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Abstract
The paper deals with two-dimensional (2D) numerical modelling of hydro-fracking (hydraulic fracturing) in rocks at

the meso-scale. A numerical model was developed to characterize the properties of fluid-driven fractures in rocks by

combining the discrete element method (DEM) with computational fluid dynamics (CFD). The mechanical behaviour of

the rock matrix was simulated with DEM and the behaviour of the fracturing fluid flow in newly developed and pre-

existing fractures with CFD. The changes in the void geometry in the rock matrix were taken into account. The initial 2D

hydro-fracking simulation tests were carried out for a rock segment under biaxial compression with one injection slot in

order to validate the numerical model. The qualitative effect of several parameters on the propagation of a hydraulic

fracture was studied: initial porosity of the rock matrix, dynamic viscosity of the fracking fluid, rock strength and pre-

existing fracture. The characteristic features of a fractured rock mass due to a high-pressure injection of fluid were

realistically modelled by the proposed coupled approach.
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1 Introduction

Hydro-fracking (hydraulic fracturing) is a well stimulation

technique to increase the productivity of petroleum, gas or

heat reservoirs in which rocks are fractured by a pressur-

ized fluid [11, 16]. The process involves the high-pressure

injection of fluid (primarily water, containing sand or other

proppants suspended with the aid of thickening agents) into

a wellbore to create cracks in the deep-rock formations or

to increase the connectivity of the pre-existing fracture

network through which natural gas and petroleum will flow

more freely. When the hydraulic pressure is removed from

the well, small grains of hydraulic fracturing proppants

hold the fractures open. Hydro-fracking has been seen as

one of the key methods of extracting unconventional oil

and unconventional petroleum, gas and heat resources. In

the last decade, exploration and drilling activities in shale

gas and shale oil reservoirs were intensified in a number of

countries. The economic production from the gas and heat

reservoirs greatly depends on the effectiveness of hydraulic

fracturing stimulations that are affected by a realistic the-

oretical description of fracture in brittle crustal rocks.

The fracture pattern may be very complex in rocks since it

is strongly affected by different coupled mechanical,

thermal and hydraulic processes at the meso-scale [39, 45].

Rocks have a very complicated heterogeneous structure,

and they are strongly anisotropic due to naturally existing

pre-discontinuities, such as joints, faults, veins and bedding

planes which are ubiquitous and may greatly vary in

appearance, dimensions and arrangement. These natu-

rally occurring pre-discontinuities often include complex
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networks and dominate the geomechanical, thermal and

hydrological behaviour of subsurface rocks. Our topic is a

strong understanding of how hydraulic fractures propagate

through rocks and how fluid flows through hydraulically

stimulated fractures between wells. The ultimate objectives

of our research works, dedicated to simulations of a

dynamic hydro-fracking process in rock masses are:

(a) explanation of the complex mechanism of the

initiation and propagation of fractures in rocks due

to the activity of the high fluid pressure (higher than

the tensile strength of rocks) during hydro-fracking

(by taking the existing pre-discontinuities and voids

into account) and

(b) description of this mechanism at the meso-scale by

applying an advanced mathematical model, based on

the three-dimensional (3D) discrete element method

(DEM) fully coupled with fluid flow (the so-called a

coupled discrete-continuum method-discrete and

continuous domains coexist in one system).

Since hydraulic fracturing strongly depends on the

heterogeneous meso-structure of rocks, the discrete ele-

ment method (DEM) is a suitable numerical tool for

investigating a non-uniform formation process of complex

fracture patterns at the mesoscopic level. The fracturing

fluid system is assumed to be continuous and is described

by locally volume-averaged Navier–Stokes equations to be

solved by computational fluid dynamics (CFD). In general,

the numerical coupled calculations will be carried out for a

two-phase (fluid and gas) turbulent flow of incompressible

viscous fluid by taking the mass, momentum and heat

transport into account in existing and newly developing

fractures in rocks. In the first research step, we developed a

simplified dynamic hydro-mechanical meso-scale model of

hydro-fracking, based on DEM and CFD to characterize

the properties of fluid-driven fractures in rocks. DEM was

used to capture the mechanical behaviour of the rock mass

that was represented by a set of representative discrete

spherical elements interacting through elastic-brittle bonds

that can break to form fractures. It was coupled with fluid

mechanics via the computational fluid dynamics (CFD) to

describe laminar fracturing fluid flow in voids and channels

between discrete elements using a novel so-called Virtual

Pore Network (VPN) approach.

The aim of the current paper is to present simulation

results on checking the capability of the fully coupled

simplified approach DEM/CFD to describe the process of

hydro-fracking in rocks at the meso-level. The approach

was formulated for laminar incompressible viscous one-

phase fluid flow in isothermal conditions. A series of

simple two-dimensional (2D) hydraulic fracturing simula-

tions were performed on a small rock segment subjected to

a pressurized fracturing fluid under biaxial compression

conditions. This small rock segment had a very simplified

particulate meso-structure and contained solely one injec-

tion slot. The qualitative effect of the following parameters

on the hydraulic fracture geometry, fracturing fluid velocity

and pressure was studied in 2D simulations: initial micro-

porosity of the rock matrix, rock matrix strength, dynamic

viscosity of the fracking fluid and presence of a pre-ex-

isting macro-crack. The innovative elements of our

approach with respect to other existing DEM/CFD models

in the literature are the following: (1) co-existence of two

domains (a discrete and continuous one) in one physical

system (the sum of domain geometries creates a complete

physical system), (2) precise determination of the geometry

and topology change of voids and fractures during hydro-

fracking, (3) remeshing method of voids and fractures, (4)

transformation schema of computation results from the old

grid (before remeshing) to the new grid (after remeshing)

and (5) detailed tracking of the fluid volume fraction in

voids and fractures (rock voids can be fully or partially

filled with the fluid). In our approach, every single pore is

discretized by a number of triangles. Thus, the pressure

field in a single pore is spatially variable while in existing

DEM/CFD models, the pressure field in a single pore is

constant. The flow path is also reproduced in a single pore

in contrast to existing DEM/CFD models. In addition, the

huge pressure gradients in a single pore are captured while

in existing DEM/CFD models the pressure gradient in a

single pore is equal to zero. Thus, the resulting forces from

the fluid are more realistic on our approach (magnitude and

direction). The hydraulic fracture propagation can be

investigated in our approach in rocks that are initially

partially filled with the fluid (what is more realistic). In

addition, the particles floating (e.g. proppant particles) in

fractures pre-filled with the fluid may precisely be traced.

The modelling of the fluid-driven fracture propagation

in rocks comprises the coupling of different physical

mechanisms including deformation of the solid skeleton

induced by the fluid pressure on fracture surfaces, flow of

the pore fluid along new fractures and through the region of

surrounding existing fractures and pronounced temperature

changes. Hydraulic fracturing results in complex fracture

patterns composed of pre-existing and new ones that

greatly influence the process at the global scale [40]. Due

to difficulties in performing experimental works on the

fracture network propagation in situ and at the laboratory

scale, the numerical modelling becomes an essential tool in

analyses of hydraulic fracturing [61].

Micro-seismic measurements suggest that the creation

of complex intersecting and branching fracture networks

during hydraulic fracturing is a common occurrence in

many rock reservoirs [56]. A significant temperature dif-

ference between the wellbore fluid and rock formation

introduces additional compressive or tensile stresses,
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depending on whether the fluid temperature is higher or

lower than the surrounding rock [64]. De Simone et al. [10]

suggested that decreasing temperatures induced a signifi-

cant perturbation to the stress field even in intact rocks. The

size changes of fractures also provide a distinctive response

to thermal stresses [18, 22]. In view of natural pre-dis-

continuities in rocks, the physical models become very

complex. The major challenges in numerical modelling of

complex hydraulic fractures are:

• multiphase fluid flow in both macro-voids, micro-voids

and pre-discontinuities of rocks (faults, veins, bedding

planes) that may be partially filled with both a fluid- and

gas-phase. The rock pressure is close to the hydrostatic

pressure at the borehole depth,

• non-isothermal conditions, wherein both the tempera-

ture difference between the wellbore fluid and rocks and

rapid size changes of fractures cause pronounced

thermal stresses,

• high velocity of a hydraulic fracture propagation

process that contributes to extremely large and rapid

topology changes of voids and fractures.

