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Abstract
Hypoplastic constitutive equation based on nonlinear tensor functions possesses a failure surface but no yield surface. In

this paper, we consider the numerical integration and FE implementation of a simple hypoplastic constitutive equation. The

accuracy of several integration methods, including implicit and explicit methods, is examined by performing a set of

triaxial compression tests. Adaptive explicit schemes show the best performance. In addition, the stress drift away from the

failure surface is corrected with a predictor-corrector scheme, which is verified by two boundary value problems, i.e. rigid

footing tests and slope stability.

Keywords Finite element analysis � Hypoplastic models � Numerical integration � Stress correction � Substepping method

1 Introduction

Hypoplasticity represents a class of incrementally nonlin-

ear constitutive models [9, 11, 16, 17, 28, 42]. Unlike

elastic–plastic models, there is no need to decompose the

deformation into elastic and plastic deformations. More-

over, hypoplastic models do not make use of yield and

potential surfaces [37]. Hypoplastic models are charac-

terised by simple formulation and few material parameters

and have been used to simulate soil behaviour in element

tests and to solve boundary value problems with FEM

[14, 25].

The performance of FEM depends on the efficiency of

the numerical integration of constitutive equation.

Recently, numerical integration of hypoplastic constitutive

equations in finite element analysis is a topic of consider-

able interest. The fact that hypoplastic model has a single

equation makes the implementation more straightforward

than elastoplastic models [4, 30]. Since hypoplastic model

does not have a yield surface, the stress return mapping

algorithms common for elastoplastic models are not nee-

ded. Research on the finite element implementation of

hypoplastic models can be traced back to the early work by

Sikora and Gudehus [26], in which a simple explicit for-

ward Euler scheme with constant step sizes was adopted.

Later, this method was used to investigate shear band

formation in granular materials by Tejchman and Wu [31].

Roddeman [24] used a generalised midpoint algorithm and

Heeres and de Borst [8] considered an implicit integration

method together with Newton–Raphson iterative

scheme for the stress integration of a hypoplastic model

[32]. Tamagnini et al. [30] studied the accuracy of some

explicit methods and the generalised midpoint algorithm.

Recently, Ding et al. [4] showed that explicit methods with

substepping and error control are suitable for the numerical

implementation of hypoplastic models.

While the aforementioned integration schemes perform

well prior to reaching the failure surface, none of properly

handle the stress drift away from the failure surface. The

reasons for this are twofold. First, hypoplastic models are

very sensitive to step size used in stress integration. A too

large step size may impair the convergence and stability of

the numerical calculation. Second, hypoplastic model

allows some stress state outside the failure surface [40]. For

some well-defined hypoplastic models, Wu and Niemu-

nis [39] showed that all accessible stress states are within a

bound surface. However, the bound surface is often too far
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from the failure surface, which gives rise to too high

strength [40]. Consequently, the error resulted from stress

drift away from the failure surface can accumulate in

numerical computations and eventually lead to unphysical

behaviour [3, 22] and the loss of stability for a boundary

value problem. For numerical calculations, it makes sense

not to allow stress to wander outside the failure surface. A

solution to this problem is to use the return mapping

method originally proposed for elastoplastic models [12].

In this work, we will investigate when the return mapping

is needed and how the return mapping can improve accu-

racy. In doing so, we consider a fairly general and simple

hypoplastic model so that our approach can be easily

adopted to handle more sophisticated hypoplastic models.

In Sect. 2, the hypoplastic constitutive model and its

numerical equations are outlined. In Sect. 3, several com-

monly used integration schemes are introduced. In Sect. 4

the performance of the integration algorithms is examined

by performing a series of triaxial compression tests. The

significance of the stress correction at the failure surface is

shown by two boundary value problems.

2 A simple hypoplastic constitutive model

2.1 Constitutive model

In the framework of hypoplasticity, the constitutive equa-

tion is written in two parts, representing, respectively, the

reversible and irreversible behaviour. We start with the

formulation by Wu and Kolymbas [38] and write the

hypoplastic rate-constitutive equation as the sum of the

linear and nonlinear terms of the strain rate _e

�r ¼ LðrÞ : _e� NðrÞk _ek ð1Þ

where the terms L and N, respectively, denote the linear

and nonlinear components, r is the Cauchy stress tensor,

and _e is the stretching tensor. k _ek ¼
ffiffiffiffiffiffiffiffiffiffiffi

trð _e2Þ
p

stands for the

Euclidean norm. The Jaumann rate of the Cauchy stress

tensor �r is defined in terms of the time-derivative of the

Cauchy stress tensor _r and the spin tensor w

�r ¼ _rþ r � w� w � r ð2Þ

The stretching and spin tensors are related to the velocity

gradient tensor through

_e ¼ 1

2
ðrvþ vrÞ; w ¼ 1

2
ðrv� vrÞ ð3Þ

where v is the velocity and r is the gradient operator.

Within the above framework, a simple critical state

hypoplastic constitutive equation for granular materials is

proposed by Wu [42], which is an improvement of an early

version by Wu and Bauer [37]. This model consists of

three linear terms and one nonlinear term in the stretching

tensor _e.

�r ¼ C1ðtrrÞ _eþ C2ðtr _eÞrþ C3

trðr � _eÞ
trr

r

þ C4ðrþ r�Þk _ekIe; ð4Þ

in which Ci ði ¼ 1; 2; 3; 4Þ are dimensionless parameters.

The deviatoric stress tensor r� in Eq. (4) is defined by

r� ¼ r� 1=3ðtrrÞdij; with dij being the Kronecker delta. Ie
is adopted as the critical state function. It is through Ie that

the model captures the effects of density and confining

pressure on the strain–stress behaviour. Several forms for Ie
can be found in the literature [7, 15, 21, 41], but in the

present work, a different formulation for the critical state

function Ie is proposed:

Ie ¼
e

ecrt

� �a

ð5Þ

where e and ecrt refer to the current void ratio and critical

state void ratio, respectively, and a is a constitutive con-

stant that controls the degree of strain softening. The crit-

ical state function has the value Ie ¼ 1 at the critical state,

greater than 1 for a loose state, and less than 1 for a dense

state. The evolution of the void ratio follows the evolution

of the volumetric strain, _ev ¼ trð _eÞ, according to the fol-

lowing relationship:

_e ¼ ð1 þ eÞ _ev; ð6Þ

The critical state void ratio is calculated according to Li

and Wang [13]. A slightly modified form is used in this

work:

ecrt ¼ ecoexp �kð p
pa
Þn

� �

ð7Þ

where eco, k, and n are parametric constants, and p ¼ trr=3

and pa denote the hydrostatic pressure and atmospheric

pressure (101.325 kPa) for normalisation, respectively.

