Skip to main content
Log in

Soft-to-hard templating to well-dispersed N-doped mesoporous carbon nanospheres via one-pot carbon/silica source copolymerization

  • Article
  • Materials Science
  • Published:
Science Bulletin

Abstract

Here we report a new approach referred as “soft-to-hard templating” strategy via the copolymerization of carbon source (dopamine) and silica source (tetraethyl orthosilicate) for the synthesis of well dispersed N-doped mesoporous carbon nanospheres (MCNs), which exhibit high performance for electrochemical supercapacitor. This method overcomes the shortcoming of uncontrolled dispersity and complicated procedures of soft- or hard-templating methods, respectively. Moreover, the synthesized MCNs feature enriched heteroatom N-doping and easy functionalization by noble-metal nanoparticles during the one-pot synthesis. All the above characters make the as-prepared MCNs a promising platform in a variety of applications. To demonstrate the applicability of the synthesized nitrogen-doped MCNs, this material has been employed as an electrode for high-performance electrochemical supercapacitor, which shows a capacitance of 223 and 140 F/g at current densities of 0.5 and 10 A/g in 1 mol/L KOH electrolyte, respectively.

摘要

本文报道了一种新的“由软到硬的模板”策略,通过碳源(多巴胺)和硅源(正硅酸乙酯)的共聚合合成了分散性良好的N掺杂介孔碳纳米球(MCNs)。该方法克服了复杂软模板和硬模板法难以控制MCNs分散性的问题。获得的MCNs含有丰富的N掺杂物种,且易于实现贵金属纳米颗粒的负载。该MCNs可应用于多领域。本文研究了其超电容特性:在1 mol/L NaOH溶液中,当电流密度为0.4和10 A/g时,该MCNs电极电容可分别达到223和140 F/g。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Liu J, Wickramaratne N, Qiao S et al (2015) Molecular-based design and emerging applications of nanoporous carbon spheres. Nat Mater 14:763–774

    Article  Google Scholar 

  2. Zhou W, Wang C, Zhang Q et al (2015) Tailoring pore size of nitrogen-doped hollow carbon nanospheres for confining sulfur in lithium–sulfur batteries. Adv Energy Mater 5:1401752

    Article  Google Scholar 

  3. Zhai Y, Dou Y, Zhao D et al (2011) Carbon materials for chemical capacitive energy storage. Adv Mater 23:4828–4850

    Article  Google Scholar 

  4. Yang T, Zhou R, Wang D et al (2015) Hierarchical mesoporous yolk–shell structured carbonaceous nanospheres for high performance electrochemical capacitive energy storage. Chem Commun 51:2518–2521

    Article  Google Scholar 

  5. Yang T, Liu J, Zhou R et al (2014) N-doped mesoporous carbon spheres as the oxygen reduction reaction catalysts. J Mater Chem A 2:18139–18146

    Article  Google Scholar 

  6. Wei J, Liang Y, Zhang X et al (2015) Controllable synthesis of mesoporous carbon nanospheres and Fe–N/carbon nanospheres as efficient oxygen reduction electrocatalysts. Nanoscale 7:6247–6254

    Article  Google Scholar 

  7. Wang S, Li W, Hao G et al (2011) Temperature-programmed precise control over the sizes of carbon nanospheres based on benzoxazine chemistry. J Am Chem Soc 133:15304–15307

    Article  Google Scholar 

  8. Schuster J, He G, Mandlmeier B et al (2012) Spherical ordered mesoporous carbon nanoparticles with high porosity for lithium–sulfur batteries. Angew Chem Int Ed 51:3591–3595

    Article  Google Scholar 

  9. Ma C, Shao X, Cao D (2012) Nitrogen-doped graphene nanosheets as anode materials for lithium ion batteries: a first-principles study. J Mater Chem 22:8911–8915

    Article  Google Scholar 

  10. Liu L, Deng Q, Agula B et al (2011) Ordered mesoporous carbon catalyst for dehydrogenation of propane to propylene. Chem Commun 47:8334–8336

    Article  Google Scholar 

  11. Li C, Meng Y, Wang S et al (2015) Mesoporous carbon nanospheres featured fluorescent aptasensor for multiple diagnosis of cancer in vitro and in vivo. ACS Nano 9:12096–12103

    Article  Google Scholar 

  12. Kong Q, Zhang L, Liu J et al (2014) Facile synthesis of hydrophilic multi-colour and upconversion photoluminescent mesoporous carbon nanoparticles for bioapplications. Chem Commun 50:15772–15775

    Article  Google Scholar 

  13. Jeong H, Lee J, Shin W et al (2011) Nitrogen-doped graphene for high-performance ultracapacitors and the importance of nitrogen-doped sites at basal planes. Nano Lett 11:2472–2477