There are two main approaches for modelling the propa-

gation of hydraulically driven complex fracture patterns: (1)

continuum-based models and (2) discontinuous meso-scale

models at the grain level. The continuum-based models

[5, 21, 41, 57] use continuum formulations and coarse-grid

meshing for the fluid part. The fluid flow and solid–fluid

interactions are defined at the meso-scale using empirical

relations (e.g. Darcy’s law). There is no direct coupling at the

local scale: forces acting on the individual particles are

defined as a function of a meso-scale averaged fluid velocity

obtained from permeability–porosity-based estimates. The

solution of the continuum problem provides a fluid velocity

and momentum exchange between two phases at each node

of the mesh. The individual particle behaviour is not accu-

rately reproduced, and this fact limits their application to

problems such as strain localization, micro-cracking, local

heterogeneities in porosity and internal erosion by transport

of fines that are all inherently heterogeneous on the micro-

scale. The solutions can be obtainedwith classical numerical

methods such as finite differences, finite elements and finite

volumes. A great advantage of the continuum-based models

is an affordable CPU cost. However, they need a series of

phenomenological assumptions that rely on a number of

empirical relationships. In consequence, they require a new

calibration procedure for each new type of rock meso-

structure. The continuum-based meso-scale models are

obviously unable to fully describe meso-scale coupled

thermal, hydraulic and mechanical effects [5]. In addition,

continuum models usually assume a homogeneous and an

isotropic rock structure that is not realistic [9] and thus, the

models do not capture interaction between the hydraulic

fracturing and discrete fracture network. It is of major

importance to take into account a heterogeneous meso-

structure of rocks and a realistic pattern of pre-existing dis-

continuities that affect the shape and range of hydraulic

fracture propagation. Summing up, the main drawback of

currently used continuum hydraulic-mechanical models

[5, 9, 10, 15, 18, 21, 41, 56, 57, 61, 64] is the lack of the

detailed treatment of the geometry at the meso-structural

level. In addition, the rock system is initially fully pre-filled

with the fluid and only one-phase fluid flow is taken into

account. Simple approaches are used to track fluid flow in

voids and fractures.

As compared with usual continuum mechanics

methodologies in most of existing numerical studies, dis-

continuous meso-scale models at the grain level [such as

the discrete element method (DEM)] are more realistic

since they allow for a direct simulation of the meso-

structure and are very useful for studies of local physical

phenomena at the meso-level such as the mechanism of the

initiation, growth and formation of cracks [37, 40, 54].

DEM allows for a better understanding of local meso-

structural phenomena that evidently affect a macroscopic

rock behaviour. The strength and deformational features of

rock masses are strongly affected by persistence, spacing,

orientation and mechanical properties of geological struc-

tures. It is thus essential to accurately describe the funda-

mental behaviour of pre-existing structures when studying

the stability of a rock mass. The first DEM model for rocks

was formulated by Potyondy and Cundall [43]. Rock

fracturing was captured by the rupture of bonds whose

strength was characterized by a constant maximum

acceptable force in tension and a cohesive-frictional max-

imum acceptable force in shear. Different types of bonds

were proposed to simulate discontinuities [31, 35, 45]. The

most universal contact formulation was proposed by

Scholtès and Donze [45], based on the identification and re-

orientation of each discrete element interaction that crossed

the plane representing a discontinuous surface.

Various methods were developed to model fluid flow in

pores and fractures at the grain level when using DEM. The

commonly used approach to describe fluid flow and predict

interaction mechanisms between flowing fluid and particles

is the pore network modelling. It assumes that fluid flows

through channels connecting pores that accumulate pressure.

A simplified laminar viscous Poiseuille flow is assumed in

channels [32, 47, 60] and no flow or Stokes flow is taken in

pores [4, 40, 55]. The Poiseuille flow in channels describes

laminar Newtonian fluid flow between two plates (in general

non-parallel) and is based on Reynold’s equations of a

classical lubrication theory. The Stokes flow takes place in

pores when advective inertial forces are small as compared

with viscous forces (the Reynolds number less than 1). The

pore network model is built through a weighted Delaunay
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triangulation over the discrete element packing. Pre-existing

fractures and hydraulically driven fractures are treated as a

series of channels connected face-to-face or by cell grids,

depending on fluid flow model. The finite volume method is

applied to solve the governing equations of motion. In this

approach, the edges of triangles connect the gravity centres

of discrete elements. The geometry of a fluid domain (voids)

is thus not accurately reproduced. The triangles do not

reproduce a geometry but volumes of voids. A single triangle

covers partially particles and a void. The void volumes are

the difference between the areas of triangles and areas of

particles in triangles and next multiplied by 1 m (in the z-

direction). One pore is always discretized by one triangle.

This approach is also called the pore-scale finite volume

(PFV) method [4, 55]. The model may describe either

incompressible or compressible fluid. Due to its simplicity,

PFV overcomes the problem of the high computational cost

of meso-scale models without introducing all phenomeno-

logical assumptions of continuum-based methods [23]. The

models meet the following simplifying assumptions

[4, 32, 40, 47, 55, 60]: (a) the single-phase fluid flow (full

saturation) in voids and fractures; the only phase is a fluid

(the gas-phase is neglected), (b) the incompressible viscous

laminar fluid flow (turbulent flow conditions are neglected)

and (c) isothermal conditions in rock and flowing fluid

(thermal stresses are not taken into account).

There exist also several combined solutions using DEM

connected to the Smooth Particle Hydromechanics (SPH)

approach to describe the fluid behaviour [2, 14, 34, 44, 53].

Other coupled approaches which were successfully applied to

fluid-particle system simulations is DEM combined with the

lattice Boltzmann method [3, 33] that comes from the kinetic

theory of gases. However, this approach requires huge com-

putation time and is rarely employed in modelling of hydro-

fracking. Recently several coupled DEM/CFD simulation

results were described in different hydro-mechanical engi-

neering problems [12, 30, 46, 58, 59, 62, 63].

The paper is arranged as follows. After Introduction

(Sect. 1) and a brief overview of existing continuous and

discontinuous approaches for simulating hydro-fracking in

rocks, the discrete element method is summarized in

Sect. 2 and the fluid flow model in Sect. 3. The coupling of

DEM/CFD is discussed in Sect. 4 and the model calibra-

tion in Sect. 5. Section 6 reports on numerical study results

of hydro-fracking in a rock specimen. Finally, some con-

cluding remarks are offered in Sect. 7.

2 DEM for rocks

The advantage of the meso-scale modelling (in particular

under 3D conditions) is that it directly simulates meso-

structure and thus may be used to comprehensively study

the mechanism of the initiation, growth and formation of

localized zones and cracks that greatly affect the macro-

scopic behaviour of frictional-cohesive materials. It may

also be used for studying different local phenomena at the

aggregate level (e.g. force chains and vortex-structures) to

predict the early fracture process [24, 36]. The disadvan-

tages are the huge computational cost.

In order to describe the mechanical behaviour of rocks

at the meso-scale, DEM was used. The calculations were

performed with the three-dimensional open-source spheri-

cal explicit discrete element model YADE which was

developed at the University of Grenoble [25, 49]. DEM

considers a material as consisting of particles interacting

with each other through a contact law and Newton’s second

law via an explicit time-stepping scheme [8]. Outstanding

advantages of DEM include its ability to explicitly handle

the modelling of particle-scale properties including size

and shape which play an important role in the fracture

behaviour of frictional-cohesive materials [37]. The dis-

advantage is an enormous computational cost. The DEM

model was successfully used for describing the behaviour

of granular materials by taking shear localization into

account [26–29, 38]. It demonstrated also its usefulness for

both local and global fracture simulations in concrete under

bending (2D and 3D analyses) [37, 48], uniaxial com-

pression (2D and 3D simulations) [50] and splitting tension

(2D analyses) [51, 52]. The 3D spherical discrete element

method takes advantage of the so-called soft-particle

approach (i.e. the model allows for particle deformation

that is modelled as an overlap of particles) (Fig. 1). A

linear normal contact model under compression was used

(Fig. 1b). The interaction force vector representing the

action between two spherical discrete elements in contact

was decomposed into the normal and tangential compo-

nents. A cohesive bond was assumed at the grain contact

exhibiting brittle failure under the critical normal tensile

load. The tensile failure initiated contact separation and the

shear cohesion failure initiated contact slip and sliding

obeying the Coulomb friction law under normal compres-

sion (Fig. 1a). The linear elastic response was assumed

before reaching the fracture condition. The contact forces

were linked to the displacements through the normal and

tangential stiffness moduli Kn and Ks (Fig. 1a–c) [25]

