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Abstract Hypoplastic constitutive models are based on

nonlinear tensor functions and are characterized by simple

formulation and few parameters. In its early stage, mainly

basic hypoplastic constitutive equations were concerned,

where the stress tensor is assumed as the only state vari-

able. There followed some enhanced models based on the

basic constitutive equation by including void ratio as an

additional state variable. In this paper, we first show that

the widely used hypoplastic model by Wolffersdorff is

seriously flawed because the underlying basic equation

does not perform properly. We proceed to develop a basic

hypoplastic constitutive equation by introducing a new

tensorial term, which preserves the critical state at large

strain. The model performance is demonstrated by

parameter study for some element tests. This simple and

robust basic equation is well suited to build more sophis-

ticated models.

Keywords Constitutive model � Critical state � Granular
material � Hypoplastic model

1 Introduction

Recently, there is growing interest in hypoplastic models

[2, 3, 6–8, 10–12, 15–17, 31]. Hypoplastic constitutive

equations are based on nonlinear tensor functions and are

characterized by simple formulation and few parameters.

The early hypoplastic models contain four tensor polyno-

mial terms with four material parameters as coefficients,

usually with two linear terms and two nonlinear terms in

strain rate. A major advantage of the basic model is the fact

that it requires only four parameters, which can be easily

identified with a single triaxial compression test. The stress

tensor is considered as the only state variable in such basic

models. As a consequence, the basic models cannot

account for the complex history dependence of soil.

Moreover, the constitutive model needs to be re-calibrated

for the same material but with different initial densities.

The hypoplastic constitutive model with critical state

presents a major achievement by introducing the void ratio

as an additional state variable into the basic model [24, 26].

For a given soil, the hypoplastic model with critical state

requires a single set of parameters for the entire range of

densities. Since the critical model is built on the basic

model, the performance of the critical state model depends

on the quality of the basic model.

The first critical state model [24, 26] is based on a basic

model by Wu [24] and Wu and Bauer [25]. However, this

basic model has the shortcoming that the parameters cali-

brated at critical state in triaxial compression do not nec-

essarily give rise to critical state in triaxial extension. In

fact, the basic model shows excessive contractancy in tri-

axial extension at large strain. An improvement was made

by Bauer [1] and Wolffersdorff [20] by requiring that the

parameters (coefficients) of the two nonlinear terms are

equal with opposite signs. The improved model shows

vanishing rate of volumetric strain in triaxial compression

and extension at large strain. Note that the number of terms

(and of parameters) in the model are reduced from four to

three. In this paper, we will show that the model by
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Wolffersdorff may show pathological behavior if parame-

ters other than those in his paper are considered. We pro-

ceed to develop a robust basic model by introducing a new

term, which is selected from the representation theorem for

tensor polynomials.

2 Basic model: from Wu to Wolffersdorff

To gain perspectives, let us consider the following frame-

work for basic hypoplastic constitutive equations by Wu

and Kolymbas [22]:

�r ¼ Lðr; _�Þ þ NðrÞk _�k ð1Þ

where L and N are tensorial functions and L is assumed to

be linear in _�, r is the Cauchy stress tensor, _� is the strain

rate (stretching) tensor, jj _�jj stands for the norm of the

strain rate, �r is the Jaumann stress rate defined by

�r ¼ _rþ r _x� _xr ð2Þ

where _r is the material time derivative of the Cauchy

stress, and _x is the spin tensor. The strain rate and the spin

tensors are the symmetric and anti-symmetric parts of the

velocity gradient.

The functions L and N must be isotropic to remain

invariant under rigid body rotations (objectivity require-

ment). Since L is linear in _�, constitutive equations within

the framework (1) are necessarily rate independent. This

can be easily ascertained by the fact that (1) is homoge-

neous of the first degree in strain rate _�. To this end, we can

write (1) in the following form by making use of Euler’s

theorem for homogeneous functions

�r ¼ ½Lþ N� _�~� : _� ð3Þ

where L ¼ oL=o _� is a fourth-order tensor, the symbols �
and : denote an outer (dyadic) product and inner product

between two tensors, respectively. The terms in the

brackets of (3) represent the tangential stiffness, which

depends on the direction of strain rate. At this stage, it is

interesting to have a comparison with elastic and elasto-

plastic constitutive equations. For an elastic model, the

same stiffness tensor is used for loading and unloading. For

an elastoplastic model, two different stiffness tensors are

used, one for loading and one for unloading. Loading and

unloading are differentiated by the loading criteria. In

elastic and elastoplastic models, the stiffness tensors may

depend on stress but are independent of strain rate. In the

hypoplastic model (3), loading and unloading are not

explicitly stated but implicitly contained in the dependence

on the direction of strain rate.