With the additional term Ie, we ensure that both dense and

loose sands can be modelled with only one set of material

parameters.

Although hypoplastic Eq. (4) was developed mainly for

cohesionless soils, in practice, most soils show cohesion to

some extent. However, the constitutive model is able to

take cohesion into consideration by simply replacing the

stress tensor r with the following translated stress tensor

[33, 42]:

rc ¼ r� ptdij ð8Þ

where the translated scale pt ¼ c=tan/ and the parameters

c and / are, respectively, the cohesion and friction angle of

the cohesive soil.
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2.2 Explicit form of the failure and bound
surfaces

The failure criterion is defined by vanishing stress rate for a

non-vanishing strain rate. By assuming that N contains the

critical state function Ie, we have:

�r ¼ ðL� N � _e~Þ : _e ¼ 0 ð9Þ

where _e~¼ _e=k _ek stands for the direction of strain, and the

symbol � denotes an outer product between two tensors.

By making use of the fact that _e~ : _e~¼ 1, the failure crite-

rion can be readily derived:

f ðrÞ ¼ kL�1 : Nk � 1 ¼ 0; ð10Þ

Therefore, the condition of invertibility is kL�1 : Nk\1.

This condition is identical with the requirement that a stress

state r should lie inside the failure surface given in

Eq. (10), which means constitutive Eq. (4) is invertible

when the stress lies inside the failure surface.

The explicit formula of the failure surface can be

obtained using the symbolic computational programme

Mathematica, which gives rise to the failure surface:

f ðrÞ ¼
ffiffiffiffiffi

J2

p
þ 1I1 ¼ 0; ð11Þ

where J2 and I1 are, respectively, the second deviatoric

stress invariant and the first stress invariant, and 1 is a

constant determined by the dimensionless parameters

Ciði ¼ 1; 2; 3; 4Þ and the critical state function Ie, which

can be found in ‘‘Appendix’’.

The hypoplastic model is also characterised by a bound

surface that bounds the accessible stress states and which

can be derived based on the procedure by Wu [36] and Wu

and Niemunis [40]. The explicit formulation of the bound

surface is expressed as follows:

BðrÞ ¼
ffiffiffiffiffi

J2

p
� C1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðIeC4Þ2 � 3C2
1

q I1 ¼ 0; ð12Þ

With the help of Eqs. (11) and (12), the failure and bound

surfaces can be plotted once the model parameters are

given.

2.3 Second-order work and stability surface

In view of the complexity of the nonlinear constitutive

models, it is desirable to obtain qualitative properties such

as stability and uniqueness of the boundary value problems

posed with the constitutive models [40]. The problem of

stability can be approached based on the analysis of the

second-order work. Instability considered in terms of the

second-order work virtually means the possibility for

spontaneous increase in kinetic energy of the body due to a

small disturbance in velocity [19]. According to Hill [10],

a sufficient condition for stability is the second-order work

W2ðrÞ ¼ trð�r _eÞ[ 0 ð13Þ

for all directions of stretching. For hypoplastic models, the

second-order work can become negative before the failure

surface [35]. Let us consider constitutive equation (4) and

search for the boundary between positive and negative

second-order work by letting W2 ¼ 0:

W2ðrÞ ¼ _e : ðL� N � _e~Þ : _e ¼ 0 ð14Þ

If this boundary builds a surface in the stress space, it will

be called stability surface. By using the analytical approach

proposed by Niemunis [18], an explicit expression of the

stability surface can be readily derived to be:

W2ðrÞ ¼ ðL2
1 � N2

1Þ 4L3ðL3 þ L1Þ þ N2
1

� �2

� N2
3

h

16L4
1 � 32L3

1L3 þ 3N4
1 þ 3N2

1N
2
3 þ N4

3

þ 2L1L3ð4L2
3 þ 19N2

1 � 4N2
3Þ

� L2
3ð20N2

1 þ N2
3 Þ þ 4L2

1ð2L2
3 � 5N2

1 þ 2N2
3Þ
i

ð15Þ

where the variables are expressed as function of the stress

invariants I1 and J2: L1 ¼ C1I1, L3 ¼ ðC1 þ C2 þ C3=3Þ
I1 þ 2C3J2=I1, N1 ¼ �C4I1

ffiffiffiffiffiffiffi

2J2

p
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

I2
1 þ 6J2

p

, and N3 ¼
C4 I2

1 þ 12J2

	 


=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3I2
1 þ 18J2

p

. Note that the stability sur-

face depends on the density through the critical state

function Ie by replacing N1 and N3 with IeN1 and IeN3,

respectively. The implication of the stability surface for FE

calculations is beyond the scope of this paper. In general,

the stability should be considered within a BVP rather than

an element. Some stability indicators can be introduced to

avoid pitfalls in the FE calculations [23].

By using Eq. (15), we plot the stability surface together

with the bound and failure surfaces in the principal stress

space. As shown in Fig. 1, the stability surface of the

hypoplastic model is a cone with its apex at the origin in

the principal stress space. The bound and failure surfaces

possess similar geometry, outside the stability surface. Wu

and Niemunis [40] show that a stress state may lie outside

the failure surface for some paths. We proceed to investi-

gate how far a stress state can drift away from the failure

surface for constitutive equation (4).

Let us consider three stress states rb, rf and rs with the

same Lode angle lying on the bound, the failure, and the

stability surfaces, respectively. The corresponding stress

ratio can be obtained as follows:

r1 � r3

r1 þ r3

¼ sin/mob ð16Þ
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where r1 and r3 are the maximum and minimum principal

stresses, respectively. The stress ratio can be obtained from

the mobilised friction angle /mob. In contrast to the Mohr–

Coulomb yield criterion, the mobilised friction angle /mob

varies for different Lode angles for the hypoplastic model.