F~n ¼ KnUN~ ð1Þ

F~s ¼ F~s;prev þ KsDX~s; ð2Þ

where U is the overlap between elements, N~ denotes the

unit normal vector at the contact point, X~s is the increment

of the relative tangential displacement, and F~s;prev is the

tangential force from the previous iteration. The normal

and tangential stiffness moduli Kn and Ks were computed

as the functions of the modulus of elasticity Ec and
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Poisson’s ratio tc of the grain contact and two contacting

grain radii RA and RB (to determine the tangential stiffness

Ks), respectively [25]

Kn ¼ Ec

2RARB

RA þ RB

and Ks ¼ tcEc

2RARB

RA þ RB

ð3Þ

If two grains in contact had the same size (RA= RB= R),

the numerical stiffnesses were equal to: Kn= EcR and

Ks= tcEcR, respectively (thus Ks/Kn= tc). The contact for-

ces F~s and F~n in the limit states were assumed to satisfy the

Coulomb condition for the cohesive failure and frictional

sliding states (Fig. 1d)

F~s

�
�
�
�� Fs

max � F~n

�
�

�
�� tan l� 0

ðbefore contact breakageÞ ð4Þ

and

F~s

�
�
�
�� F~n

�
�

�
�� tan lc � 0 after contact breakageð Þ;

ð5Þ

where lc denotes the inter-particle friction angle. More-

over, if any contact between grains after failure re-

appeared, the cohesion between them was not taken into

account (Eq. 5). The motion of fragments (mass-spring

systems with cohesion) was similar to the rigid body

motion. A choice of a very simple constitutive law was

intended to capture on average various contact possibilities

in a real material. The critical cohesive Fs
max and tensile

forces Fn
min were assumed as a function of the cohesive

stress Cc (maximum shear stress at pressure equal to zero),

tensile normal stress Tc and element radius R [13, 25]

Fs
max ¼ CcR

2 and Fn
min ¼ TcR

2: ð6Þ

A crack occurred when the normal force between ele-

ments in Eq. (1) reached its minimum value Fn
min (Eq. 6) or

the cohesive force between grains (Eq. 4) disappeared after

reaching the critical threshold value Fs
max (Eq. 6). For two

discrete elements in contact, the smaller values of Cc, Tc
and R were used. A local non-viscous damping scheme was

applied [7] in order to dissipate excessive kinetic energy in

a discrete system and facilitate convergence towards quasi-

static equilibrium. The damping parameter ad was intro-

duced to reduce the forces acting on elements

Fig. 1 Mechanical response of DEM: a tangential contact model, b normal contact model, c loading and unloading path in tangential contact

model and d modified Mohr–Coulomb model [25, 49]
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F~
k

damped ¼ F~
k � ad � sgn v~k

p

� �

F~
k

�
�
�

�
�
�; ð7Þ

where F~
k
are the kth components of the residual force and

translational particle velocity vp, respectively. A positive

damping coefficient ad was assumed smaller than 1 (sgn(�)
to preserve the sign of the kth component of velocity). The

equation could be separately applied to each kth component

of the 3D vector x, y and z. Note that material softening

was not assumed in the DEM model. The crack was not

allowed to propagate through grains, i.e. the grain breakage

has not been taken into account yet. The following five

main local material parameters are needed for our discrete

simulations: Ec, tc, lc, Cc and Tc. In addition, the particle

radius R, particle mass density q and damping parameters

ad were required. In general, the shape of interacting dis-

crete elements may be arbitrary [27].

In general, the DEM material constants are calibrated

with the aid of simple laboratory tests on the material

(uniaxial compression, uniaxial tension, shear, biaxial

compression). The detailed calibration procedure for fric-

tional-cohesive materials (e.g. concrete) was described in

[36, 37] based on real simple standard laboratory tests

(uniaxial compression and uniaxial tension) of concrete

specimens. The calibration process consisted of running

several uniaxial tension and uniaxial compression simula-

tions on a given assembly of discrete elements with the

same material constants to reproduce the selected experi-

mental behaviour.

3 Fracturing fluid flow model

Hydro-fracking in rocks involves a high-pressure injection

of fluids (over 70 MPa). The dominating fluid flow driving

factor is thus pressure. After hydro-fracking initiates,

fracture starts to propagate in rocks and to affect a topology

of all voids (including micro- and macro-voids, pre-exist-

ing fractures and newly forming hydraulic fractures) that

results in large volume and velocity changes of the fracking

fluid. The basic concept of the virtual pore network (VPN)

assumed in current calculations was a division of the entire

physical system into two domains which together co-ex-

isted and did not overlay each other (Fig. 2). The 2D

concept was the following: (1) the system of discrete par-

ticles described the rock matrix behaviour and (2) the

continuous domain included all voids wherein the fracking

fluid moved. The voids were discretized into a grid of non-

regular triangles [called here virtual pores (VPs)] (Fig. 2)

to precisely capture their changing geometry (shape, area

and location). The vertices of triangles were on the surfaces

of spheres (but not at the gravity centres of spheres as in the

PFV method). The triangles accurately reproduced the

geometry of voids between the discrete elements. The grid

density could be changed by a user. The denser the grid, the

more accurate were the results.

The gravity centres of grid triangles were connected by

channels composed of two parallel plates that created a

fluid flow network (Fig. 3a). One assumed two channel

types: 1) those running between discrete elements of the

rock matrix in contact (called the ‘S2S’ channels) (detail

‘A’ in Fig. 3b) and 2) those connecting triangles that tou-

ched each other by a common edge (called the ‘T2T’

channels) (detail ‘B’ in Fig. 3b). The pronounced changes

of both the geometry and topology were continuously

tracked in detail. In contrast to existing pore network

models for rocks, VPs accumulated pressure and stored

both the fluid fraction and density. We assumed incom-

pressible laminar one-phase fluid flow under isothermal

conditions in the rock matrix. The mass change in VPs was

related to a fluid density change that resulted in pressure

variations. The fluid initially might exist in both the rock

matrix and pre-existing fractures. It might fully or partially

fill in the voids. The fluid moved flow from VP to another

one when it was already fully filled. The pressure increased

in fully filled VPs but it did not change in partially filled

VPs. To simplify the fluid flow model, the fluid flow net-

work approach was assumed wherein the fluid flow solely

took place in the network of channels. The fluid domain

was divided into the triangles. The volumetric parameters

in each triangle were reduced to the points that were

located in their gravity centres. The fluid could solely flow

in the fluid flow network and was driven by a pressure

difference between the adjacent VPs. In general, the pres-

sure in the points connecting channels did not solely

depend on mass flow rates in channels but also on volume

changes. Since there was no fluid flow in triangles by

Fig. 2 Specimen divided into: (A) continuous domain representing

fluid and (B) discrete domain composed of particles representing rock

mass
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assumption (flow regime was stagnant and Re � 1), the

fluid velocity was close to zero. As a result, the equation of

momentum conservation was neglected in triangles.

However, the mass was still conserved in the entire volume

of triangles. The volume changes, mass sources and mass

flow rates were taken into account in channels to compute

the pressure in triangles. The fluid flow (for a stagnant flow

regime) was separately considered in VPs and in the

channels connecting VPs.

3.1 Fluid flow model in channels

The full one-phase laminar fluid flow was assumed in

channels without transitional zones. The capillary pressure

was neglected due to a huge injection pressure. The fluid

moved in channels through a thin film region that was

separated by two closely spaced parallel plates according to

a classical lubrication theory [19] (based on the Poiseuille

flow law [1]):

h
oq
ot

¼ oMx

ox
; ð8Þ

where h denotes the hydraulic channel aperture (its per-

pendicular width) (m), q is the fluid density (kg/m3), t is the

time (s), Mx denotes the mass fluid flow rate (per unit

length) across the film thickness in the x-direction [kg/

(m s)]. The mass fluid flow rate was computed from Eq. (8)

as

Mx ¼ q
h3

12l
oP

ox
; ð9Þ

where l denotes the dynamic fluid viscosity (Pa s) and P is

the fluid pressure (Pa). The mass fluid flow rate depends on

the channel length L and its hydraulic aperture h. The

channel length was assumed to be equal to the distance

between the gravity centres of adjacent grid triangles

(Fig. 3).