Based on the basic model (1), the critical state model

can be obtained by multiplying the nonlinear term in (1) by

a density function f(e) [26]

�r ¼ Lðr; _�Þ þ f ðeÞNðrÞk _�k ð4Þ

with the following density function

f ðeÞ ¼ ecrt � e

ecrt � emin

ða� 1Þ þ 1 ð5Þ

The density function f(e) represents a linear interpolation

between f ðeminÞ ¼ a and f ðecrtÞ ¼ 1, with ecrt being the void

ratio at critical state and emin theminimumvoid ratio. Both ecrt
and emin may depend on stress. Several relationships between

void ratio and stress are available, e.g., logarithmic function in

CamClaymodel [14], exponential function [26] and potential

function [4]. Obviously, the critical state model reduces to the

basic model at critical state with f ðecrtÞ ¼ 1. The void ratio is

updated during deformation, and the density function serves

as feedback to adjust themodel response. To this end, the basic

model is calibrated at critical statewith vanishing rate of stress

and void ratio. A specimen with an initial density looser or

denser than critical is treated as an initial perturbation from the

critical state. For continuing deformation, the model response

is adjusted by the density function so that the critical state is

approached at large strain.

We proceed to consider the following basic constitutive

equation proposed by [24],

�r ¼ c1ðtrrÞ _�þ c2
trðr _�Þ
trr

rþ c3
r2

trr
jj _�jj þ c4

r�2

tr
rjj _�jj ð6Þ

where ci (i = 1, 2, 3, 4) are dimensionless parameters. The

deviatoric stress tensor r� in the above equation is defined

by r� ¼ r� 1=3ðtrrÞI with I being the second-order unit

tensor. The four parameters can be identified with a single

triaxial compression test. The performance of the model is

shown in great detail by Wu and Bauer [25]. Note that the

basic model (6) is homogeneous of the first degree in stress.

As a consequence, the tangential stiffness is proportional to

stress with vanishing stiffness at null stress, which is rea-

sonable for cohesionless soils.

When the basic model (6) is used in the critical state

model (4), the parameters ci (i = 1,2,3,4) are calibrated

with a triaxial compression test with an initial density

slightly looser than critical. In such a test, the critical state

can be attained without apparent shear band formation

[18, 28]. Usually, the four parameters are determined by

considering the stress state, the stress rate and strain rate at

two distinguished points of the stress–strain curve in tri-

axial compression test, usually an isotropic stress state after

consolidation and critical state, where the stress rate and

the volumetric strain rate vanish simultaneously. The

material behavior in an isotropic stress state is character-

ized by the initial tangential modulus Ei and the Poisson

ratio mi. The critical state is characterized by the friction

angle and dilatancy angle ucrt and wcrt. Obviously, we have

wcrt ¼ 0.
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It turned out, however, that the basic model, with the

four parameters calibrated at critical state in triaxial com-

pression, does not lead to critical state for other stress

paths, e.g., triaxial extension. Figure 1 shows the stress–

strain and volumetric strain curves for triaxial compression

and extension (dotted lines) starting from an isotropic

stress state. The dotted curves in Fig. 1 are obtained with

the parameters Ei ¼ 100rc, mi ¼ 0, ucrt ¼ 30� and

wcrt ¼ 0�. rc stands for the consolidation stress in triaxial

tests. These parameters are typical for loose sand except

the initial Poisson ratio mi ¼ 0. However, let us leave this

aside for a moment. Obviously, critical state is not attained

in triaxial extension. The model shows excessive contrac-

tancy in extension at large strain. Moreover, the stress ratio

at extension is higher than compression. The Mohr–Cou-

lomb failure surface would give rise to equal stress ratios at

compression and extension.

It was discovered quite fortuitously that critical state is

reached for all stress paths if the parameters of the two

nonlinear terms in (6) equal with opposite signs [1], i.e.

c3 ¼ �c4 ð7Þ

This is twofold fortuitous because the discovery was by

chance and because the condition (7) is only valid for the

basic model (1). To this end, the two nonlinear terms can

be merged into one to give

�r ¼ c1ðtrrÞ _�þ c2
trr _�

trr
rþ c3ðrþ r�Þjj _�jj ð8Þ

Note that we use c3 in both (6) and (8) for simplicity. In

general, c3 assumes different values in (6) and (8). The

performance of (8) in triaxial extension is shown by solid

lines in Fig. 1. Apparently, critical state is reached at

extension. The critical state model by Wolffersdorff [20] is

based on the above basic equation, which is, however,

seriously flawed. The detailed formulations of hypoplastic

model given by Wolffersdorff are shown in Appendix.

