Skip to main content
Log in

Formation and development of salt crusts on soil surfaces

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

The salt concentration gradually increases at the soil free surface when the evaporation rate exceeds the diffusive counter transport. Eventually, salt precipitates and crystals form a porous sodium chloride crust with a porosity of 0.43 ± 0.14. After detaching from soils, the salt crust still experiences water condensation and salt deliquescence at the bottom, brine transport across the crust driven by the humidity gradient, and continued air-side precipitation. This transport mechanism allows salt crust migration away from the soil surface at a rate of 5 μm/h forming salt domes above soil surfaces. The surface characteristics of mineral substrates and the evaporation rate affect the morphology and the crystal size of precipitated salt. In particular, substrate hydrophobicity and low evaporation rate suppress salt spreading.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Abrol IP, Yadav JSP, Massoud FI (1988) Salt-affected soils and their management. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  2. Alonso EE, Olivella S (2008) Modelling tunnel performance in expansive gypsum claystone. In: International association for computer methods and advances in geomechanics (IACMAG), 891–910

  3. Angeli M, Bigas J-P, Benavente D, Menéndez B, Hébert R, David C (2007) Salt crystallization in pores: quantification and estimation of damage. Environ Geol 52:205–213

    Article  Google Scholar 

  4. Benavente D, Cueto N, Martínez-Martínez J, Del Cura MG, Cañaveras J (2007) The influence of petrophysical properties on the salt weathering of porous building rocks. Environ Geol 52:215–224

    Article  Google Scholar 

  5. Benavente D, del Cura M, Garcıa-Guinea J, Sánchez-Moral S, Ordóñez S (2004) Role of pore structure in salt crystallisation in unsaturated porous stone. J Cryst Growth 260:532–544

    Article  Google Scholar 

  6. Cardell C, Rivas T, Mosquera M, Birginie J, Moropoulou A, Prieto B, Silva B, Van Grieken R (2003) Patterns of damage in igneous and sedimentary rocks under conditions simulating sea-salt weathering. Earth Surf Process Landf 28:1–14

    Article  Google Scholar 

  7. Chatterji S, Jensen AD (1989) Efflorescence and breakdown of building materials. Nordic Concr Res 8:56–61

    Google Scholar 

  8. Eloukabi H, Sghaier N, Ben Nasrallah S, Prat M (2013) Experimental study of the effect of sodium chloride on drying of porous media: the crusty–patchy efflorescence transition. Int J Heat Mass Transf 56:80–93

    Article  Google Scholar 

  9. Espinosa-Marzal RM, Scherer GW (2010) Advances in understanding damage by salt crystallization. Acc Chem Res 43:897–905

    Article  Google Scholar 

  10. Foster MC, Ewing GE (2000) Adsorption of water on the NaCl(001) surface. II. An infrared study at ambient temperatures. J Chem Phys 112:6817–6826

    Article  Google Scholar 

  11. Goudie A, Viles HA (1997) Salt weathering hazards. Wiley, Chichester

    Google Scholar 

  12. Guglielmini L, Gontcharov A, Aldykiewicz JAJ, Stone HA (2008) Drying of salt solutions in porous materials: intermediate-time dynamics and efflorescence. Phys Fluids 20:077101–077107

    Article  MATH  Google Scholar 

  13. Hazlehurst T Jr, Martin H, Brewer L (1936) The creeping of saturated salt solutions. J Phys Chem 40:439–452

    Article  Google Scholar 

  14. Hird R, Bolton M (2014) Upward migration of sodium chloride by crystallization on non-porous surfaces. Phil Mag 94:78–91

    Article  Google Scholar 

  15. Huang B-J, Huang J-C (1976) Creeping-film phenomenon of potassium chloride solution. Nature 261:36–38

    Article  Google Scholar 

  16. Huinink HP, Pel L, Michels MAJ (2002) How ions distribute in a drying porous medium: a simple model. Phys Fluids 14:1389–1395

    Article  MATH  Google Scholar 

  17. Mokni N, Olivella S, Alonso EE (2010) Swelling in clayey soils induced by the presence of salt crystals. Appl Clay Sci 47:105–112

    Article  Google Scholar 

  18. Nachshon U, Shahraeeni E, Or D, Dragila M, Weisbrod N (2011) Infrared thermography of evaporative fluxes and dynamics of salt deposition on heterogeneous porous surfaces. Water Resources Research 47, n/a–n/a