Obviously, the mobilised friction angles obtained fromrb,rf
and rs are dependent on the Lode angle. Figure 2 shows the

three mobilised friction angles /mob b ;/mob f and /mob s

for different critical friction angles. For the stress state in

triaxial compression (the Lode angle is zero) with a 20�

frictional angle, one obtains /mob b ¼ 21:4�, /mob f ¼ 20�

and /mob s ¼ 11:7� while for the stress state in extension

(the Lode angle is 60�) the corresponding friction angles are

/mob b ¼ 28:8�, /mob f ¼ 26:3� and /mob s ¼ 16:8�.

The bound surface is an intrinsic property of hypoplastic

constitutive equations, which thus some advantage in the

numerical integration over most conventional constitutive

models, since the stress states lying outside the bound

surface will be automatically corrected in the next time

step [40]. However, a stress state may also lie between the

failure and bound surface for some strain paths. Table 1

shows the mobilised friction angles for the failure surface

and bound surface in triaxial tests. We observe that the

difference of the mobilised friction angles between the

failure and bound surface increases with the critical friction

angle and may reach 30� for triaxial extension, which is far

too high to be accepted. Obviously, stress corrections are

needed to bring the stress back to the failure surface.

3 Time integration of the constitutive model

3.1 Tangential stiffness for FEM

The finite element formulation for the linear continuum

model follows the standard Galerkin approximation of the

weak form based on the virtual work principle. Thus the

global finite element equation can be expressed:

X

Z

Ve

BTrðunÞdVe ¼ Pn ext ð17Þ

where n denotes the nth increment of the nonlinear anal-

ysis. Pn ext is the nodal force vector, and u is the unknown

nodal displacement vector. Thus the unbalanced force

vector can be expressed as:

FðuÞ ¼
X

Z

Ve

BTrðunÞdVe � Pn ext ð18Þ

Fig. 1 The bound, failure and stability surfaces in principal stress

space
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Fig. 2 The mobilised fiction angle /mob for different critical frictional angles /: a / ¼ 20�, b / ¼ 25�, and c / ¼ 30�

Table 1 The mobilised friction angles /mob at different stress states

Stress state Triaxial compression[/�] Triaxial tension[/�]

/mob b 21.4 28 35.9 28.8 49.2 73.2

/mob f 20.0 25.0 30.0 26.3 36.8 43.6

/mob s 11.7 16.8 21.9 13.5 21.0 29.8
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For the ith iteration in the framework of the standard

Newton–Raphson procedure, the global stiffness matrix

reads:

KðuinÞ ¼
oFðuinÞ
ou

¼
X

Z

Ve

BT or

oe

�

�

�

uin

BdVe ð19Þ

For the hypoplastic constitutive model, the Jacobian matrix

can be readily written out:

D ¼ oDr
oDe

¼ Lþ IeN _e~ ð20Þ

For constitutive model (4), the tangential stiffness tensor at

a given stress rij is given below:

o�rij
o _emn

¼ C1H Iijmn þ C2rijdmn þ C3

rijrmn
trr

þ IeC4ðrij
þ r�ijÞ _e~mn ð21Þ

where Iijmn is the fourth rank identity tensor with compo-

nents Iijmn ¼ ðdimdjn þ djmdinÞ=2. It is worth noting that the

Jacobian matrix may become negative definite when using

the above tangential operator. A numerical study on the

performance of different tangential operators can be found

in [4].

3.2 Stress integration algorithms

The constitutive equation can be regarded as an ordinary

differential equation, for which the general time integration

over an increment step t 2 ½tn; tnþ1� can be written as:

rnþ1 ¼ rn þ
Z tnþ1

tn

hðr; e; _eÞdt ¼ rn þ DDe; n ¼ 1; 2; . . .

ð22Þ

According to Eq. (6), a closed form of integration for the

void ratio is available:

enþ1 ¼ ð1 þ enÞ � expðD _evÞ � 1 ð23Þ

The solution for Eqs. (22) and (23) can be obtained step-

wise according to one of the integration algorithms in the

next subsection.

3.2.1 Generalised midpoint algorithms

Following the method proposed in [5, 6], all stress com-

ponents and state variables are collected in vector y for the

simultaneous integration of Eqs. (22) and (23):

y ¼ fr11; r22; r33; r12; r13; r23; g1. . .gmgT ð24Þ

where giði ¼ 1. . .mÞ are additional state variables, e.g. void

ratio. The integration of Eq. (24) requires the solution of

initial value problem:

y0ðtÞ ¼ HðyðtÞÞ; y0ð0Þ ¼ yð0Þ: ð25Þ

Generalised midpoint algorithms are among the most

widely used second-order integration methods [2]. The

general form of the generalised midpoint method (e.g. [30])

can be written as:

ynþ1 ¼ yn þ Dtnþ1½ð1 � hÞ _yn þ h _ynþ1� n ¼ 1; 2; . . . ð26Þ

where Dtnþ1 ¼ tnþ1 � tn is the time step increment and the

parameter h is a prescribed constant within [0, 1]. Note that

generalised midpoint algorithms with values of h equal to 1

and 0, respectively, correspond to the implicit backward

Euler method and explicit forward Euler method with the

Crank–Nicolson (midpoint or trapezoidal) method obtained

by setting h ¼ 0:5. Our implementation tests three widely

used schemes: the explicit forward Euler method (FE), the

modified Euler method (ME) and the implicit Crank–Ni-

colson method (CN).

3.2.2 Adaptive explicit algorithms

The accuracy of an integration method can be improved by

reducing the size of the time increment. Although this can

be carried out in a straightforward manner by dividing the

time increment into several equal substeps, the better

accuracy is usually gained at the cost of computational

time or failure of error control within a tolerant range. A

more powerful approach is to employ the adaptive inte-

gration schemes described in the literature [27, 34], which

enable users to adjust the substep size automatically

according to the local truncation error. Studies have

revealed that this approach has the merits of being efficient

and robust for a wide range of constitutive models. In the

present paper, several adaptive explicit integration meth-

ods, namely the modified Euler substepping

scheme (MEsec), the Richardson extrapolation substepping

scheme (REsec) and the Runge–Kutta–Fehlberg substep-

ping scheme (RKFsec), are implemented and compared.