Fig. 3 Fluid flow network in rock matrix with triangular discretization of voids: a fluid flow network (in blue) and b channel types: (A) ‘S2S’

(red colour) and (B) ‘T2T’ (red colour) (color figure online)
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In real 3D problems, the fluid flows around the spheres

in contact. However, in 2D problems, there is no free space

for fluid flow. Therefore, the concept of virtual channels,

called S2S, was introduced. The S2S channels connected

the centres of gravity of two triangles which were separated

by the spheres in contact (Fig. 5b). They were located

along a contact line between two neighbouring deformed or

non-deformed spheres. Usually, the S2S channels did not

coincide with the contact lines between spheres (they

intersected one triangle’s edge only). However, if the S2S

channel crossed the vertices of triangles, the flow rate was

uniformly divided into adjacent edges. The S2S channel

existed in the system until the contact between the spheres

was lost. After that, free space occurred that was next

discretized by the new triangles.

The hydraulic aperture h of the channel type ‘S2S’ was

related to the normal stress by the slightly modified

empirical formula of Hökmark et al. [20]:

h ¼ b hinf þ h0 � hinfð Þe�1:5�10�7rn
� �

; ð10Þ

where hinf is the hydraulic aperture for the infinite normal

stress (m), h0 denotes the hydraulic aperture for the zero

normal stress (m), rn is the effective normal stress at the

particle contact (N/m2) and b denotes the aperture coeffi-

cient (to be determined in a macroscopic permeability test,

Sect. 6.2). The hydraulic aperture of the channel type

‘T2T’ was directly connected to the geometry of adjacent

triangles (Fig. 4) as

h ¼ ce cos 90� � xð Þ; ð11Þ

where e the length of the edge between two adjacent tri-

angles (m), x the angle between the edge with the length

e and the centre line of the channel that connects two

adjacent triangles and c the reduction factor, necessary to

fit the intensity of fluid flow to real complex fluid flow

conditions in rocks (Sect. 6.2). The reduction factor c was

determined in parametric studies so that the maximum

Reynolds number Re along the main flow path was always

lower than the critical one for in a turbulent flow regime.

Experimentally, Pfenninger [42] maintained laminar pipe

flow up to Re = 105. Hence, the critical number of

Re = 105 was chosen in the current computations.

For the ‘S2S’ channels located between overlapping

discrete elements, a special discretization procedure was

used (Fig. 5a). The 3D spherical particles were projected

onto the 2D plane and next discretized into the 2D poly-

gons. Next a remeshing procedure discretized overlapping

circles, determined contact lines and deleted overlapping

areas (Fig. 5b).

The shear stress along the boundary of the channel

occurred due to viscous fluid flow. For non-movable par-

allel plates with no-slip boundary conditions (zero veloc-

ity), the shear stress profile in the fluid was triangular (the

positive sign is for y = 0 and the negative sign is for y = h).

The shear stress sf0 at the channel surface for y = 0 was

calculated as

sf0 ¼
h

2

Pn
i � Pn

j

L
: ð12Þ

3.2 Fluid flow model in VPs

For fluid in VPs, two additional assumptions were met:

• flow regime was stagnant (the Reynolds number

Re � 1) and

• fluid was barotropic (q ¼ qðPÞ).

The integral form of the mass conservation equation in

VPs is (by neglecting the grid velocity)

d

dt

Z

V

qdV þ
Z

oV

qv~ � dA~� _Qv ¼ 0: ð13Þ

Equation (13) may be expressed next in terms of the

sum of volume fluxes along VP edges as

d

dt

Z

V

qdV þ
X

f

qf U
n
f

� �

� _Qv ¼ 0; ð14Þ

where f is the triangle edge number, Un
f the volume flux

through the edge f (m3/s) based on the channel average

velocity, t the time step (s), n the time increment, i the VP

number (–), �Qv the internal source (kg/s) and qf the fluid

density through the edge f. The internal source �Qv was used

to define boundary conditions only, e.g. the mass flow rateFig. 4 ‘T2T’ channel (red colour denotes channel width h) (color

figure online)
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at the injection point. The explicit formulation did not

require an iterative solution of the transport equation dur-

ing each time step. The product qf U
n
f in Eq. (14) was the

mass flow rate Mf of the fluid flowing through the edge f of

VPs. It was equal to (based on Eq. 9)

Mf ¼ qnf
h3

12l

Pn
i � Pn

j

L
; ð15Þ

where i is the VP number, j the adjacent VP number, P the

pressure, L the channel length (m) and f the edge number of

the triangle in VP. The linear relationship between the

density and pressure was assumed for a fluid [5]

qnþ1
i ¼ q0 1þ C Pnþ1

i � P0

� �� �

; ð16Þ

where P0 is the reference pressure (Pa), q0 the density for

the reference pressure (kg/m3) and C the fluid compress-

ibility (1/Pa). Substituting Eq. (16) into Eq. (14) and

transforming it with respect to oP=ot, the pressure change

in VPs was expressed as

Z

V

oP

ot
dV ¼ K

Xk

j¼1

ðqjÞ � _V þ Qv

 !

; ð17Þ

where V is the volume of VP (m3), K the fluid bulk

modulus (Pa), qj the volumetric flow rate of the fluid (m3/

s), k the number of VP edges (for 2D problems it is equal to

3), �V the time derivative of the virtual pore volume (m3/s)

and Qv the internal source (m3/s). By using a first-order

backward difference time integration scheme, Eq. (17) was

replaced by a discrete form

Pnþ1
i ¼ Dt

K

Vn
i

Xk

j¼1

qj
� �

� _V þ Qv

 !

þ Pn
i ; ð18Þ

where Dt is the time step (s), Vn
i the volume of VPi (m

3),

j the channel number and n the time increment. The vol-

umetric fluid flow rate qj was computed from Eq. (15) as

qj ¼
h3

12l

Pn
i � Pn

j

L
: ð19Þ

There exist 3 terms affecting the pressure (Eq. 19): the

sum of the volumetric fluid flow rates in the channels, the

time derivative of the volume and the internal source. The

sum of the volumetric fluid flow rates in the channels was

the result of fluid flow and was computed in CFD. The time

derivative of the volume was due to the counter forces

acting on the fluid. It was computed in DEM and next

transferred to CFD. The internal source was solely used to

define boundary conditions (volumetric flow rate) in

boundary pores.

Fluid flow between VPs was allowed only when VP was

fully saturated. Thus, the pressure in VP solely increased

when the fluid volume/area fraction was a ¼ 1. In partially

filled VPs (a\1), the pressure was equal to its initial value.

The fluid volume fracture anþ1
i in VPs was computed as

anþ1
i ¼

Vnþ1
w;i

Vnþ1
p;i

; with Vnþ1
w;i ¼ Vn

w;i þ DVi; ð20Þ

where Vnþ1
p;i is the volume of VPi for the n ? 1 time

increment, Vn
w;i the fluid volume VPi for the time increment

n and DVi the fluid volume that was transported from the

adjacent VPs into VPi during the time step Dt. The trans-

ported fluid volume DVi was computed as

DVi ¼
Dmi

qi
; with Dmi ¼ Dt �

X

f

qnf
h3

12l

Pn
i � Pn

j

L
:

ð21Þ

Putting Eqs. (16) and (21) into Eq. (20), the transported

fluid volume DVi was

DVi ¼
1

q0ð1þ CðPinit � P0ÞÞ
Dt �

X

f

qnf
h3

12l

Pn
i � Pn

j

L
;

ð22Þ

Fig. 5 ‘S2S’ channels between deformed spheres: a overlapping spheres ‘A’ and ‘B’ and b deformed spheres ‘A’ and ‘B’ after discretization
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where Pinit denotes the initial pressure in the rock mass

(Pa).