The critical state model by Wolffersdorff [20] used a

different set of material parameters, which can be related to

the three material parameters Ei, mi and /crt. Note that we

have wcrt ¼ 0� at critical state. Moreover, the constitutive

equation is homogeneous in stress, which means that the

parameters hs in the model by Wolffersdorff can be scaled

by Ei. We are then left with two parameters mi and /crt. As

a consequence, there exists a relationship between these

two parameters. Figure 2 shows the relationship between mi
and /crt according to the model by Wolffersdorff. A per-

usal of Fig. 2 shows that the initial Poisson ratio is close to

zero for a friction angle /crt of about 30�. However, an
initial Poisson ratio of mi ¼ 0 is at odds with most experi-

mental observations. In fact, the Poisson ratio for sand

usually lies between 0.2 and 0.3. One might ask what

happens if the friction angle remains 30� and an initial

Poisson ratio other than zero, say 0.2 is used? In this case,

we need to modify another material parameter fd in the

model, which depends on the stress state, initial density,

critical density, minimal density and three other material

parameters in the model (hs, n and a). The relationship

between mi and fd is shown in Fig. 3. It can be seen from

both figures that the initial Poisson ratio can even be

negative for /[ 30� or fd [ 1. If the material parameters

in the paper Wolffersdorff [20] are taken, the initial Pois-

son ratio mi ¼ 0:2 will lead to fd ¼ 0:4, which corresponds

to an initial pore ratio of about 0.36, which is not realistic.

It seems that the number of terms should not be less than

four in order not to compromise the model performance.

We proceed to remedy the deficiency of (8) by adding a

new term to the constitutive equation. The new term can be

chosen based on the representation theorem for tensor
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functions. To this end, let us have a look at the represen-

tation theorem in its simplest form, i.e., bilinear functions

of r and _� [19].

�r ¼ a1ðr _�þ _�rÞ þ a2rðtr _�Þ þ a3ðtrrÞ _�þ a4ðtrrÞðtr _�ÞI
þ a5trðr _�ÞI ð9Þ

where ai; ði ¼ 1. . .5Þ are coefficients. The new term should

not compromise the model at critical state, i.e., it should

vanish identically for tr _� ¼ 0. Such a term will improve the

model performance while leaving the critical state

unchanged. As can be easily seen, the above theorem offers

two such terms, namely rðtr _�Þ and ðtrrÞðtr _�ÞI. We have

studied both terms by numerical simulation of laboratory

tests and found both terms well suited to be included in the

basic model. In this paper, however, we will focus on the

former term. In fact, the representation theorems often

offer more than one possible choices [29].

We proceed to remedy equation (8) by including the

term rðtr _�Þ to obtain the following basic model:

�r ¼ c1ðtrrÞ _�þ c2rðtr _�Þ þ c3
trðr _�Þ
trr

rþ c4ðrþ r�Þjj _�jj

ð10Þ

Again, the same notations for the four parameters ci, (i = 1

... 4) are retained in the above equation without inducing

confusion. The above equation has four terms and four

parameters with the difference to (6) in that we have three

linear terms and one nonlinear term.

3 Model performance

The performance of the basic model (10) is demonstrated

by simulating some triaxial tests with different parameter

combinations. The material parameters in (10) can be

determined with a single triaxial compression test accord-

ing to the procedure described by Wu and Bauer [25].

3.1 Parameter study with basic model

Several numerical simulations of triaxial compression

and extension tests with different dilatancy angles are

carried out. The other three material parameters are

kept unchanged with Ei=rc ¼ 170, mi ¼ 0:2, /crt ¼ 30�.
The stress–strain and volumetric strain curves are

shown in Fig. 4. The following observations can be

made. The stress–strain curves remain un-effected by

the dilatancy angle. The volumetric strain curves show

typical initial contractancy followed by dilatancy. The

dilatancy is slightly larger in compression than in

extension, which agrees well with experimental obser-

vations [23].

The next simulation series are carried out by varying

the initial Poisson ratio from 0.0 to 0.3. The same

initial stiffness and friction angle are used, i.e.,

Ei=rc ¼ 170, /crt ¼ 30�. The numerical results with

different Poisson ratios for two dilatancy angles w ¼ 0�

(critical state) and w ¼ 10� are shown in Figs. 5 and 6.