To compute the local error at each substep of the stress

integration, two approximate solutions with different

orders of accuracy (p, q) are obtained and compared. If the

two solutions are in close agreement, the approximation is

accepted; otherwise, the substep is rejected and the corre-

sponding step size is further reduced. For the generic

substep k in the time interval ½tn; tnþ1�, with dimensionless

size DTk 2 ð0; 1� given by the following equation:

DTk ¼ ðtkþ1 � tkÞ=ðtnþ1 � tnÞ 6 1 and
X

ns

k¼1

DTk ¼ 1;

ð27Þ

two different approximate solutions of the evolution

problem (25) are obtained simultaneously according to

y
ðpÞ
kþ1 ¼ yk þ U1ðyk;Denþ1;DTÞDðTkÞðpþ1Þ ð28aÞ
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y
ðqÞ
kþ1 ¼ yk þ U2ðyk;Denþ1;DTÞDðTkÞðqþ1Þ ð28bÞ

The two function U1 and U2 are constructed as follows

according to Table 2, which summarises different inte-

gration methods:

U1:¼
X

p

i¼0

k
ðpÞ
i hiðyk;Denþ1;DTÞ ð29aÞ

U2:¼
X

q

i¼0

k
ðqÞ
i hiðyk;Denþ1;DTÞ ð29bÞ

where

hiðyk;Denþ1;DTÞ :¼ hðyk þ DT
X

l�1

j¼0

#ljhj;Denþ1Þ ð30Þ

For the sake of simplicity, we usually set q ¼ pþ 1. The

constants k
ðpÞ
i , k

ðqÞ
i and #lj are used to obtain the approxi-

mated solutions of order p and q, respectively. Then the

local truncation error of the lower-order method at time

Tkþ1 can be obtained by using the difference in the above

two approximate solutions:

Rkþ1 ¼ y
ðpÞ
kþ1 � y

ðqÞ
kþ1; and Rkþ1 ¼ kRkþ1k

kyðqÞkþ1k
ð31Þ

The integration over the k-th substep is assumed to be

successful when, for a given stress error tolerance STOL,

Rkþ1 6 STOL; ð32Þ

with the new substep size then estimated using the fol-

lowing extrapolation formula:

DTkþ1 ¼ DTk
STOL

Rkþ1

� �1=ðpþ1Þ
ð33Þ

If the estimated error is less than the prescribed accuracy

tolerance STOL, the step is accepted and we enlarge our

step size according to

DTkþ1 ¼ DTk � min 1:1; 0:9
STOL

Rkþ1

� �1=ðpþ1Þ
( )

ð34Þ

If condition (32) is not satisfied, the k-th substep will be re-

calculated with a smaller step size DT�
k :

DT�
k ¼ DTk � max 0:25; 0:9

STOL

Rkþ1

� �1=ðpþ1Þ
( )

ð35Þ

Note that the right side of Eq. (33) is multiplied by a

factor that is typically set to 0.9. An upper bound of 1.1

and a lower bound of 0.25 are also taken for each new

substep in order that the extrapolation is not carried too

far. More details regarding the substepping algorithm can

be found in the literature [1, 29, 30]. After the integration

process is complete, the stress tensor can be extracted

from the vector y.

3.2.3 Correction of stresses to failure surface

At the end of each increment in the integration process, the

stresses may diverge from the failure function so that

f ðrÞ[FTOL. The extent of this violation, which is com-

monly known as failure surface ‘drift’, depends on the

accuracy of the integration scheme and the nonlinearity of

the constitutive relations. Sloan [27] suggested that, pro-

vided the integration is performed accurately, the extent of

drift from the failure surface tends to be small and no

remedial action is required. Wu and Niemunis [40] and

Niemunis [18], on the other hand, have reported that some

stress states may surpass the failure surface irrespective of

the accuracy of the used integration method. In such cases,

the stress state does not satisfy the consistent condition.

Let us consider a stress state inside the failure surface,

e.g. stress rn at the nth step. As demonstrated in [39, 40],

the hypoplastic model allows some stress state lying out-

side the failure surface. For the strain path shown in Fig. 3,

Table 2 Different integration methods for generating estimated errors

Method Formulation Error estimation

FE ynþ1 ¼ yn þ Dynþ1 Rnþ1 ¼ kynþ1�ynk
ynþ1

ME y1
nþ1 ¼ yn þ Dy1

nþ1

y2
nþ1 ¼ yn þ 0:5ðDy1

nþ1 þ Dy2
nþ1Þ

Rnþ1 ¼ ky2
nþ1

�y1
nk

y2
nþ1

CN ynþ1 ¼ yn þ 0:5ðDyn þ Dynþ1Þ Rnþ1 ¼ kynþ1�ynk
ynþ1

RE y1
nþ1 ¼ yn þ Dy1

nþ1

y2
nþ1 ¼ yn þ 0:5Dy1

nþ1

y3
nþ1 ¼ y2

n þ 0:5Dtnþ1hðy2
nþ1Þ

Rnþ1 ¼ ky3
nþ1

�y1
nk

y3
nþ1

RKF23 y1
nþ1 ¼ yn þ 0:5Dy1

nþ1

y2
nþ1 ¼ yn � Dy1

nþ1 þ 2Dy2
nþ1

y3
nþ1 ¼ yn þ Dy2

nþ1

yknþ1 ¼ yn þ
1

6
Dy1

nþ1 þ
2

3
Dy2

nþ1 þ
1

6
Dy3

nþ1

Rnþ1 ¼ kyk
nþ1

�y3
nk

yk
nþ1
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no matter how accurate the integration method, the stress

defined by rtrial
nþ1 at the ðnþ 1Þth step of analysis will violate

the consistent condition, so that

f ðrtrial
nþ1Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

J2ðr�trial
nþ1 Þ

q

þ 1ðCi; IeÞI1 [FTOL; ð36Þ

with the explicit formulation defined in ‘‘Appendix’’.

As any deviations from the failure surface are cumula-

tive and may result in unacceptable errors in subsequent

computations, the stresses should be corrected to satisfy the

current consistent condition. As shown in Fig. 3a, for

ptrial
nþ1\0, the stress is corrected along the radial direction to

the failure surface [35]. With the radial return scheme, the

corrected stress state takes the following form:

r�nþ1 ¼ gr�trial
nþ1 ; pnþ1 ¼ ptrial

nþ1; ð37Þ

where g is an unknown multiplier. Using the previous

definition of J2, it follows that:

r�nþ1

J2ðr�nþ1Þ
¼ r�trial

nþ1

J2ðr�trial
nþ1 Þ

: ð38Þ

In order to return the stress state to the failure surface, it is

desirable that the total strain increment, De, remains

unchanged, since this is consistent with the displacement-

based finite element procedure. The corrected stress state in

Eq. (37) satisfies the consistency condition. Using

Eqs. (36) and (38), together with the assumption that

departures from the failure surface are sufficiently small

that only one return step is required, the consistent condi-

tion is expressed as follows:

f ¼ g
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

J2ðr�trial
nþ1 Þ

q

þ 1ðCi; IeÞI1 ¼ 0; ð39Þ

which yields the unknown multiplier g.