3.3 Discretization and large grid deformations

The discrete and continuous domains were discretized into

a triangular grid. The triangular grid of the continuous

domain was used to model fluid flow. The algorithm of

discretization was based on the Delaunay triangulation. In

the first step, the circumference of spheres and voids was

discretized. The number of vertices along the circumfer-

ence was a parameter set by the user. In the second step,

the contact lines (Fig. 5b) between the deformed spheres

were identified and the additional vertices of triangles were

generated. When the distance between some vertices was

too small (defined by a critical value), one of those vertices

was removed to avoid too small triangles in the final mesh.

Finally, the S2S and T2T channels were generated (Figs. 3,

4). The discretization algorithm directly influenced the

fluid flow network. The denser was the grid, the more

precise fluid flow path was reproduced.

When the hydraulic fracture started to propagate, the

pore triangular grid significantly deformed. The triangle

vertices in VPs changed their location, and the triangles

changed their volumes. The volume changes in Eq. (18)

were transferred to CFD. The grid remeshing was auto-

matically performed when topological properties of the

grid geometry changed (e.g. two spheres lost contact or the

triangle was deformed due to a sphere rotation, Fig. 6). To

identify the change in topological geometry properties, the

remeshing procedure was applied based on two criteria: the

loss of the contact between two spheres or the excessively

distorted shape of triangles. The contact between two

spheres was lost when the normal force in contact was

equal to zero (the crack occurred). The triangle was con-

sidered to be too distorted when the ratio of its area to the

circumference was below a certain limit value (e.g. 1 mm).

Those two criteria were checked in each iteration. In

contrast to the existing DEM/CFD models (e.g. in YADE),

the grid reproduced the geometry of voids between the

discrete elements (Fig. 3). The topology of the grid

reproducing the geometry of voids (number of triangles,

location of triangle vertices and shape of triangles) could

strongly vary after each remeshing and the grids did not

match each other (old and new ones). Thus, the computa-

tional results (e.g. pressures, fluid fractions) had to be

accurately transformed from the old grid to the new one

(modified by the remeshing procedure). After remeshing,

the pressure and fluid phase fraction in VPs were trans-

formed from the old grid to the new one, based on the

assumption that mass was a topological invariant. The

triangles that had changed the volume only were not

transformed (the volume changes were taken into account

in Eq. 18). However, after remeshing, there might happen

that, e.g. VP located in the new grid overlapped some VPs

that were located in the old grid (Fig. 7) or the new VP

Fig. 6 Topological changes of grid void geometry: (A) before deformation, (B) after deformation and (C) after remeshing a contact loss of two

spheres and b deformation due to sphere rotation)
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appeared in the new grid at the place where previously was

a sphere in the old grid. If the VP configuration changed

and the grid was remeshed, a transformation procedure was

performed and the new grid was projected onto the old

grid. Figure 7 presents a transformation of the new reme-

shed grid when one sphere rotated. The new VP1 (Fig. 7b)

in the new grid was projected onto the old grid. The new

VP1 (continuous green line) overlapped partially two VPs

in the old grid (dotted red line). The volume part I of VP1

and volume part II of VP2 in the old grid were taken over

by the new VP1. The fluid mass which was taken over was

computed as

XJ

j¼1

Vn
j a

n
j q

n
j

� �

¼ mn
T ;i; ð23Þ

where j is the VP-number in the old grid, i the VP

number in the new grid, J the number of VPs in the old

grid from which VPi in the new grid took over the mass,

Vn
j the fluid volume taken over from VPj in the old grid,

anj the fluid volume fraction in VPj, qnj the fluid density in

VPj, and mn
T ;i the total fluid mass taken over by VPi in the

new grid. If there was no volume change in VPi (when

applying the mass quantities in Eq. (15) instead of mass

flow rates), Eq. (20) was used to find the fluid volume

fraction. Similarly, Eq. (16) was used to calculate the

new pressure after a transformation in VPs that were

fully saturated.

The following material constants are needed for the

CFD simulations: reference pressure P0 (Pa), fluid den-

sity q0 for the reference pressure P0 (kg/m3), fluid bulk

modulus K and dynamic fluid viscosity l (Pa s). The

inverse of the bulk modulus gives a fluid compressibility

C (1/Pa).

4 Hydro-mechanical coupling

The coupling scheme of DEM with CFD involved two sets

of discrete equations to be solved: the flow rule defined in

Eqs. (18) and (19) for all VPs and the law of motion

defined in DEM for all discrete elements. The two-way

coupling scheme (Fig. 8) was based on a transfer of pres-

sure and shear stress forces from CFD to DEM and the time

derivative of the Virtual Pore volume from DEM to CFD.

The pressure and shear forces from the fluid caused the

displacements of spheres in DEM that changed the coor-

dinates and volumes of triangles in VPN. The term _V was

computed in DEM and next transferred to CFD. The vol-

ume change was taken into account in Eq. (19) that

included the term _V . As a result, the volume change in

DEM affected the pressure change in the fluid in CFD. The

fluid pressures in VPs and channels were next converted

into the forces acting on spheres in DEM. Two-time steps

were distinguished: the fixed time step DtD in DEM and

the varying time step DtC in CFD (DtC �DtD). The CFD

time step was limited by the Courant–Friedrichs–Lewy

condition (for 1D channel flow) [6]

DtC ¼ Cmax

Lmin

vmax

; ð24Þ

where Cmax the Courant number (–), Lmin the minimum

channel length (m) and vmax the maximum fluid channel

velocity (m/s). The Courant number Cmax was limited to

0.1. The rock pressure field and shear stresses in the ‘S2S’

channels were calculated by CFD in each time step DtC.
They were, however, transferred from CFD to DEM in

each time step DtD. They were used to compute the fluid

forces which were added to the contact forces F before the

time integration to update the displacements of each dis-

crete element.

Fig. 7 VP in new grid overlapping some VPs in old grid (e.g. after sphere rotation): a overall view of deformed region, b zoomed view (A) mass

transferred to new VP1 located in new grid (green colour) from two VPs (volume I from old VP1 and volume II from old VP2) located in old grid

(red d dotted line) (color figure online)
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The discrete domain (DEM) was modelled as a 3D

system while the fluid domain (CFD) was modelled as a 2D

system. The discrete domain consisted of one layer of

spheres whose centres were located in the XY plane. The

fluid pressures in VPs and ‘S2S’ channels were converted

into the forces F~P;j acting on spheres (Fig. 9b)

Fig. 8 DEM-CFD coupling schema (m is current time sub-increment and nc is number of sub-increments in CFD)
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F~P;j ¼ �Pin~Ak; ð25Þ

where n~ is the unit vector normal to the discretized sphere’s

edge, Pi the pressure in VP, i the VP number, j the sphere

number and Ak the contact area between the fluid in VPi
and sphere

Ak ¼ 2rjek; ð26Þ

where rj is the sphere radius and ek the sphere edge length.

The shear stresses were converted into the forces acting on

spheres in the ‘S2S’ channels (Fig. 9c) as

F~S;j ¼ sf0;iI~Ak with Ak ¼ 2rjLk; ð27Þ

where I~ is the unit vector parallel to the channel wall and

oriented in the fluid flow direction, sf0;i the shear stress in

the channel (Eq. 12), i the channel number, j the sphere

number and Ak the contact area between the channel fluid

and sphere and Lk the channel length. The DEM/CFD

coupling technique was implemented into the platform

YADE. The developed method of the fluid domain dis-

cretization and hydro-mechanical coupling enabled to

simulate floating of particles in fractures. The floating

particles in fractures were usually surrounded by triangles

of a CFD domain only. Owing to the novel remeshing and

transformation procedure, the interaction between the

floating particle and the surrounding fluid was reproduced.

Thus, the particle movement might be observed and

tracked.

The extension of the VPN model from 2D into 3D is

straightforward. The discrete and continuous domains are

discretized using tetrahedrons under 3D conditions (instead

of triangles in 2D conditions). The S2S virtual channels are

not required (the T2T channels exist only). In 3D, the width

of channels is related to the geometry of tetrahedron’s faces

(in 2D, the width of S2S and T2T channels is equal to 1 m).

The mathematical model of fluid flow is the same under 2D

and 3D conditions.