Again, the stress–strain curves are dictated by the

friction angle and initial modulus and remain un-ef-

fected by the other parameters. The initial Poisson ratio

has large influence on the volumetric strain, both the

initial contractancy and the subsequent dilatancy. This

offers more flexibility to fit model prediction to

experimental data.
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3.2 Simulation of stress path tests

The model performance along some stress paths other than

compression and extension is shown by following the four

stress paths in Fig. 7. Stress paths 1 and 4 represent triaxial

compression and extension, respectively. In stress paths 2

and 3, both r1 and r3 increase with the ratio of 2 : 1 and

1 : 2, respectively. The following material parameters are

used: Ei=rc ¼ 170, mi ¼ 0:2, / ¼ 30� and w ¼ 10�. The
numerical simulations are shown in Fig. 8. Stress path 1

has the highest strength and the lowest dilatancy. Stress

path 4 has the lowest strength and the highest dilatancy.

This is because the mean pressure in path 1 is higher than

path 4. Dilatancy is suppressed by elevating mean pressure.

With Eq. (8), we have a simple and robust basic model

at hand to develop more sophisticated models. The four

parameters can be easily determined with a single triaxial

compression test. As will be shown later, the failure surface

likes that of Drucker–Prager. We are tempted to compare

our basic model with an ideally plastic model with the

failure surface of Drucker–Prager, which comes also with

four material parameters, namely elastic modulus, Poisson

ratio, friction angle and dilatancy angle. However, our

model is superior in many respects, e.g., single equation for

loading and unloading, nonlinearity before failure and

smooth transition from contractancy to dilatancy.

3.3 Model with critical state

The simplicity and robustness of the basic model (10) make

it an interesting stand-alone model for many applications.

However, the true strength of basic model can be best

appreciated in connection with the critical state model. The

focus of this paper is on the basic model. Therefore, we
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will consider the critical state model only in its simplest

form to show how the critical models (4) and (5) work. The

parameters ecrit and emin are assumed to be constant, i.e.,

independent of stress. Let us consider the following typical

parameters for sand with a ¼ 0:8, ecrit ¼ 0:7 and

emin ¼ 0:5. The expression of f(e) can be obtained by

inserting these parameters into (5), which can be further

inserted into the constitutive equation (4) to give

�r ¼ c1ðtrrÞ _�þ c2rðtr _�Þ þ c3
trðr _�Þ
trr

rþ ð1:7� eÞ

c4ðrþ r�Þjj _�jj ð11Þ

It can be easily seen in the above equation that void ratio e

is included a state variable in addition to stress r. Com-

parison between (11) and (10) shows that the critical state

model and the basic model differ only be the simple

expression 1:7� e in the nonlinear term. Yet, this simple

expression makes big difference in the model performance.

The four parameters in the basicmodel (10) are determined

at critical state with Ei=rc ¼ 170, mi ¼ 0:2, /crt ¼ 30� and

wcrt ¼ 0�. Equation (11) is used to simulate triaxial com-

pression tests with four different initial densities (see Fig. 9).

The densities with e0 ¼ 0:5 and e0 ¼ 0:6 are denser than

critical, while the density e0 ¼ 0:8 is looser than critical.

Some salient behavior of sand is well reproduced by the

critical state model, e.g., strain softening and dilatancy for

dense sand, strain hardening and contractancy for loose

sand. At large strain, the shear strength at critical state

(characterized by the friction angle /crt) and the void ratio

at critical state (characterized by ecrt) are approached.

It should be pointed out that the critical state model (11)

is only for demonstration purpose. Some improvements can

be readily made. For example, both ecrt and emin in (5) are

known to depend on stress.

4 Stress response envelope

Until now, only numerical simulations of triaxial tests

along certain stress paths are considered. The general

properties of constitutive model be best appreciated by the

so-called response envelope. The response envelope at a
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given stress state r0, called initial stress, is the surface

spanned by all stresses r ¼ r0 þ Dr. The stress increments

Dr are obtained from the probes of strain rates of all

possible directions with the same magnitude jj _�jj. The

response envelopes can be depicted in the three-dimen-

sional stress space [27]. For visual inspection, however, the

Rendulic plane with r2 ¼ r3 is often the better choice.