On the other hand, if the mean stress ptrial
nþ1 [ 0, as shown

in Fig. 3b, the stress is corrected to the apex of the failure

surface

rnþ1 ¼ 0; pnþ1 ¼ 0; ð40Þ

After solving the above equation, we correct the violated

stress either to the cone or to the apex of the failure surface

via Eqs. (37) and (40).

The stress correction scheme can also be easily adapted

to incorporate the effect of critical state and cohesion. To

this end, the constant 1 including the critical state function

Ie can be found in ‘‘Appendix’’. Figure 4 shows the cor-

rected Stress Response Envelope (SRE). A detailed study

regarding SRE can be found in [30]. For any stress lying

between the failure and bound surfaces, the updated stress

is forced back to the failure surface and thus the function of

the bound surface is abandoned.

4 Numerical tests for different integration
strategies

To obtain an overall assessment of the integration methods

presented in Sect. 3, a set of numerical tests is conducted

for constitutive equation (4). Firstly, drained and undrained

(a) (b)

Fig. 3 Sketch of return mapping scheme, a return to the cone, and b return to the apex, the direct of r is negative

0

failure surface

Corrected SRE
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σ 1 =
 σ 2 =

 σ 3

pn
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Fig. 4 The sketch of corrected Stress Response Envelope (SRE)
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triaxial compression tests are modelled. We study the

influence of stress correction on the stress–strain relation in

drained and undrained triaxial tests, together with an

analysis of the stress drift from the failure surface. Sec-

ondly, two boundary problems, namely a rigid footing, and

the safety factor of a homogeneous slope, are considered

using the finite element code Abaqus Standard with user-

defined materials (Umat). The performance of different

integration methods and stress correction scheme in solv-

ing these problems is then compared in terms of accuracy,

efficiency, and robustness.

4.1 Performance of integration methods

Two groups of integration methods are analysed in the

numerical triaxial compression tests:

(1) Constant substep method: the forward Euler method

(FE), the modified Euler method (ME), and the

Crank–Nicolson method (CN);

(2) Adaptive explicit method: the adaptive modified

Euler method (MEsec), the adaptive Richardson

extrapolation method (REsec), and the adaptive

Runge–Kutta–Fehlberg method (RKF23sec).

The formulation of different integration methods and error

estimations are shown in Table 2.

To assess their numerical performance, a benchmark

solution is obtained using the adaptive RKF45 method, in

which the integration error tolerance is set to 10�9. The

relative error is calculated for every step as follows:

Rn ¼
kynexact � ynk

kynexactk
: n ¼ nth step ð41Þ

For the triaxial compression tests, an initial isotropic stress

state with r11 ¼ r22 ¼ r33 ¼ 100 kPa is assumed. The

initial void ratio is set to ei = 0.78 for the drained triaxial

test and ei = 0.93 for the undrained triaxial test; both tests

are strain-controlled with a maximum axial (vertical) strain

of 10% applied, and the horizontal strain increment is

calculated by the constitutive model for a given axial strain

increment. The parameters used in the simulations are

shown in Table 3. In the numerical procedures, two types

of increments are adopted. In the first calculation, the

loading process is divided into 10 equal increments, rep-

resenting a large increment size scheme. In the second

calculation, the loading process is divided into 20 equal

increments, representing a relatively small increment size

scheme. For each scheme, different substeps are performed

for the explicit Euler method and the implicit CN method,

and different STOLs applied for the CN method. Similarly,

the integration error tolerance STOL is changed for the

adaptive explicit methods. For each method, the integration

results are accepted once convergence is obtained or the

iteration number limit reached. The numerical results of the

drained and undrained triaxial tests carried out using the

various integration methods with 10 increments (2 sub-

steps) and 20 increments (1 substeps) are shown in Fig. 5.

The maximum errors obtained from computations with 10

increments under different substeps (substep = 2, 20, 100)

for constant substep methods and under different STOLs

for adaptive explicit methods are shown in Fig. 6.

As shown in Figs. 5 and 6, the integration strategies

exhibit very different behaviour. The forward Euler (FE)

method with 2 substeps provides the roughest estimation of

the stress–strain response in both the drained and undrained

triaxial tests. Indeed, the relative error produced by this

scheme reaches 0.029 and 0.6491 in the drained and

undrained tests, respectively, which can easily lead to

unacceptable results in finite element calculations. The

poor performance in the undrained tests is due to the used

hypoplastic constitutive model which is very sensitive to

both time step and stress path. Comparison of Figs. 5b and

4d reveals that the main error results from the first incre-

ment, and this error is accumulated to the rest increments.

However, by increasing the number of substeps, the max-

imum error resulted from FE method can be largely

decreased, as shown in Fig. 6a.

The performance of the simple Modified Euler method

(ME) is rather poor in undrained triaxial test. The implicit

Crank–Nicolson method (CN) with 2 substeps is more

accurate than either of the above explicit methods. Among

the three adaptive explicit methods, the modified Euler

method and the RKF23 method achieve the highest accu-

racy, with relative errors around of 10�5, whereas the

accuracy of the REsec method with STOL = 10�1 is rela-

tively low. When STOL is decreased, all adaptive explicit

methods perform well; the stress errors decrease as STOL

is reduced, with the best accuracy achieved with the error

tolerance set to 10�6, as shown in Fig. 6b. In all, the per-

formance of the integration methods is better in the drained

tests than in the undrained tests, which implies that the

integration methods are dependent on the stress path.

Table 3 Parameters for numerical simulation of the drained triaxial test

Parameter C1 C2 C3 C4 eco k n a

Value - 30.56 - 97.11 - 286.46 - 93.56 0.957 0.022 0.061 1.2

1272 Acta Geotechnica (2018) 13:1265–1281

123



4.2 The effect of stress correction

To evaluate the effect of stress correction, three different

initial isotropic stress states with r11 ¼ r22 ¼ r33 ¼ 100/

200/300 kPa are assumed. The initial void ratio is set to ei

= 0.78 for the drained triaxial test and ei ¼ 0:95 for the

undrained triaxial test, with both tests strain-controlled

with a maximum axial (vertical) strain of 20%. The

parameters used in these simulations are shown in Table 3.