  19. Netterberg F, Loudon P (1980) Simulation of salt damage to roads with laboratory model experiments. In: Proceedings of the seventh regional conference for Africa on soil mechanics and foundation engineering, Accra, June 1980, p. 7

  20. Norouzi Rad M, Shokri N (2012) Nonlinear effects of salt concentrations on evaporation from porous media. Geophys Res Lett 39:L04403

    Article  Google Scholar 

  21. Obika B, Freer-Hewish R, Fookes P (1989) Soluble salt damage to thin bituminous road and runway surfaces. Q J Eng GeolHydrogeol 22:59–73

    Article  Google Scholar 

  22. Oldecop L, Alonso E (2012) Modelling the degradation and swelling of clayey rocks bearing calcium-sulphate. Int J Rock Mech Min Sci 54:90–102

    Google Scholar 

  23. Rengasamy P (2010) Soil processes affecting crop production in salt-affected soils. Funct Plant Biol 37:613–620

    Article  Google Scholar 

  24. Rodriguez-Navarro C, Doehne E (1999) Salt weathering: influence of evaporation rate, supersaturation and crystallization pattern. Earth Surf Process Landf 24:191–209

    Article  Google Scholar 

  25. Sayward JM (1984) Salt action on concrete. U.S. army cold regions research and engineering laboratory, Special Rpt. 84–25, p. 76

  26. Scherer GW (2004) Stress from crystallization of salt. Cem Concr Res 34:1613–1624

    Article  Google Scholar 

  27. Scherer GW, Flatt R, Wheeler G (2001) Materials science research for the conservation of sculpture and monuments. MRS Bull 26:44–50

    Article  Google Scholar 

  28. Schiro M, Ruiz-Agudo E, Rodriguez-Navarro C (2012) Damage mechanisms of porous materials due to in-pore salt crystallization. Phys Rev Lett 109:265503

    Article  Google Scholar 

  29. Sghaier N, Prat M (2009) Effect of efflorescence formation on drying kinetics of porous media. Transp Porous Media 80:441–454

    Article  Google Scholar 

  30. Sghaier N, Prat M, Ben Nasrallah S (2006) On the influence of sodium chloride concentration on equilibrium contact angle. Chem Eng J 122:47–53

    Article  Google Scholar 

  31. Shahidzadeh-Bonn N, Desarnaud J, Bertrand F, Chateau X, Bonn D (2010) Damage in porous media due to salt crystallization. Phys Rev E 81:066110

    Article  Google Scholar 

  32. Steiger M (2005) Crystal growth in porous materials—I: the crystallization pressure of large crystals. J Cryst Growth 282:455–469

    Article  Google Scholar 

  33. Steiger M (2005) Crystal growth in porous materials—II: influence of crystal size on the crystallization pressure. J Cryst Growth 282:470–481

    Article  Google Scholar 

  34. van Enckevort WJ, Los JH (2013) On the creeping of saturated salt solutions. Cryst Growth Des 13:1838–1848

    Article  Google Scholar 

  35. Veran-Tissoires S, Marcoux M, Prat M (2012) Discrete salt crystallization at the surface of a porous medium. Phys Rev Lett 108:054502

    Article  Google Scholar 

  36. Vrhunec A, Kolenc A, Teslic D, Livk I, Pohar C (1999) Crystal size distribution in batch sodium perborate precipitation. Acta Chim Slov 46:543–554

    Google Scholar 

  37. Washburn ER (1927) The creeping of solutions. J Phys Chem 31:1246–1248

    Article  Google Scholar 

  38. Zhang H, Wu Z, Francis LF (2009) Formation of salt crystal whiskers on porous nanoparticle coatings. Langmuir 26:2847–2856

    Article  Google Scholar 

Download references

Acknowledgments

This work has been supported by the Goizueta Foundation and US Department of Energy. Constructive comments from two anonymous reviewers have greatly improved this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheng Dai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, S., Shin, H. & Santamarina, J.C. Formation and development of salt crusts on soil surfaces. Acta Geotech. 11, 1103–1109 (2016). https://doi.org/10.1007/s11440-015-0421-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-015-0421-9

Keywords

Navigation