5 Model calibration

5.1 Pure DEM calibration

The real meso-structure of the rock mass was not taken into

account. Instead an extremely simple 2D DEM one-phase

mesoscopic model with spheres was assumed to approxi-

mately reproduce the rock mass behaviour at the meso-

scale. The specimen included one row of spherical particles

in depth. The spheres’ diameter was between 0.7 and

1.3 mm (with the mean diameter equal to d50= 1 mm). An

arbitrary micro-porosity can be achieved in DEM due to

that the particles may overlap. The initial micro-porosity

was assumed as p = 1% (corresponding, e.g. to shale

rocks). The spheres were put into the box that corresponded

to the rock specimen size and shape (with the inter-particle

friction angle of lc= 0�) until the desired initial micro-

porosity was obtained. The spheres were allowed to settle

until their total kinetic energy became insignificant. Next,

all forces between the spheres were deleted due to the

particle penetration U and lc was set on the target value

[37]. In order to take the starting configuration into

account, the initial overlap was subtracted in each calcu-

lation step when determining the normal forces

(F~n ¼ Kn Un � U0ð ÞN~, where Uo is the initial overlap and

Un the overlap in the calculation n-steps). The following

material constants were mainly used in all DEM analyses

for rock specimens (Sect. 4): Ec= 3.36 GPa, tc= 0.3, Cc=-

170 MPa and Tc= 34 MPa (Cc/Tc= 5), lc= 18� and

q = 2.6 kG/m3. The damping parameter ad= 0.10 did not

affect the results [27, 28, 50, 51]. The material constants

were calibrated in order to approximately describe labo-

ratory test results for shale rock [17] during quasi-static

both uniaxial compression and tension splitting. About

10,000 spheres were used in calculations. For uniaxial

compression, the quadratic specimen 100 9 100 mm2 was

assumed. The bottom and top of specimen were smooth.

The prescribed vertical displacement was applied along the

Fig. 9 Schema of converting fluid pressure and shear stress into force acting on discretized sphere: a original sphere, b pressure conversion on

discretized sphere and c shear stress conversion on discretized sphere
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top boundary with the constant load velocity of 2 mm/s.

For tension splitting, the circular specimen was used with

the diameter of D = 100 mm. The vertical displacement

was prescribed along the specimen top and bottom

boundary by two rigid cylinders to eliminate the effect of

boundaries [51] (with the constant load velocity of 2 mm/

s).

Figure 10 shows the 2D stress–strain or stress–dis-

placement curves and fracture patterns during some simple

strength tests for the rock specimen (uniaxial compression

and tension splitting). The calculated maximum compres-

sive normal stress was r = 47 MPa for the vertical normal

strain e = 1% (Fig. 10Aa), and the maximum tensile stress

was r = 8 MPa for the displacement of u = 0.75 mm

(Fig. 10Ba) (the values are in agreement with, e.g. the

experiment [17]). Note that the displacements shown in

[17] also included the piston displacement until the speci-

men’s compression started. The numerical post-peak

response of the rock specimen was too brittle in both the

cases due to some simplifications met (simple one-phase

material, narrow particle diameter size range, 2D analyses

and small number of spheres) [36]. The failure mode was

characterized during uniaxial compression by the occur-

rence of few almost vertical and skew macro-cracks

(Fig. 10Ab) and during tension splitting by one vertical

macro-crack (Fig. 10Bb) as in experiments [17]. In addi-

tion, Fig. 11 demonstrates the effect of micro-porosity p on

strength and brittleness of the specimen for p = 1%,

Fig. 10 2D pure DEM: a stress–strain or stress-displacement curves and b fracture patterns for uniaxial compression (A) and splitting test

(B) with specimen initial micro-porosity 1% (displacements were was magnified by factor 100)
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p = 5% and p = 10%. The strength, initial stiffness and

brittleness of rock specimens decreased with increasing

micro-porosity. The maximum vertical normal stress was

r = 16-47 MPa (uniaxial compression) and r = 3.7-

8.0 MPa (tension splitting).

5.2 CFD calibration

Two types of rocks were chosen to study the physical

correctness of the VPN model: fresh limestone and sand-

stone. The calibration was performed for average rock

Fig. 11 2D pure DEM: stress–strain curves for uniaxial compression (A) and stress-displacement curves for tension splitting (B) with initial

micro-porosity p: a p = 1%, b p = 5% and c p = 10%

Fig. 12 Permeability CFD test for rock specimen (case ‘2’ with b = 1.2): a geometry and boundary conditions, b pressure distribution at

equilibrium state and c pressure isolines (scale denotes pressure)
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permeability values. The aperture constant b in Eq. (10)

was calibrated by means of a numerical permeability test

(Fig. 12). The quadratic specimen 10 9 10 mm2 was

chosen. All spherical discrete elements of the rock speci-

men were fixed so that the rock matrix was non-de-

formable. The test was performed until the equilibrium was

reached. The specimen was fully saturated. The zero-flux

conditions (qBCðtÞ ¼ 0) were imposed on vertical walls.

The pressures PUPðtÞ and PBTðtÞ were imposed along

horizontal walls of the specimen (Fig. 12a). The uniform

initial conditions were assumed for the water pressure

P0ðt ¼ 0Þ ¼ 10 MPa. The initial micro-porosity of the rock

specimen was again p = 1%, and the fluid properties were

as follows: dynamic viscosity l ¼ 4:06 � 10�4 Pa s (water

at the temperature of 70 �C), compressibility

C ¼ 4:0 � 10�10 Pa-1 and fluid density q0 ¼ 977:36 kg

m3 for

the reference pressure P0 ¼ 0:1 MPa. The channel aper-

tures in Eq. (10) were hinf ¼ 2:5 � 10�8 m and

h0 ¼ 3:25 � 10�7 m (Eq. 10). The reduction factor was c ¼
0:01 (Eq. 11). The calibration procedure was performed for

two different aperture coefficients b: b = 0.9 (case ‘1’) and

b = 1.2 (case ‘2’). Assuming that the volumetric flow rate

at horizontal walls was the same at the equilibrium state,

the macroscopic permeability coefficient j of the rock

specimen was calculated using the Darcy’s law:

j ¼ Q

A
lq

L

DP
; ð28Þ

where Q is the volumetric flow rate at the equilibrium (m3/

s), A the specimen cross section (m2), L the specimen

height and DP the pressure difference between the bottom

and top wall (Pa).

The equilibrium state was reached for the fluid velocity

of 0.016 m/s for the case ‘1’ and 0.008 m/s for the case ‘2’.

The calculated permeability coefficients of the rock matrix

were: j ¼ 1:092 � 10�17 m2 for the case ‘1’ (value typical

for rocks like fresh limestone and dolomite) and

j ¼ 2:165 � 10�15 m2 for the case ‘2’ (value typical for

sandstone). A realistic one-dimensional fluid flow was

obtained at the macroscopic level (Fig. 12b). The pressure

isolines (Fig. 12c) were almost parallel to the bottom and

top wall of the rock specimen (they were qualitatively the

same for the cases ‘1’ and ‘2’). The aperture constant

b = 0.9 (corresponding to fresh limestone) was chosen for

further simulations. Note that the calibration of b has to be

always carried out for the specified rock.

5.3 Dependence on time step

Three fixed DEM time steps were analysed:

DtD ¼ 5 � 10�8, DtD ¼ 1 � 10�8 and DtD ¼ 1 � 10�9

(Fig. 13). The adaptive CFD time step was varying with

the fixed Cmax = 0.1. The quadratic specimen

10 9 10 mm2 was chosen (Fig. 13a). The initial fluid

fraction in voids of the rock matrix was a = 1 (full satu-

ration). The initial porosity of the specimen was p = 1%.

The fluid and rock properties were as in Table 1. The grain

diameter varied between 0.75 and 1.30 mm. The initial

vertical and horizontal normal stresses were equal to

30 MPa, respectively. The impermeable walls were

assumed. The pressure was applied on the specimen

through smooth (frictionless) rigid walls. The walls were

free to move (except the bottom one, which was fixed).

One injection slot was located at the bottom mid-point of

the rock specimen. The initial fluid pressure of 30 MPa was

assumed in all pores. The fracking fluid with the constant

pressure of 60 MPa was injected.