We consider only the adaptive RKF23sec method. The

0 2 4 6 8 10 12
0

50

100

150

200

250

300

350

400

Axial strain / %

D
ev

ia
to

ric
 st

re
ss

 / 
kP

a

FE
ME
CN
MEsec
REsec
RKFsec

(a) Drained triaxial tests

0 2 4 6 8 10 12
0

20

40

60

80

100

Axial strain / %

D
ev

ia
to

ric
 st

re
ss

 / 
kP

a

(b) Undrained triaxial tests

0 2 4 6 8 10 12
0

50

100

150

200

250

300

350

400

Axial strain / %

D
ev

ia
to

ric
 st

re
ss

 / 
kP

a

FE
ME
CN
MEsec
REsec
RKFsec

(c) Drained triaxial tests

0 2 4 6 8 10 12
0

20

40

60

80

100

Axial strain / %

D
ev

ia
to

ric
 st

re
ss

 / 
kP

a

(d) Undrained triaxial tests

Fig. 5 Stress–strain relations of triaixal compression tests with a, b 10 increments, 2 substeps, STOL = 10�4 and c, d 20 increments, 1 substeps,

STOL = 10�4
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integration error tolerance is set at STOL = 10�4. Stress

correction is employed in each step to bring the stress back

to the failure surface.

Figure 7 presents the results of stress correction in both

the drained and undrained triaxial tests. As can be observed

from Fig. 7a, stress correction takes effect only after the

peak in the stress–strain curve, which implies that stress

correction is particularly relevant in the softening regime.

However, stress correction does not make noticeable dif-

ference in the undrained test, as shown in Fig. 7b. The

stress path recorded in the drained and undrained tests are

presented in Fig. 8a. It can be observed from Fig. 8a that

whereas the undrained stress paths do not surpass the

critical state line, the drained stress paths not only exceed

the critical state line but also reach the peak stress state

line. This reveals that stress correction mainly takes place

in the domain between the critical state line and the peak

stress state line. Figure 8b shows that the failure function is

violated, i.e. f [ 0 beyond the peak. However, with the

adoption of the stress correction scheme, the failure func-

tion f becomes null, thus guaranteeing that the stress lies on

the failure surface.

As discussed in Sect. 2, stress drift is particularly rele-

vant for large critical friction angle, e.g. / ¼ 30�. In order

to explore this phenomenon, the effect of stress correction

for materials with various friction angles is thus investi-

gated. Figure 9a, which illustrates the stress–strain rela-

tionship for different friction angles, reveals that the

magnitude of the corrected stress increases with an increase

in the friction angle. Figure 9b shows the relative error of

stress correction in the drained triaxial tests. The relative

error increases from 0.5% for / ¼ 15� to 4.5% for

/ ¼ 45�. Obviously, stress correction is important in the

numerical implementation of the hypoplastic constitutive

models.

4.3 Boundary value problems

We now consider two typical boundary value problems, i.e.

rigid footing and slope stability. In the rigid footing test,

attention is focused not only on accuracy and robustness,

but also on the computational efficiency of the numerical

schemes. The second problem of slope stability is partic-

ularly relevant to bring out the effect of stress correction

for the numerical calculations. As shown in the last section,
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the simple explicit and implicit methods with large step

sizes can produce large errors, a constant substepping

method is considered together with the forward Euler

method, modified Euler method and Crank–Nicolson

method. For the latter, different stress tolerances are used

and the maximum number of local iterations is set to

10,000. For the adaptive explicit methods, the maximum

number of substeps is less than 10,000 and the minimum

substeps size is less than 10�7 of the current increment size.

For both problems, benchmark solutions are obtained via

the RKF45sec method with STOL = 10�9, which is com-

pared to the numerical solutions obtained by the different

methods with and without stress correction. To accom-

modate tensile stresses, a cohesion c is assigned to the soil,

thereby allowing the development of tensile stresses during

the computations.

4.3.1 Rigid footing test

Further investigation of the above numerical methods is

carried out for the boundary value problem of a rigid

footing. The computation domain, as shown in Fig. 10, is

4.0 m deep by 12 m wide and the width of the footing is

w ¼ 1:2 m.

For the sake of simplicity, an asymmetric model is

chosen using a total number of 150 four-node plane strain

elements, and 600 Gauss integration points. The maximum

vertical displacement is d ¼ 0:5 m, at which point the

vertical force reaches its peak value, with the displacement

divided into 100 equal increments. Prior to loading of the

footing, an initial geostatic stress (120 kPa) is applied. The

parameters used in this simulation are shown in Table 4 for

an initial void ratio of ei ¼ 0:78. Stress integration errors

are evaluated at the end of calculation. Note that the

explicit Euler method with stress correction is not involved

in the evaluation of stress error. The numerical results

displayed in Table 5, in which the ‘‘Total number of

substeps’’ is calculated according to the accumulated

number of substeps for all Gauss points across all incre-

ments, while the ‘‘Maximum number of substeps’’ repre-

sents the substeps of one Gauss point with the maximum

number of substeps across all increments.

Table 5 shows that while the FE method and ME

method have similar average errors, the latter method

requires twice the CPU time of the former. In addition, the

stress correction accounts for a very small proportion of the

total CPU time. In contrast, the CN method with 20 sub-

steps produce less accurate result than the CN method with

100 substeps, although the former took less time than the

latter. As expected, the adaptive explicit methods are able

to control the integration error and CPU time cost effec-

tively for a given STOL. Among the two adaptive methods,

the MEsec method is more efficient and the RKF23sec

method more accurate, both with excellent performance.
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A colour contour plot of the number of substeps for each

element is shown in Fig. 11a, which displays a well-de-

fined shear band developed near the footing. As expected,

the average number of substeps is much higher in the shear

band, which indicates that the substepping scheme reduces

the calculation effort. Figure 11b shows a triangular zone

of large strain directly under the foundation, as well as a

radial zone and a Rankine passive zone, forming together

the three zones assumed by Terzaghi.

The relationship between vertical force and vertical

displacement is shown in Fig. 12. First, let us look at the

calculations with one substep. The calculation without

stress correction becomes instable near the ultimate load,

while the calculation with stress correction remains

stable even beyond the peak. The calculations with 10

constant substeps show that the performance can be

improved by substepping, and the stress correction gives

rise to slightly lower limit load.