Some response envelops of the basic model (10) are

shown in Fig. 10. The following material parameters are

used: Ei=rc ¼ 170, mi ¼ 0:2, / ¼ 30� and w ¼ 10�. The
initial stress states of the five response envelopes are on the

same deviatoric plane. The dotted line represents hydro-

static stress states. The upper and lower straight line rep-

resents the failure criterion for compression and extension.

Any point on the response envelop is associated with a

certain strain increment with the ensuing stress increment.

Since the strain rates have the same magnitude, the dis-

tance from any point on the response envelope to the initial

stress state signifies the directional stiffness as shown in

(3).

The following observations are shown in Fig. 10. The

response envelope in the middle is symmetric with refer-

ence to the hydrostatic axis, which is dictated by the

requirement of isotropy. The two outmost response envel-

opes are for the stress states on the failure surface.

Apparently, the initial stress on failure surface lies on the

response envelop. A closer look at these two response

envelops shows that a small part of the response envelopes

are outside the failure surface, which brings us to the

derivation of the failure surface and bound surface.

5 Failure surface

Unlike plasticity theory with a priori defined yield and

failure surface, the failure surface in hypoplasticity can be

derived as outcome of the constitutive equation. The two

failure lines in Fig. 10 are the traces of the failure surface

on the Rendulic plane. We proceed to derive the failure

surface for the basic equation (10) by requiring that the

stress rate at failure vanishes, i.e., �r ¼ 0. Moreover, the

failure surface will be derived at critical state as a major

concern is to build critical state model based on the basic

model.

Equation (10) can be separated into a spherical part and

a deviatoric part. Let us first consider the spherical part,

which can be obtained by taking the trace of both sides of

Eq. (10)

tr�r ¼ c1ðtrrÞðtr _�Þ þ c2ðtr _�ÞðtrrÞ þ c3
trðr _�Þ
trr

trrþ c4ðtrr
þ trr�Þjj _�jj

ð12Þ

Note that tr�r ¼ 0 and tr _� ¼ 0 at critical state. By making

use of the relationship trr _� ¼ trr� _�� ¼ jjr�jjjj _��jj cos h,
with h being the angle between r� and _��, the following

equation can be obtained by letting tr�r ¼ 0

c3jjr�jjjj _��jj cos hþ c4jj _�jjtrr ¼ 0 ð13Þ

Let rc denote the stress ratio jjr�jj=trr at critical state. The

following expression can be obtained from the above

equation

c3rc cos hþ c4 ¼ 0 ð14Þ

The term cos h in the above equation represents the flow

direction with reference to stress at critical state. As will be

shown thereafter, we have cos h ¼ 1. In this case, we are

left with the following relationship between c3 and c4

� c4

c3
¼ rc ð15Þ

The above expression shows that the failure surface is that

of Drucker–Prager. The stress ration rc is independent of

the first and second terms in Eq. (10) and depends only on

the ratio c4=c3
Now, let us turn our attention to the deviatoric part of

the constitutive equation (10)

�r� ¼ c1ðtrrÞ _�� þ c2ðtr _�Þr� þ c3
trr _�

trr
r� þ 2c4r

�jj _�jj ð16Þ

By making use of tr _� ¼ 0, trðr _�Þ ¼ trðr� _��Þ ¼
jjr�jjjj _��jj cos h and jj _�jj ¼ jj _��jj, it follows that
_��

jj _��jj ¼ �ðc3rc cos hþ 2c4Þ
r�

trr
ð17Þ
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The above relation shows that the deviatoric stress tensor

and the deviatoric strain rate tensor are collinear at critical

state. This implies that cos h ¼ 1. Note that

ð _��=jj _��jjÞ : ð _��=jj _��jjÞ ¼ 1. It follows from the above

expression that

c3r
2
c þ 2c4rc � 1 ¼ 0 ð18Þ

The above equation is quadratic in rc. Combining (15) and

Eq. (18), we can solve for c3 to obtain

c3 ¼ � 1

r2c
ð19Þ

The parameter c3 can be set into Eq. (15) to get c4

c4 ¼
1

rc
ð20Þ

To sum up, the failure surface from constitutive equation

(10) can be expressed in the following form

jjr�jj ¼ rctrr ð21Þ

with rc ¼ �c4=c3. Obviously, the failure surface (21) has a

conical shape, which likes that of Drucker–Prager. If the

same friction angle ucrt is used for Drucker–Prager model

and basic hypoplastic model, the failure surfaces of these

two models will coincide. The trace of the failure surface

on a p-plane with trr ¼ 1 is a circle with the radius rc. The

flow rule is associated at critical state.