The fluid pressure along the main flow path in the

hydraulic fracture is shown in Fig. 13b. The maximum

pressure difference of 2.54 MPa (4.2% of the maximum

pressure in the main fluid flow path in the hydraulic frac-

ture) was obtained between the time step DtD ¼ 5 � 10�8

and DtD ¼ 1 � 10�9. However, a significant difference in

the computing time tc was registered (tc= 2 h for DtD ¼

Fig. 13 Effect of time step in coupled DEM/CFD calculations: a rock

specimen and b fluid pressure along main flow path
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5 � 10�8 and tc= 23 h for DtD ¼ 1 � 10�9). The computing

time was not directly proportional to DtD due to the use of

the adaptive algorithm in CFD calculations (the shorter the

DEM time step DtD, the less CFD time sub-steps were

needed). The DEM time step of 1 � 10�8 s was always

assumed in the simulations. The CFD time step was about

2–10 times smaller.

6 Coupled DEM/CFD simulation results

The processes of initiation and propagation of hydraulic

fracture in the rock specimen were studied for the different

initial micro-porosity, rock strength, fracking fluid

dynamic viscosity and the presence of a pre-existing frac-

ture. In order to significantly reduce the computation time,

a small quadratic rock specimen 30 9 30 mm2 was

assumed (with 1500 spheres). The specimen was subjected

to biaxial compression (Fig. 14). The diameter of spheres

was again in the range of 0.7 mm and 1.3 mm (Sect. 6.1).

In order to more realistically distribute stresses along

boundaries, a row of small spheres with the diameter of

0.5 mm was added. The initial vertical and horizontal

normal stresses of 10 MPa were prescribed and kept con-

stant. The rigid impermeable specimen edges were

assumed to be smooth (frictionless). The boundaries were

free to move except of the fixed bottom. The initial fluid

pressure of 10 MPa was assumed in all pores. One injec-

tion slot was located at the bottom mid-point of the rock

specimen with the width of 0.5 mm. To simulate the fluid

flow conditions at one injection point, the constant pressure

of 70 MPa was assumed instead of, e.g. the constant flow

rate in the wellbore that lead in simulations to an uncon-

trolled pressure increase at the injection point. Thus, the

magnitude of the flow rate should be defined according to

the experimental data. In general, different boundary con-

ditions in the fluid domain were implemented in our VPN

model: constant pressure, variable pressure, constant flow

rate, variable flow rate and controlled flow rate. They

enabled us to reproduce arbitrary boundary conditions in

the wellbore. The initial fluid volume fraction in the entire

specimen was a = 0.98. The basic material constants for

the fracking fluid and rock matrix in coupled DEM/CFD

calculations are given in Table 1.

6.1 Initiation and propagation of hydraulic
fracture in rock matrix

The evolution of hydraulic fracture and fluid pressure is

shown in Fig. 15. The results are presented for the

advancing flow time t: t = 0.08 ms, t = 2.80 ms,

t = 4.82 ms and t = 5.51 ms. The red colour denotes the

maximum water pressure of 70 MPa and the cyan colour

the minimum water pressure of 10 MPa. Figure 16 presents

the evolution of the fluid parameters: pressure, velocity and

Reynolds number along the main flow path in the moving

hydraulic fracture.

The hydraulic fracture occurred at the injection slot and

propagated in a vertical direction up to the specimen top

Fig. 14 Geometry and boundary conditions of rock specimen sub-

jected to hydraulic fracturing with one injection slot at bottom (‘P1’—

horizontal pressure, ‘P2’—vertical pressure, red arrow—injection of

fracturing fluid) (color figure online)

Table 1 Basic material constants assumed for rock matrix and fluid in

coupled DEM/CFD calculations of hydro-fracking

Symbol Value Unit

Material constants for rock

Modulus of elasticity of contact EC 3.36 GPa

Poisson’s ratio of contact tc 0.35 –

Cohesive stress CC 170 MPa

Tensile normal stress TC 34 MPa

Inter-particle friction angle lc 18 o

Mass density q 2.6 kG/m3

Micro-porosity p 1 %

Material constants for fluid

Dynamic viscosity l 4.06�10-4 Pa s

Bulk modulus/compressibility K/C 2.5�109/
4.0�1010

Pa/1/

Pa

Reference pressure P0 0.1 MPa

Density at reference pressure q0 977.36 kg/m3

Channel width hinf 2:5 � 10�8 m

Channel width h0 3:25 � 10�7 m

Aperture coefficient (Eq. 10) b 0.9 –

Reduction facture (Eq. 11) c 0.01 –

Permeability coefficient j 1:092 � 10�17 m2

Fluid volume fraction a 0.98 –
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with some branches in the upper region caused by the

specimen heterogeneity (Fig. 15). The final crack width for

t = 5.51 ms varied between 0.75 mm and 1.3 mm.

Initially, no fluid flow occurred since the fluid needed some

time to flood first the micro-voids. The clear hydraulic

fracture initiated for t = 0.29 ms. The fluid started to

Fig. 15 2D coupled DEM/CFD simulations: evolution of hydraulic fracture with pressure distribution (A) and evolution of pressure distribution

in specimen (B) for time t a t = 0.08 ms (initial stage), b t = 2.80 ms, c t = 4.82 ms and d t = 5.51 ms (final stage) (scales denote pressure)
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damage the rock matrix for t = 2.80 ms, when the pressure

was higher than the rock strength and initial confining

pressure. The mean fluid velocity was 0.5 m/s (Re= 0–400)

(Fig. 16). In the final stage of the hydraulic fracture process

(t = 5.51 ms), some large fluid velocity jumps were

obtained. The mean fluid velocity was 3.8 m/s; the fluid

Fig. 16 2D DEM/CFD simulations: propagation of single hydraulic fracture (A) pressure along main flow path l, (B) velocity along main flow

path, (C) Reynolds number along main flow path: a t = 0.08 ms, b t = 2.80 ms, c t = 4.82 ms and d t = 5.51 ms (red colour—fitting line

obtained with distance weighted least squares method) (color figure online)
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velocity locally increased up to 11.5 m/s. The maximum

and mean Reynolds numbers were 20,300 and 4000

(Fig. 16dC), respectively, i.e. below the limit value of 105.

The fluid zone width was higher than the macro-crack

width (up to 5 mm at the maximum in some regions) since

the fluid slightly leaked out beyond the hydraulic fracture.

Fig. 17 2D coupled DEM/CFD simulations: evolution of hydraulic fracture with pressure distribution (A) and evolution of pressure distribution

in specimen (B) with different initial micro-porosity p for time t = 2.57 ms: a p = 15%, b p = 10%, c p = 5% and d p = 1% (scales denote

pressure, horizontal pink line denotes coordinate axis) (color figure online)
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6.2 Effect of initial micro-porosity of rock matrix

Four different initial micro-porosities of the rock matrix

p were chosen for comparative simulations: 1%, 5%, 10%

and 15% (Fig. 17). The results of the hydraulic fracture

were shown for the same time t = 2.57 ms for each

different p. For this time, the macro-crack reached a left

vertical specimen boundary for p = 15%. The height,

inclination and width of the main crack and fluid path

increased with the higher micro-porosity (Fig. 17). The

height of the crack was measured in the vertical direction

between its maximum point and bottom. The inclination of

Fig. 18 2D coupled DEM/CFD simulations: evolution of hydraulic fracture with pressure distribution (A) and evolution of pressure distribution

in specimen (B) with different dynamic viscosities of fracking fluid, a l = 0.4�10-4 Pa s (t = 1.50 ms), b l = 0.7�10-4 Pa s (t = 2.58 ms) and

c l = 1.0�10-4 Pa s (t = 3.06 ms) (scale denotes pressure, horizontal pink line denotes coordinate axis) (color figure online)
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the crack was defined as the angle of the crack path to the

horizontal. The width of the crack was the distance

between the discrete elements without contact.

The fluid leakage became also higher with growing

initial micro-porosity. The branching of the macro-crack

already happened at the specimen bottom for the high

p (p = 10–15%, Fig. 17a, b). The secondary macro-crack

Fig. 19 2D coupled DEM/CFD simulations: evolution of hydraulic fracture with pressure distribution (A) and evolution of pressure distribution

in specimen (B) with different rock strength: a Cc= 17 MPa, Tc= 3.4 MPa (t = 4.71 ms), b Cc= 170 MPa and Tc= 34 MPa (t = 5.51 ms) and

c Cc= 340 MPa and Tc= 68 MPa (t = 8.74 ms) (scales denote pressure, horizontal pink line denotes coordinate axis) (color figure online)
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Fig. 20 2D coupled DEM/CFD simulations: evolution of hydraulic fracture with pressure distribution (A) and evolution of pressure distribution

in specimen (B) with pre-existing single horizontal macro-crack (case ‘I’ a t = 1.82 ms, b t = 1.94 ms, c t = 2.44 ms and d t = 3.71 ms, scales

denote pressure)
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was almost horizontal for those cases. The fracture width

was about 7 mm for p = 15%.