4.3.2 Stability of homogeneous slope

The stress correction scheme is further validated by evalu-

ating the safety factor of a homogeneous slope and simu-

lating the subsequent failure process. In slope stability

analysis, the safety factor is typically evaluated using the so-

called shear strength reduction technique, in which the shear

strength (friction angle and cohesion) is reduced by a

reduction factor until slope failure occurs; the safety factor is

thus defined by this reduction factor. Here the safety factor

and failure of a homogeneous slope are studied using dif-

ferent integration methods, i.e. the implicit CN method, the

FE method, the adaptive RKF23 method and each of these

Table 4 Parameters for the rigid footing test

Parameter C1 C2 C3 C4 eco k n a c (kPa)

Value - 50.1 - 520.7 - 1802.3 - 300.6 0.957 0.122 0.061 1.5 41.6

Table 5 Results of different methods for rigid footing test (100 increments)

Method CPU time (s) Total number of substeps Maximum number of substeps Average error

FE (100 substeps) 22.5 6 9 106 10,000 1.928 9 10-4

FEs (100 substeps) 23.7 6 9 106 10,000 –

ME (100 substeps) 41.8 6 9 106 10,000 1.293 9 10-4

MEs (100 substeps) 43.1 6 9 106 10,000

CN method (20 substeps)

STOL = 10-1 16.8 1.2 9 106 2000 2.886 9 10-4

STOL = 10-2 15.9 1.2 9 106 2000 2.886 9 10-4

STOL = 10-3 22 1.2 9 106 2000 2.886 9 10-4

STOL = 10-4 17.2 1.2 9 106 2000 2.886 9 10-4

CN method (100 substeps)

STOL = 10-1 38 6 9 106 10,000 1.928 9 10-4

STOL = 10-2 43.5 6 9 106 10,000 1.928 9 10-4

STOL = 10-3 41.9 6 9 106 10,000 1.928 9 10-4

STOL = 10-4 45.7 6 9 106 10,000 1.928 9 10-4

MEsec method

STOL = 10-1 16.6 317,357 1407 1.525 9 10-4

STOL = 10-2 16.3 647,377 1514 1.983 9 10-5

STOL = 10-3 16.9 678,211 1486 7.647 9 10-6

STOL = 10-4 18.2 754,393 1745 2.884 9 10-6

RKF23sec method

STOL = 10-1 24.1 84,150 1223 4.076 9 10-5

STOL = 10-2 29.1 251,326 1351 7.550 9 10-6

STOL = 10-3 29.5 385,152 1387 1.252 9 10-6

STOL = 10-4 30.8 627,134 1475 1.914 9 10-7

RKF45sec method

STOL = 10-9 29.5 644,161 1429 –
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methods with stress correction treatment. Recently, the

shear strength reduction technique is used in SPH to study

slope stability with our hypoplastic constitutive model [20].

The geometry and boundary conditions of the consid-

ered slope are shown in Fig. 13. The considered slope is

discretised by 349 four-node plane strain elements with the

bottom of the slope fixed in the horizontal and vertical

directions, and the lateral boundaries fixed only in the

horizontal direction. The slope is assumed to consist of

cohesive soil with the material parameters listed in

Table 6, including an initial void ratio of ei ¼ 0:88. The

friction angle / and cohesion c are the two shear strength

parameters subjected to strength reduction. In the searching

process, the actual shear strength is reduced by a factor,

that is,

/f ¼
/
Fs

; cf ¼
c

Fs

; ð42Þ

with the reduced shear strength parameters then used to

compute the corresponding hypoplastic parameters

C1;C2;C3;C4 according to the procedure given in [33]. To

obtain the initial stress state, a geostatic step is performed

by applying gravity loading to the soil. During the geostatic

loading, the factor Fs is maintained at a constant value of

0.5 to avoid failure. In the second step, the shear strength

parameters are reduced by increasing the factor Fs from 0.5

to 2.0, with the initiation of slope failure defined as

occurring at the time when the computation is non-con-

verging. This procedure enabled the adoption of a feasible

global increment in the simulations, the numerical results

are presented in Table 7.

It can be observed from Table 7 that all the tested

explicit methods, with or without stress correction treat-

ment, produced a safety factor of approximately 1.2, cor-

responding to the shear parameters of about / ¼ 16:7� and

c ¼ 10 kPa. However, the various integration methods

Substep numbers
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Fig. 11 a The contour of the number of substep at the 3rd increament, and b the strain contour of the foundation (RKF45sec method with

STOL = 10�9)
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exhibited very different levels of performance. Although

the forward Euler (FE) and forward Euler with stress cor-

rection (FEs) methods both complete around 480 incre-

ments of the computation, with every loading increment

being divided into 100 equal substeps, the FEs method took

approximately 100 s longer than the FE method and also

produced a smaller safety factor. In contrast, the implicit

CN method with 100 equal substeps took more than 500

increments to obtain the safety factor, while an increase in

error tolerance did not result in a corresponding increase in

computation time for this method. The CN method with

stress correction failed at the first increment, with non-

convergence recorded during the local iterations, implying

that local iteration is very sensitive to the stress state.

Obviously, stress correction may result in a large difference

between the current and last substep of the local iterations.

Similarly, the adaptive explicit method with or without

stress correction required more than 500 increments to

obtain the safety factor. Using this method the total number

of substeps for all Gauss points is much higher than that for

the FE method and the implicit CN method, although the

total CPU time is lower than that required for the other

methods without substepping schemes. This further indi-

cates that adaptive explicit methods can effectively save

CPU time due to their adaptive nature. Table 7 also reveals

that the adaptive explicit method with stress correction, e.g.

the RKF23secs method, took less time to complete the

calculations than the RKF23sec method without stress

correction.