    Article  Google Scholar 

  14. Gu J, Su S, Li Y et al (2011) Hydrophilic mesoporous carbon nanoparticles as carriers for sustained release of hydrophobic anti-cancer drugs. Chem Commun 47:2101–2103

    Article  Google Scholar 

  15. Li Z, Xu Z, Tan X et al (2013) Mesoporous nitrogen-rich carbons derived from protein for ultra-high capacity battery anodes and supercapacitors. Energy Environ Sci 6:871–878

    Article  Google Scholar 

  16. Konicki W, Cendrowski K, Chen X et al (2013) Application of hollow mesoporous carbon nanospheres as an high effective adsorbent for the fast removal of acid dyes from aqueous solutions. Chem Eng J 228:824–833

    Article  Google Scholar 

  17. Goettmann F, Fischer A, Antonietti M et al (2006) Chemical synthesis of mesoporous carbon nitrides using hard templates and their use as a metal-free catalyst for Friedel–Crafts reaction of benzene. Angew Chem Int Ed 45:4467–4471

    Article  Google Scholar 

  18. Chen A, Yu Y, Zhang Y et al (2014) Aqueous-phase synthesis of nitrogen-doped ordered mesoporous carbon nanospheres as an efficient adsorbent for acidic gases. Carbon 80:19–27

    Article  Google Scholar 

  19. Wan Y, Shi Y, Zhao D (2007) Supramolecular aggregates as templates: ordered mesoporous polymers and carbons. Chem Mater 20:932–945

    Article  Google Scholar 

  20. Tang J, Liu J, Li C et al (2015) Synthesis of nitrogen-doped mesoporous carbon spheres with extra-large pores through assembly of diblock copolymer micelles. Angew Chem Int Ed 54:588–593

    Google Scholar 

  21. Ren J, Ding J, Chan K et al (2007) Dual-porosity carbon templated from monosize mesoporous silica nanoparticles. Chem Mater 19:2786–2795

    Article  Google Scholar 

  22. Lu A, Li W, Hao G et al (2010) Easy synthesis of hollow polymer, carbon, and graphitized microspheres. Angew Chem Int Ed 49:1615–1618

    Article  Google Scholar 

  23. Liu J, Yang T, Wang D et al (2013) A facile soft-template synthesis of mesoporous polymeric and carbonaceous nanospheres. Nat Commun 4:2798

    Google Scholar 

  24. Fang Y, Gu D, Zou Y et al (2010) A low-concentration hydrothermal synthesis of biocompatible ordered mesoporous carbon nanospheres with tunable and uniform size. Angew Chem Int Ed 49:7987–7991

    Article  Google Scholar 

  25. Liu J, Qiao S, Liu H et al (2011) Extension of the Stöber method to the preparation of monodisperse resorcinol–formaldehyde resin polymer and carbon spheres. Angew Chem Int Ed 50:5947–5951

    Article  Google Scholar 

  26. Liang C, Li Z, Dai S (2008) Mesoporöse Kohlenstoffmaterialien: synthese und modifizierung. Angew Chem 120:3754–3776

    Article  Google Scholar 

  27. Tian H, Saunders M, Dodd A et al (2016) Triconstituent co-assembly synthesis of N, S-doped carbon–silica nanospheres with smooth and rough surfaces. J Mater Chem A 4:3721–3727

    Article  Google Scholar 

  28. Ai K, Liu Y, Ruan C et al (2013) sp2 C-dominant N-doped carbon sub-micrometer spheres with a tunable size: a versatile platform for highly efficient oxygen-reduction catalysts. Adv Mater 25:998–1003

    Article  Google Scholar 

  29. Teranishi T, Hosoe M, Tanaka T et al (1999) Size control of monodispersed Pt nanoparticles and their 2D organization by electrophoretic deposition. J Phys Chem B 103:3818–3827

    Article  Google Scholar 

  30. Lim S, Li R, Ji W et al (2007) Effects of nitrogenation on single-walled carbon nanotubes within density functional theory. Phys Rev B 76:195406

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Basic Research Program of China (2013CB933200), the National High Technology Research and Development Program of China (2012AA062703), the National Natural Science Foundation of China (21177137) and the Youth Innovation Promotion Association CAS (2012200).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lingxia Zhang or Jianlin Shi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 555 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kong, Q., Zhang, L., Wang, M. et al. Soft-to-hard templating to well-dispersed N-doped mesoporous carbon nanospheres via one-pot carbon/silica source copolymerization. Sci. Bull. 61, 1195–1201 (2016). https://doi.org/10.1007/s11434-016-1119-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-016-1119-6

Keywords

Navigation