6.3 Effect of dynamic viscosity of fracking fluid

The effect of different viscosities of fluids in the conditions

of the partially saturated rock matrix was investigated.

Three different dynamic viscosities of the fracking fluid

were chosen: l = 0.4�10-4 Pa s (low fluid viscosity),

l = 0.7�10-4 Pa s (medium fluid viscosity) and

l = 1.0�10-4 Pa s (high fluid viscosity). Figure 18 presents

the geometry of the hydraulic fracture with the approxi-

mate length of 20 mm in the specimen for different

dynamic viscosities l in the varying time t.

The results show that the smaller the dynamic viscosity,

the faster the hydraulic fracture propagates. The macro-

crack length of 20 mm was reached for t = 1.50 ms with

l = 0.4�10-4 Pa s and for t = 3.06 ms with l = 1.0�10-4

Pa s (Fig. 18). The smallest width of the hydraulic fracture

was 1.5 mm for l = 0.4�10-4 Pa s, and the largest was

2.2 mm for l = 1.0�10-4 Pa s. The strongest fluid leakage

was obtained for the smallest viscosity l = 0.4�10-4 Pa s

and the weakest one for the highest dynamic viscosity

l = 1.0�10-4 Pa s. The highest fluid velocity (23 m/s) took

place for l = 0.4�10-4 Pa s and the lowest fluid velocity

(17 m/s) for l = 1.0�10-4 Pa s.

6.4 Effect of rock strength

The effect of three different (proportionally scaled) cohe-

sive and tensile normal stresses in the rock matrix were

investigated: (1) Cc= 17 MPa and Tc= 3.4 MPa, (2)

Cc= 170 MPa and Tc= 34 MPa and (3) Cc= 340 MPa and

Tc= 68 MPa. Figure 19 shows the results of the propagat-

ing hydraulic fracture for a final stage when it reached the

specimen top boundary.

When the rock specimen was the strongest, the

hydraulic fracture developed during the longest time and it

was the least curved. In addition, no secondary macro-

cracks were created (that are visible for two weakest

specimens). The fluid pressures and velocities of along the

main path were similar for all specimens.

6.5 Effect of pre-existing fracture

A single pre-existing fracture was formed in the rock

specimen with the length of 20 mm and width of 0.5 mm.

It was located 10 mm (case ‘I’) and 15 mm (case ‘II’)

above the specimen bottom (Figs. 20, 21). It was artifi-

cially created by removing several dozen spherical

particles.

In the case ‘I’, the hydraulic fracture started to propagate

towards the pre-existing fracture (Fig. 20aA). It reached

the pre-existing fracture for t = 1.94 ms (Fig. 20bA). The

fracking fluid started next to fill in the pre-existing fracture

(Fig. 20bA). For t = 2.44 ms, the pre-existing fracture was

totally filled in with the fluid (Fig. 20cA) and the fluid

pressure started to grow there (Fig. 20cB). Later the fluid

pressure sufficiently increased to damage the rock matrix

and the hydraulic fracture slightly moved upwards at both

the ends of the pre-existing fracture (Fig. 20dA). The

moderate fluid leakage from the hydraulic fracture to the

rock matrix was obtained during the entire simulation

(Fig. 20B). Several single floating particles (separated from

the rock mass) appeared in the hydraulic fracture

(Fig. 20dA). Thus the VPN model makes it possible to

Fig. 20 continued
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Fig. 21 2D coupled DEM/CFD simulations: evolution of hydraulic fracture with pressure distribution (A) and evolution of pressure distribution

in specimen (B) with pre-existing single horizontal macro-crack (case ‘II’) a t = 1.97 ms, b t = 2.74 ms, c t = 3.36 ms and d t = 5.42 ms, scales

denote pressure)
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study the effect of proppant particles on the hydraulic

fracture opening/closure.

In the case ‘II’, the hydraulic fracture initiated and

started to propagate also towards the pre-existing fracture

(Fig. 21aA). After t = 2.43 ms, it reached the pre-existing

fracture and the fracking fluid started to flood it

(Fig. 21bA). The fracking fluid fully flooded the pre-ex-

isting fracture for t = 3.26 ms and next the fluid’s pressure

began to grow (Fig. 21cA). On the right and left end of the

pre-existing fracture, the fluid pressure increased enough to

damage the rock matrix and extended slightly the pre-ex-

isting fracture. However, unlike the case ‘I’, the highest

fluid pressure’s increase was obtained at the intersection of

both fractures. It resulted in the huge damage of the pre-

existing fracture near this intersection region. The

hydraulic aperture of the pre-existing fracture increased

near the intersection rather than at its ends as in the case ‘I’.

After the relatively long time (1.8 ms), the hydraulic

fracture damaged the pre-existing fracture at the intersec-

tion region and resumed the propagation way upwards. In

the final stage of the simulation, the hydraulic fracture

propagated upwards from the intersection region

(Fig. 21dA). Before the pre-existing fracture was damaged

and totally flooded with the fluid, no floating single parti-

cles grains appeared. However, after a significant increase

of the fluid pressure, the grains began to separate from the

rock matrix and to float. This process was more intensive

than in the case ‘I’. The leakage of the fracking fluid in the

rock matrix was pronounced during almost the entire

simulation (Fig. 21aB–cB). The relative long-time damage

of the pre-existing fracture (about 2.8 ms) caused a huge

fluid’s leak in the rock matrix and consequently the sig-

nificant pressure loss (Fig. 21dB).

7 Conclusions

This study focused on a hydro-fracking (hydraulic frac-

turing) process in the rock mass at the meso-level with the

use of one injection slot. The novel two-way coupled CFD/

DEM approach was used to simulate this complex process

by discretizing the geometry of voids in the rock mass

during laminar fracturing fluid flow. The model realisti-

cally depicted the development of a hydraulic fracture and

fracturing fluid velocity and pressure.

The results showed significant effects of the initial

porosity of the rock matrix, rock matrix strength, dynamic

viscosity of the fracking fluid and presence of a pre-ex-

isting fracture on the fracture initiation and propagation.

The height of the hydraulic fracture and its velocity

strongly increased with increasing initial micro-porosity of

the rock matrix and decreasing dynamic viscosity of the

fracturing fluid and rock strength, and the lack of a pre-

existing fracture.

The Virtual Pore Network model enabled to study the

effect of floating grains separated from the rock matrix in a

hydraulic fracture.

The developed method of tracking fluid fractions in

voids allowed for investigating the effect of the fluid’s

leakage from the hydraulic fracture into the rock matrix.

The fluid’s leakage was in particular pronounced in the

case of high rock micro-porosity and presence of a pre-

existing macro-crack.
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20. Hökmark H, Lönnqvist M, Fälth B (2010) Technical report TR-

10-23. THM-issues in repository rock—thermal, mechanical,

thermo-mechanical and hydro-mechanical evolution of the rock

at the Forsmark and Laxemar sites. SKB–Swedish Nuclear Fuel

and Waste Management Co., pp 26–27

21. Hossain MM, Rahman MK (2008) Numerical simulation of

complex fracture growth during tight reservoir stimulation by

hydraulic fracturing. J Petrol Sci Eng 60(2):86–104

22. Jalali MR, Evans KF, Valley BC, Dusseault MB (2015) Relative

Importance of THM Effects during non-isothermal fluid injection

in fractured media. In: Proc Amer Rock Mech Assoc Conf

ARMA 15-0175

23. Joekar-Niasar V, van Dijke M, Hassanizadeh S (2012) Pore-scale

modeling of multiphase flow and transport: achievements and

perspectives. Transp Porous Media 94(2):461–464

24. Kahagalage S, Tordesillas A, Nitka M, Tejchman J (2017) Of

cuts and cracks: data analytics on constrained graphs for early

prediction of failure in cementitious materials. In: Proc. powders

and grains, 2017
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