

b. The nonlocal regularization method can effectively

reduce the mesh-dependency of the force–displace-

ment relationship of a strip footing on sand. Reason-

able prediction of the bearing capacity of the strip

footing can be obtained with different mesh sizes. The

nonlocal model gives mesh-independent strain local-

ization beneath the strip footing. The regularization

method is thus proper for solving practical geotechni-

cal engineering problems.
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