5.1 Bound surface

Figure 10 shows that for initial stresses on the failure

surface, some strain rates may lead to stresses outside the

failure surface. We proceed to derive the bound surface,

which enclose all accessible stresses following the proce-

dure proposed by Wu and Niemunis [27].

Assume that there exists a bound surface bðrÞ ¼ 0 with

bðrÞ being an isotropic function of stress. Consider the

stress rb which happens to be on the bound surface so that

bðrbÞ ¼ 0. The outward normal to the bound surface at rb
is per definition

Z ¼ obðrÞ
or

jr¼rb
ð22Þ

The bound surface can be found by solving the following

equation system

rb �
rb : rb
rb : I

: I ¼ Z ð23Þ

ðZ : LÞ : ðZ : LÞ ¼ ðZ : NÞ2 ð24Þ

where L is the fourth-order tensor and N the second-order

tensor from Eq. (3). For constitutive equation (10), solving

the above equation system yields the following equation

9c21 r21 þ r22 þ r23
� �

� 2c24 r21 þ r22 þ r23 � r2r3 � r1r2r1r3
� �

¼ 0
ð25Þ

where r1, r2 and r3 are the principle stresses. The above

equation represents a right circular cone with its apex at the

origin. The failure surface and the bound surface of con-

stitutive equation (10) are depicted on a p-plane in Fig. 11.

The following material parameters are used: Ei=rc ¼ 170,

mi ¼ 0:2, /crt ¼ 30� and wcrt ¼ 0�.
The bound surface ensures that the stresses from the

constitutive equation (10) remain bounded. In numerical

calculations, however, large step size may lead to stresses

beyond the failure surface. In elastoplasticity, some return

mapping algorithms are needed to bring the stress back to

the yield surface [21]. The existence of bound surface can

be regarded as a self-correcting mechanism for the

hypoplastic constitutive model.

6 Conclusions

The hypoplastic model with critical state by Wolffersdorff

is based on a basic model with three terms. The number of

parameters is reduced from four in previous models to

three. However, this basic model with three terms is

severely flawed in that the model provides decent predic-

tions only when the parameters are calibrated for vanishing

initial Poisson ratio, which is at odds with experimental

observations. The model becomes corrupted when realistic

Poisson ratios between 0.2 and 0.3 are used.

A basic model is developed by introducing a new term,

which vanishes at critical state. Its simplicity and robust-

ness make it an ideal basic model to build more sophisti-

cated models, e.g., critical state model and high-order

Failure surface
Bound surface

z

yx

Fig. 11 Failure and bound surfaces on a p-plane
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model [5, 8, 9, 13, 30, 31]. The failure surface is derived

from the constitutive equation and likes that of Drucker–

Prager. An extension to the failure surface of Matsuoka and

Nakai is straightforward.
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Appendix

The hypoplastic model by Wolffersdorff [20] is given

below. By making use of the normalized stress r̂ ¼ r=trr,

the hypoplastic model can be written out as follows:

�r ¼ fbfe
1

trðr̂2Þ F2 _�þ a2trðr̂ _�Þr̂þ fdaFðr̂þ r̂�Þjj _�jj
� �

ð26Þ

with

a ¼
ffiffiffi
3

p
ð3� sinucÞ
2

ffiffiffi
2

p
sinuc

ð27Þ

F is a function of r̂�

F ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

8
tan2 wþ 2� tan2 w

2þ
ffiffiffi
2

p
tanw cos 3#

s

� 1

2
ffiffiffi
2

p tanw ð28Þ

with

tanw ¼
ffiffiffi
3

p
jjr̂�jj; cos 3# ¼ �

ffiffiffi
6

p trð ^r�3Þ
½trð ^r�2Þ�3=2

ð29Þ

The characteristic void ratios are defined by the following

relationships

ei

ei0
¼ ec

ec0
¼ ed

ed0
¼ exp � � trr

hs

� �n	 

ð30Þ

The functions fe and fd in (26) are defined by

fe ¼
ec

e

� �b
ð31Þ

fd ¼
e� ed

ec � ed

� �a

ð32Þ

The function fb is defined by

fb ¼
hs

n

1þ ei

ei

� �
ei0

ec0

� �b

� trr

hs

� �1�n

3þ a2 �
ffiffiffi
3

p
a

ei0 � ed0

ec0 � ed0

� �a	 
�1
ð33Þ

In the equations above, uc, hs, n, ec0, ed0, ei0, a, b are

material parameters.
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