The above results imply that stress correction has a

significant influence on numerical computations using

hypoplastic models. Figure 14 presents the change in hor-

izontal displacement at the top of the slope (point A in

Fig. 13) under different reduction factors and using dif-

ferent integration strategies. It can be observed from this

figure that the computations produced using a stress cor-

rection scheme recorded horizontal displacements of 0.1

and 0.4 m for the adaptive explicit method and forward

Euler method, respectively. In contrast, the same methods

without stress correction produced non-convergence with

Table 6 Parameters for the homogeneous slope

Parameter E(Mpa) v / w eco k n a c (kPa)

Value 100 0.35 20� 0 0.957 0.122 0.061 1.5 12

Table 7 Results of different methods for safety factor of the slope

Method CPU time (s) Total Number of increments Total number of substeps Max. Number of substeps Safety factor

FE (100 substeps) 229.2 488 1.396 9 105 48,800 1.2233

FEs (100 substeps) 317.7 482 1.396 9 105 48,200 1.2041

CN method (100 substeps)

STOL = 10-1 363.5 529 1.396 9 105 42,900 1.284

STOL = 10-2 477.2 559 1.396 9 105 49,300 1.3152

STOL = 10-3 555.8 545 1.396 9 105 54,500 1.2404

STOL = 10-4 316.0 535 1.396 9 105 53,500 1.2938

CNs method (100 substeps)

STOL = 10-1 Failed at 1st increment

STOL = 10-2 Failed at 1st increment

STOL = 10-3 Failed at 1st increment

STOL = 10-4 Failed at 1st increment

RKF23sec method

STOL = 10-1 195.6 547 7,714,296 5526 1.3071

STOL = 10-2 194.5 488 6,908,804 4949 1.2233

STOL = 10-3 221.4 542 7,630,232 6108 1.2992

STOL = 10-4 218.4 531 7,425,739 6050 1.2535

RKF23secs method

STOL = 10-1 113.0 354 4,943,236 3541 1.0223

STOL = 10-2 135.5 510 7,211,736 5166 1.2563

STOL = 10-3 141.9 510 7,243,457 5966 1.2563

STOL = 10-4 135.0 510 7,308,777 6071 1.2563
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negligible displacement. In addition, there are noticeable

difference in the safety factors with and without stress

correction (1.26 with correction and 1.31 without correc-

tion), which shows the impact of stress correction on the

numerical results.

The effect of the stress correction scheme can be further

interpreted based on the shear surface of the slope. Fig-

ure 15 shows contour plots of the shear surface at the final

increment obtained using the RKF23sec method, (I) with

and (II) without stress correction. Analysis of this fig-

ure reveals that whereas a failure surface, as depicted by

the displacement in Fig. 15a, can be observed in the data

produced with a stress correction scheme, no failure sur-

face is generated in the computation undertaken without a

stress correction scheme, as shown in Fig. 15b. Similarly,

Fig. 15c also shows a shear band (as depicted by the

equivalent strain) produced in the computation with stress

correction, but no such a failure band is generated in

Fig. 15d. Note that the above different results are obtained

from computation under different safety factors.

5 Conclusions

This paper presents the numerical implementation of a

simple hypoplastic constitutive model using finite element

method. Various commonly used integration methods,

including both implicit and explicit methods, are enhanced

by stress correction, with such influence factors as the load

increment size and the specified error tolerance on the

performance of the different integration strategies studied.

The main conclusions of this work can be summarised as

follows:

(1) The hypoplastic model is characterised by a failure

surface and a bound surface, which restricts the

accessible stresses. For some loading directions, the

stress may surpass the failure surface but is still

within the bound surface. bound surface largely

increases with an increase in the critical friction

angle. However, the difference between the failure

surface and the bound surface, in term of mobilized
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Fig. 14 Change of the horizontal displacement at the top of the slope

by strength reduction using different integration strategies

U,(10-1 m)

+0.000e
+0.167
+0.335
+0.502
+0.669
+0.836
+1.004
+1.171
+1.338
+1.506
+1.673
+1.840
+2.008

(a)

U, (10-2 m)

+0.000
+0.547
+1.093
+1.639
+2.185
+2.732
+3.278
+3.825
+4.371
+4.917
+5.464
+6.010
+6.556

(b)

(10-2 %)E, Max. 

−0.081
+0.638
+1.356
+2.075
+2.794
+3.512
+4.231
+4.950
+5.668
+6.387
+7.106
+7.824
+8.543

(c)

(I) with stress correction

E, Max. (10-3   %)

−0.673
−0.191
+0.292
+0.774
+1.256
+1.739
+2.221
+2.704
+3.186
+3.669
+4.151
+4.633
+5.116

(d)

(II) without stress correction

Fig. 15 The displacements (a, b) and strains (c, d) upon slope failure by strength reduction using the RKF23sec method, (I) with and (II) without

stress correction

Acta Geotechnica (2018) 13:1265–1281 1279

123



friction angle, is so large that a stress correction is

necessary.

(2) Compared with the implicit Crank–Nicolson

method, the adaptive explicit methods shows better

performance in the numerical computations, being

less sensitive to the loading direction and increment

size since the incremental step size can be changed

automatically according to the prescribed accuracy

requirement. Moreover, the implicit integration

techniques are also sensitive to the specified error

tolerance due to the strong nonlinearity of the

hypoplastic model. The accuracy can thus be effec-

tively improved by tightening the error tolerance,

without increasing the number of substeps nor the

CPU time.

(3) Although the tested adaptive explicit methods can

produce accurate numerical results, the intrinsic

‘‘shortcoming’’ of the hypoplastic model, that some

stresses may lie outside the failure surface, cannot be

overcome. In addition, the bound surface is often too

far from the failure surface. In order to make sure

that the stress does not surpass the failure surface, a

stress correction must be employed. Such a stress

correction can guarantee that the stress does not go

beyond the failure surface. Moreover, the stress

correction stabilizes the numerical computation for

large increment size.
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Appendix

The explicit formula of the failure surface is given in the

following form:

f ðrÞ ¼
ffiffiffiffiffi

J2

p
þ 1ðCi; IeÞI1 ¼ 0;

where the implicit variable 1 is determined by the dimen-

sionless parameters Ciði ¼ 1; 2; 3; 4Þ and the critical state

function Ie. The variable 1 is expressed as follows:

1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a� b

6C2
3ð3C2

1 � C
02
4 Þ

s

;

where C
0
4 ¼ IeC4 and

a ¼ �18C3
1C3 þ 9C2

2C
02
4 þ 6C2C3C

02
4

þ C2
3C

02
4 þ 6C1ð6C2 þ C3ÞC

02
4

� 6C2
1ð3C2C3 þ C2

3 � 6C
02
4 Þ

b ¼ C
0

4ð6C1 þ 3C2 þ C3Þ

�36C3
1C3 þ 36C1C2C

02
4

n

þð3C2 þ C3Þ2
C

02
4 � 36C2

1ðC2C3 � C
02
4 Þ

o1=2
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